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ABSTRACT
Pancreatic cancer has a dismal prognosis, as it is often diagnosed at stage IV of the disease and is 
characterized by metastatic spread. Gut microbiota and its metabolites have been suggested to 
influence the metastatic spread by modulating the host immune system or by promoting angio
genesis. To date, the gut microbial profiles of metastatic and non-metastatic patients need to be 
explored. Taking advantage of the 16S metagenomic sequencing and the PEnalized LOgistic 
Regression Analysis (PELORA) we identified clusters of bacteria with differential abundances 
between metastatic and non-metastatic patients. An overall increase in Gram-negative bacteria 
in metastatic patients compared to non-metastatic ones was identified using this method. 
Furthermore, to gain more insight into how gut microbes can predict metastases, a machine 
learning approach (iterative Random Forest) was performed. Iterative Random Forest analysis 
revealed which microorganisms were characterized by a different level of relative abundance 
between metastatic and non-metastatic patients and established a functional relationship 
between the relative abundance and the probability of having metastases. At the species level, 
the following bacteria were found to have the highest discriminatory power: Anaerostipes hadrus, 
Coprobacter secundus, Clostridium sp. 619, Roseburia inulinivorans, Porphyromonas and Odoribacter 
at the genus level, and Rhodospirillaceae, Clostridiaceae and Peptococcaceae at the family level. 
Finally, these data were intertwined with those from a metabolomics analysis on fecal samples of 
patients with or without metastasis to better understand the role of gut microbiota in the 
metastatic process. Artificial intelligence has been applied in different areas of the medical field. 
Translating its application in the field of gut microbiota analysis may help fully exploit the potential 
information contained in such a large amount of data aiming to open up new supportive areas of 
intervention in the management of cancer.
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Introduction

Global statistics updated to 2020 assign pancreatic 
cancer (PC) in seventh place among the causes of 
cancer-related death.1 Indeed, compared to all 
other cancers, the 5-year survival rate for PC is 
among the lowest (10%),2 and it further drops to 
approximately 3% when considering stage IV dis
ease characterized by metastatic spread.3 Such poor 

data are mainly linked to the subtle and insidious 
onset of PC and its late diagnosis.4 In fact, screen
ing methods are not recommended unless in high- 
risk subjects, in the absence of specific biochemical 
markers and in the presence of non-typical symp
toms in the initial stages of the disease, making 
early diagnosis difficult to achieve.5,6 For these 
reasons, more than 80% of patients are diagnosed 
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with PC when the disease is locally advanced or 
metastatic, the tumor is unresectable and palliative 
chemotherapy is the standard of care.7–9 

Metastases development is a complex multi-step 
process that requires cancer cells to detach from 
the primary tumor, invade the adjacent tissue, 
migrate into the blood vessels, survive in the blood
stream, leave the circulatory system and colonize a 
distant body site.10,11 Therefore, for productive 
metastasis establishment, cancer cells must cope 
with a number of hurdles, and the participation of 
several actors from the tumor microenvironment 
(TME) as well as from outside the tumor is 
required.12 A study by Fu et al. recently demon
strated that, as a part of the TME, intra-tumor 
microbiota influence the process of breast cancer 
metastasis by helping circulating tumor cells re- 
organize their cytoskeleton to resist mechanical 
stress in circulation.13 However, it has been pro
posed, that the gut microbiota and its metabolites 
may be involved at a distance in the process of 
tumor spread through different mechanisms. 
One of these is the ability of microbes to modulate 
the host immune system, thus helping cancer cells 
to escape immune surveillance14 and creating the 
so-called pre-metastatic niche, a permissive milieu 
for primary cancer cell engraftment into second
ary organ.15–17 Another important contribution of 
gut microbiota to metastasis is the promotion of 
angiogenesis through stimulation of vascular 
endothelial growth factor (VEGF) expression by 
lipopolysaccharide (LPS) and Toll-like receptor-4 
(TLR-4).18,19

Despite this evidence linking the gut microbiota 
to the metastatic process, gut bacterial commu
nities characterizing metastatic cancer carriers 
remain largely uninvestigated.

In the current study, the gut microbial com
position of a cohort of patients with either local 
or metastatic PC was profiled with the aim of 
identifying bacterial patterns that could discri
minate between these two conditions. Moreover, 
to gain further insight into how the gut micro
biota can predict the risk of metastases, a 
machine learning approach was also performed 
to determine the interactions of the relative 
abundance of microorganisms, which may 
represent bacterial signatures of localized and 
metastatic PC.

Materials and methods

Study participants

Subjects were recruited between June 2019 and 
April 2022 from the Fondazione IRCCS “Casa 
Sollievo della Sofferenza” Hospital, San Giovanni 
Rotondo, Italy, using the same protocols for each 
patient for collection, processing, and conservation 
of biological samples. Ethical approval from the 
IRCCS “Casa Sollievo della Sofferenza” Hospital, 
under Ethical Committee approval number N.184/ 
CE and written informed consent (IC) were 
obtained from the study participants. The study 
was carried out in accordance with the principles 
of good clinical practice, the Declaration of 
Helsinki, and in compliance with national legisla
tion. Epidemiological and lifestyle data as well as 
disease stage, follow-up data, diet, drinking, and 
smoking habits, were collected at the time of 
recruitment when the stool specimen was also col
lected. All data were retrieved from hospital 
records and collected through direct interviews 
with the patients. Only patients with PC identified 
at the time of diagnosis prior to any cancer treat
ment were included in the study and were classified 
into two groups according to the presence of 
metastasis (i.e., non-metastatic and metastatic PC 
groups). Both patient groups were examined clini
cally, including assessment of basic anthropometric 
data and evaluation of blood and serum tests. In 
addition, patient follow-up data (such as treatment 
regimen and vital status) were retrieved after the 
recruitment date for descriptive purposes only and 
were not utilized in the statistical analyses planned 
to pursue the purpose of this study, which aimed to 
assess the presence of differentially abundant bac
terial patterns between metastatic and non-meta
static patients, collected at recruitment.

Laboratory test analysis

All relevant information on blood and serum/ 
plasma analyses was manually extracted from the 
medical records. Serum glycemia, total protein, 
transaminases, gamma-glutamyl transferase 
(GGT), alkaline phosphatase (ALP), creatine 
kinase (CK), pancreatic amylase, lipase, C-reactive 
protein (CRP), Carcino-Embryonic Antigen 
(CEA), Carbohydrate Antigen 19–9 (CA19–9), 
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albumin and bilirubin, as well as erythrocyte sedi
mentation rate (ESR), blood counts (hemoglobin, 
white blood cell counts, neutrophils, and platelets) 
and also prothrombin time (PT) and partial throm
boplastin time (PTT) tests were performed accord
ing to clinical routine at accredited laboratories at 
the Fondazione IRCCS “Casa Sollievo della 
Sofferenza” Hospital, San Giovanni Rotondo, Italy.

Sample collection and DNA extraction

Each study participant provided a fresh stool sam
ple in a sterile tube which was then stored at −80°C 
until use. DNA was isolated from a human fecal 
sample using the QIAamp Fast DNA Stool Mini 
Kit (Qiagen, Milan, Italy, Cat. N° 51604) according 
to the manufacturer’s instructions. To optimize the 
ratio of non-human to human DNA, cells that were 
difficult to dissolve (such as Gram-positive bac
teria) were lysed by heating the fecal suspension 
at 90°C for 5 min. DNA was checked for concen
tration and purity at the end of the isolation pro
tocol and stored at −30°C until use.

Next-generation sequencing and analysis of 
bacterial 16S rRNA gene

For each sample, 12.5 ng of DNA obtained through the 
above procedure was used to amplify the V3-V4 region of 
the 16S rRNA gene using KAPA HiFi HotStart Ready Mix 
(Roche Diagnostics, Milan, Italy, Cat. N° 07958935001) 
and the following primers selected by Klindworth20 with 
Illumina adapters added: forward primer: 5'- 
TCGTCGGCAGCGTCAGATGTGTATAAGAGAC
AGCCTACGGGNGGCWGCAG reverse primer: 5’- 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGACTACHVGGGTATCTAATCC. Samples 
were then barcoded with the Nextera XT Index Kit 
(Illumina, Milan, Italy, Cat. N° FC-131-1002), as pre
viously described.21 Next, the libraries were purified, 
quantified using a Qubit™ Flex Fluorometer (Thermo 
Scientific, Milan, Italy), pooled and sequenced in pairs 
(2 × 300 cycles) on an Illumina MiSeq platform (San 
Diego, CA, USA). FASTQ files generated by MiSeq 
were deposited in ArrayExpress under the code E- 
MTAB-12513 and de-multiplexed and analyzed using 
the 16S Metagenomics GAIA 2.0 software, Sequentia 
Biotech, Barcelona, Spain (2019). Read pairs were qual
ity-controlled (i.e., trimming, clipping and adapter 

removal) based on FastQC and BBDuk and, to obtain 
the taxonomic profile of each sample, they were mapped 
with BWA-MEM against the 16S reference database 
available in NCBI GenBank. Specifically, all full-length 
sequences of the 16S rRNA gene from all prokaryotes are 
included except those longer than 3000 bp which are 
filtered out, since the gene is expected to be shorter. A 
prediction of the microbial functions was carried out 
using the Tax4Fun2 package in R. The Mann–Whitney 
test was used to analyze the differences of the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) meta
bolic pathways between the two groups, which were 
then depicted using STAMP software.

Metabolomics analysis

The metabolomics and lipidomics analyses of feces 
from a subgroup of 20 metastatic and non-meta
static patients were performed using ultra high 
pressure liquid chromatography (UPLC 1290 sys
tem, Agilent Technologies) directly connected to 
mass spectrometry (TripleTOF 5600+ mass spec
trometer, SCIEX equipped with an electrospray 
ionization source (ESI)). Detailed protocol is 
reported in Supplementary Material 3.

Statistical methods

Patient characteristics were reported as medians 
along with interquartile ranges (i.e., first-third 
quartiles) and observed and relative frequencies 
for continuous and categorical variables, respec
tively. For each continuous variable, the assump
tion of normality distribution was assessed using 
the Shapiro–Wilks test, and if the condition was 
met, mean ± standard deviation (SD) was reported 
instead of median. Comparisons between patients 
with and without metastases at enrollment were 
performed using a two-sample t-test (or Mann– 
Whitney U test as appropriate) and chi-square 
test with Yates’ continuity correction (or Fisher 
exact test as appropriate) for continuous and cate
gorical variables, respectively. Patients follow-up 
was defined as the time elapsed between the date 
of enrollment and death or the date of the last visit, 
whichever occurred first. The annual mortality rate 
was reported as the number of death events per 100 
person-years and a Poisson regression model was 
used to assess the differences between the two 
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groups. Stacked bar charts were used to show the 
gut microbiota composition (i.e., mean relative 
abundance %) at the phylum, family, genus, and 
species levels between patient groups. To identify 
clusters of bacterial populations such that the linear 
combination of their abundances is differential 
between patients with and without metastases, the 
PEnalized LOgistic Regression Analysis 
(PELORA)22 was performed on logit-transformed 
and standardized relative abundance (i.e. Z-score), 
as already shown elsewhere.23–25 When the relative 
abundance was exactly 0%, to compute a Z-score 
this quantity was replaced by 0.0001% (i.e. half of 
the lowest relative abundance found in the entire 
dataset). The mean Z-scores of all the bacteria 
included in a cluster were defined as “the centroid 
of the cluster”. Multiple clusters of bacterial popu
lations at different taxonomic levels were identified 
using this algorithm. However, to ease the inter
pretation of the results, a maximum of two infor
mative clusters were considered for each scenario. 
Each identified cluster included bacterial popula
tions whose relative abundances were consistently 
higher (or lower) in metastatic patients than in 
non-metastatic patients. The optimal penalty para
meter value was chosen as the one that achieved the 
lowest median misclassification rate, computed 
after several data resamplings (bootstrapping). 
Box plots and scatterplots of the Z-scores com
puted at cluster centroids and heatmaps of the 
relative bacteria abundance (%) identified by 
PELORA within each cluster are shown at different 
taxonomic hierarchies. As stated by Dettling and 
Buhlmann,22 the PELORA algorithm “aims to 
identify multiple class-separating groups (i.e., clus
ters) such that each group exhibits a good trade-off 
between expected differential expression and con
ditional variance of the group mean, and such that 
the groups together contribute most in predicting 
the response”. In short, to form a new group of 
bacteria, their strategy proceeds in a ‘cautious’ 
manner, starting from scratch and relying on the 
incremental growth of the group by adding one 
bacterium after another until the L2 penalized 
negative log-likelihood function value, defined as 
the sum of the negative binomial log-likelihood (i. 
e. likelihood of the data) and the magnitude of the 
coefficients (L2 “ridge” penalty), in the group sta
bilizes and cannot be further minimized at the 

chosen penalty parameter. Once a group was 
found to be terminated, a new group was started, 
and the composition of the former groups 
remained unchanged, while they could still have 
an effect on the construction of the new group. 
Please refer to section 3.4.2 of the cited article22 

for the detailed steps concerning the implementa
tion of the PELORA algorithm.

Furthermore, to delve deeper into the data, the 
iterative Random Forest (iRF) algorithm26 was per
formed on the same structured dataset as the 
PELORA analysis (i.e. one record per patient and a 
set of variables in which the presence of metastasis, 
clinical information and the relative abundance of 
each bacterium with respect to each taxonomic clas
sification, respectively, was recorded). It should be 
noted that the analysis performed with iRF was inde
pendent of that performed with the PELORA algo
rithm. The iRF is a generalization of the Random 
Forest (RF) algorithm and is commonly used to 
train a set of feature-weighted decision trees to detect 
stable and high-order interactions.26 In the iRF algo
rithm, a RF is run iteratively from one to 100 times 
and, at the last iteration, the feature-weighted RF is 
‘mapped’ extracting and applying its decision rules to 
convert continuous or categorical features into binary 
variables, a crucial step as it allows the identification 
of all prevalent interactions. The proportion of times 
(out of several bootstrap samples) an interaction 
appears defines a “stability score” (i.e., 0 = totally 
unstable interaction, 1 = totally stable interaction). 
To enable iRF training, a “tuning phase” was per
formed to set its internal parameters. A similar appli
cation of the method has been extensively reported 
in,27 and additional information about iRF algorithms 
along with its “tuning phase” can be found in the 
Supplemental Statistical Methods. Accumulated 
Local Effects (ALE) were performed to depict the 
functional relationship between the relative abun
dances of the most important bacteria and the prob
ability of having metastases whereas Partial 
Dependence Plots (PDP) were performed to investi
gate the “most stable” interactions between two 
important bacteria, locating all combinations of rela
tive abundance at high risk of metastasis. The discri
minatory ability of the iRFs was assessed by the Area 
Under the ROC Curve (AUC) on the out-of-bag data, 
along with its 95% CI computed after 1000 stratified 
bootstrap replicates. Statistical significance was set at 
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p < 0.05. All statistical analyses and plots were per
formed using R (R Development Core Team 2008, 
version 4.2, packages: supclust, iRF, iml, ggplot2, 
ggpubr, ComplexHeatmap, pROC, igraph, ggraph). 
Concerning the association analysis, pairwise 
Spearman correlations between the gut bacteria dis
criminating the two cohorts of patients according to 
AI and the metabolomics compounds were per
formed, and the Spearman’s rank correlation coeffi
cients (r) were calculated. Results were considered 
significant when p < 0.05.

Results

Sample characteristics

Fifty-three patients with pancreatic tumors 
were enrolled in this study, including 25 with 
non-metastatic tumors (mean age at enroll
ment: 65.7 years) and 28 with metastatic 
tumors (mean age at enrollment: 68.7 years). 
For brevity, the acronyms “PC” and “PC met” 
were used to refer to these two groups. 
Anthropometric, demographic and clinical 
data are presented in Table 1. The two groups 
were balanced with the respect to all examined 
characteristics except for the variables such as: 
a) characteristics of the tumor, including tumor 
stage (p < .001) which was more advanced in 
metastatic patients (85.7% of PC met versus 
0% of the PC was at stage IV), jaundice (p  
= .004) and endoprosthesis positioning (p  
= .010) which were both more abundant in PC 
versus PC met patients; b) treatment regimen 
(after stool collection) like therapeutic plan (p  
= .002), neo-adjuvant chemotherapy 
(p < .001) and radiotherapy (p = .001) which 
were mainly administered to PC group whereas 
PC met mainly underwent, first-line che
motherapy (p = .016) and radiotherapy (p  
= .001); c) biochemical tests at the enrollment 
visit, notably hemoglobin (p = .040), red blood 
cells (p = 0.022) and albumin (p = 0.041) which 
were lower in PC than in PC met patients, 
bilirubin (p = .014), aspartate aminotransferase 
(p = .033), GGT (p = .046) and ALP (p = .038) 
which were higher in PC than in PC met 
patients and d) mortality rate, namely, follow- 
up time from enrollment which was shorter in 

PC met (p = .003) and annual mortality rate 
which was higher in PC met (p = .002).

Comparison of fecal microbiota composition 
between PC patients with or without metastases

To highlight any differences in the composition of 
the intestinal microbiota in the PC and PC met 
groups, 16S rRNA gene sequencing was performed, 
producing an average of 183,749.283 
(±129203.7919) read pairs for each of the 53 study 
participants. Alpha-diversity indices (Shannon and 
Chao1) were calculated both at the genus and the 
species level in order to analyze the within-sample 
diversity of the bacterial profiles, but no significant 
difference emerged between the two groups (data 
not shown). Figure 1 shows the gut microbiota 
composition at the phylum (A), family (B), genus 
(C) and species (D) levels, expressed as relative 
abundance (%) in the PC and PC met groups. 
Taxonomic analysis data were used to carry out 
the PELORA algorithm to detect differences in 
the microbial population in the two groups of 
patients and identify specific bacterial patterns. 
All identified clusters are reported in Table 2. The 
phyla Tenericutes, Bacteroidetes and Nitrospinae 
were found to be part of a bacterial cluster and 
were all enriched in the PC met group compared 
to the PC group. Another cluster was identified at 
the family level, including the families of 
Anaeroplasmataceae, Sutterellaceae, Methanomassi 
llicoccaceae, Pasteurellaceae, Porphyromonadaceae, 
Lactobacillaceae, Oscillospiraceae, Bacteroidaceae, 
Enterococcaceae, Fusobacteriaceae, Morganellaceae 
and Xanthomonadaceae, which were all increased in 
PC met compared to PC (mean Z-scores of cluster 
centroid: −0.149 vs 0.133, p < .001). When compar
ing the two groups at the genus level, the linear 
combination of abundances revealed another cluster 
including Provencibacterium, Porphyromonas, 
Raoultella, Pseudoramibacter, Kluyvera, Slackia and 
Leptotrichia, all of which decreased in PC met with 
respect to PC (mean Z-scores of cluster centroids: 
0.241 vs. −0.216, p < .001). At the species level, the 
PELORA algorithm identifies two clusters. The first 
one included Coprobacter secundus, Turicibacter 
sanguinis, Phascolarctobacterium succinatutens, 
Bacteroides thetaiotaomicron, Pseudomonas aerugi
nosa, Intestinimonas timonensis, Lactobacillus 
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gasseri, Blautia massiliensis, Parabacteroides sp. 
S448, Haemophilus parainfluenzae, Fournierella 
massiliensis, Parabacteroides sp. SN4, 
Butyricimonas paravirosa, Shimwellia blattae and 
Clostridium lactatifermentans, which were all 
increased in PC met versus PC, with the exception 
of S. blattae (mean Z-scores of cluster centroids: 

−0.181 vs 0.162, p < .001). The second species cluster 
included Eubacterium ventriosum, Raoultella 
ornithinolytica, Bacteroides sp. Marseille-P3108, 
Clostridium disporicum, Veillonella sp. 2011 Oral 
VSA C3, Bacteroides eggerthii, Prevotella oris, 
Prevotella sp. 109, Bifidobacterium boum, 
Romboutsia sedimentorum, Prevotella 

Figure 1. Gut microbiota composition at different taxonomic levels grouped by patients with or without metastases. Gut microbiota 
composition (i.e. mean relative abundance %) at phylum (a), family (b), genus (c), and species (d) levels in patients with pancreas 
tumor without (PC) and with metastases (PC met) at the enrollment. The “Others” category includes all bacteria whose mean relative 
abundance is less than 1% (at phylum and family level), 0.5% (at genus level) and 0.1% (at species level), respectively. As expected, the 
percentage of bacteria included in the “Others” category tends to increase as more specific taxa levels are considered.
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Table 2. Results from PEnalized LOgistic Regression Analysis (PELORA) in patients with PC without and with metastases.

Taxa level
Cluster 
number

Selected bacteria 
(within each cluster) Quantity Statistics

PC 
(N = 25)

PC met 
(N = 28)

p- 
value#

Phylum 1 Tenericutes Relative abundance (%) Mean ± SD 0.018 (0.064) 1.178 (3.784) —
Median [IQR] 0.003 [0.002, 0.009] 0.004 [0.003, 0.051]

Z-score° Mean ± SD −0.288 (0.543) 0.257 (1.232) .047
Bacteroidetes Relative abundance (%) Mean ± SD 43.980 (15.421) 46.013 (14.275) —

Median [IQR] 45.795 [38.235, 
50.145]

48.918 [35.411, 
54.319]

Z-score° Mean ± SD −0.104 (1.237) 0.093 (0.739) .481
Nitrospinae Relative abundance (%) Mean ± SD 0.000 (0.001) 0.006 (0.026) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD −0.171 (0.627) 0.152 (1.235) .244

Cluster centroid Z-score (means) Mean ± SD −0.187 (0.484) 0.167 (0.623) .026
Family 1 Anaeroplasmataceae Relative abundance (%) Mean ± SD 0.001 (0.001) 0.106 (0.361) —

Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.003]
Z-score° Mean ± SD −0.263 (0.409) 0.235 (1.287) .070

Sutterellaceae Relative abundance (%) Mean ± SD 2.481 (2.897) 2.938 (2.684) —
Median [IQR] 1.592 [1.214, 2.148] 1.957 [1.231, 3.984]

Z-score° Mean ± SD −0.207 (1.230) 0.185 (0.711) .155
Methanomassiliicoccaceae Relative abundance (%) Mean ± SD Absent 0.016 (0.058) —

Median [IQR] 0.000 [0.000, 0.000]
Z-score° Mean ± SD Absent 0.193 (1.358) .052§

Pasteurellaceae Relative abundance (%) Mean ± SD 0.064 (0.085) 0.173 (0.242) —
Median [IQR] 0.020 [0.006, 0.113] 0.062 [0.007, 0.214]

Z-score° Mean ± SD −0.205 (0.905) 0.183 (1.060) .161
Porphyromonadaceae Relative abundance (%) Mean ± SD 3.405 (3.460) 4.438 (3.367) —

Median [IQR] 2.146 [1.520, 3.484] 3.255 [1.775, 7.025]
Z-score° Mean ± SD −0.171 (1.023) 0.153 (0.972) .243

Lactobacillaceae Relative abundance (%) Mean ± SD 1.417 (3.578) 2.628 (8.473) —
Median [IQR] 0.120 [0.049, 0.337] 0.147 [0.057, 0.898]

Z-score° Mean ± SD −0.064 (0.945) 0.058 (1.061) .662
Oscillospiraceae Relative abundance (%) Mean ± SD 1.207 (1.193) 1.576 (1.183) —

Median [IQR] 1.124 [0.472, 1.352] 1.347 [0.644, 2.232]
Z-score° Mean ± SD −0.206 (1.159) 0.184 (0.811) .158

Bacteroidaceae Relative abundance (%) Mean ± SD 25.743 (13.190) 26.615 (11.469) —
Median [IQR] 26.584 [16.683, 

31.702]
28.312 [21.088, 

30.824]
Z-score° Mean ± SD −0.097 (1.229) 0.087 (0.753) .510

Enterococcaceae Relative abundance (%) Mean ± SD 0.307 (0.663) 1.209 (5.605) —
Median [IQR] 0.057 [0.033, 0.192] 0.056 [0.029, 0.135]

Z-score° Mean ± SD 0.013 (0.914) −0.011 (1.087) .932
Fusobacteriaceae Relative abundance (%) Mean ± SD 0.174 (0.790) 0.223 (0.875) —

Median [IQR] 0.006 [0.001, 0.021] 0.007 [0.003, 0.041]
Z-score° Mean ± SD −0.173 (1.013) 0.155 (0.980) .237

Morganellaceae Relative abundance (%) Mean ± SD 0.039 (0.074) 0.097 (0.300) —
Median [IQR] 0.018 [0.009, 0.034] 0.014 [0.007, 0.041]

Z-score° Mean ± SD −0.057 (0.929) 0.051 (1.074) .698
Xanthomonadaceae Relative abundance (%) Mean ± SD 0.003 (0.002) 0.021 (0.098) —

Median [IQR] 0.002 [0.002, 0.003] 0.003 [0.002, 0.004]
Z-score° Mean ± SD −0.140 (0.622) 0.125 (1.244) .339

Cluster centroid Z-score (means) Mean ± SD −0.149 (0.265) 0.133 (0.241) <.001
Genus 1 Provencibacterium Relative abundance (%) Mean ± SD 0.003 (0.008) 0.000 (0.000) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD 0.309 (1.356) −0.275 (0.354) .032

Porphyromonas Relative abundance (%) Mean ± SD 0.032 (0.023) 0.022 (0.015) —
Median [IQR] 0.030 [0.015, 0.037] 0.018 [0.013, 0.029]

Z-score° Mean ± SD 0.302 (0.875) −0.270 (1.042) .036
Raoultella Relative abundance (%) Mean ± SD 0.016 (0.056) 0.002 (0.003) —

Median [IQR] 0.001 [0.000, 0.007] 0.001 [0.000, 0.002]
Z-score° Mean ± SD 0.224 (1.267) −0.200 (0.641) .125

Pseudoramibacter Relative abundance (%) Mean ± SD 0.005 (0.024) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Z-score° Mean ± SD 0.203 (1.398) −0.181 (0.340) .164
Kluyvera Relative abundance (%) Mean ± SD 0.015 (0.071) 0.000 (0.000) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD 0.203 (1.435) −0.182 (0.151) .164

Slackia Relative abundance (%) Mean ± SD 0.016 (0.033) 0.004 (0.005) —
Median [IQR] 0.003 [0.001, 0.009] 0.001 [0.000, 0.005]

Z-score° Mean ± SD 0.248 (1.152) −0.221 (0.799) .088
Leptotrichia Relative abundance (%) Mean ± SD 0.012 (0.037) 0.002 (0.005) —

Median [IQR] 0.001 [0.000, 0.004] 0.000 [0.000, 0.002]
Z-score° Mean ± SD 0.202 (1.183) −0.180 (0.781) .167

Cluster centroid Z-score (means) Mean ± SD 0.241 (0.471) −0.216 (0.288) <.001
Species 1 Coprobacter secundus Relative abundance (%) Mean ± SD 0.009 (0.040) 0.056 (0.122) —

Median [IQR] 0.000 [0.000, 0.001] 0.004 [0.000, 0.035]

(Continued)
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Table 2. (Continued).

Taxa level
Cluster 
number

Selected bacteria 
(within each cluster) Quantity Statistics

PC 
(N = 25)

PC met 
(N = 28)

p- 
value#

Z-score° Mean ± SD −0.418 (0.626) 0.373 (1.128) .003
Turicibacter sanguinis Relative abundance (%) Mean ± SD 0.000 (0.001) 0.011 (0.043) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.002]
Z-score° Mean ± SD −0.319 (0.460) 0.284 (1.249) .027

Phascolarctobacterium 
succinatutens

Relative abundance (%) Mean ± SD 0.003 (0.014) 0.226 (0.719) —
Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.002]

Z-score° Mean ± SD −0.281 (0.472) 0.251 (1.261) .052
Bacteroides thetaiotaomicron Relative abundance (%) Mean ± SD 0.251 (0.370) 0.661 (0.995) —

Median [IQR] 0.113 [0.023, 0.197] 0.318 [0.117, 0.873]
Z-score° Mean ± SD −0.346 (0.960) 0.309 (0.947) .016

Pseudomonas aeruginosa Relative abundance (%) Mean ± SD 0.001 (0.001) 0.015 (0.064) —
Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.002]

Z-score° Mean ± SD −0.284 (0.436) 0.254 (1.271) .049
Intestinimonas timonensis Relative abundance (%) Mean ± SD 0.001 (0.001) 0.009 (0.029) —

Median [IQR] 0.001 [0.000, 0.001] 0.001 [0.000, 0.003]
Z-score° Mean ± SD −0.290 (0.443) 0.259 (1.267) .045

Lactobacillus gasseri Relative abundance (%) Mean ± SD 0.038 (0.118) 0.073 (0.163) —
Median [IQR] 0.000 [0.000, 0.009] 0.001 [0.000, 0.062]

Z-score° Mean ± SD −0.142 (0.880) 0.127 (1.096) .333
Blautia massiliensis Relative abundance (%) Mean ± SD Absent 0.009 (0.039) —

Median [IQR] 0.000 [0.000, 0.000]
Z-score° Mean ± SD Absent 0.179 (1.362) .095§

Parabacteroides sp. S448 Relative abundance (%) Mean ± SD 0.022 (0.109) 0.033 (0.124) —
Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.001]

Z-score° Mean ± SD −0.103 (0.895) 0.092 (1.093) .483
Haemophilus parainfluenzae Relative abundance (%) Mean ± SD 0.001 (0.004) 0.016 (0.073) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD −0.168 (0.562) 0.150 (1.263) .252

Fournierella massiliensis Relative abundance (%) Mean ± SD 0.001 (0.001) 0.019 (0.084) —
Median [IQR] 0.000 [0.000, 0.002] 0.001 [0.000, 0.002]

Z-score° Mean ± SD −0.186 (0.492) 0.166 (1.285) .205
Parabacteroides sp. SN4 Relative abundance (%) Mean ± SD 0.003 (0.007) 0.055 (0.249) —

Median [IQR] 0.000 [0.000, 0.001] 0.001 [0.000, 0.004]
Z-score° Mean ± SD −0.251 (0.737) 0.224 (1.154) .084

Butyricimonas paravirosa Relative abundance (%) Mean ± SD 0.008 (0.020) 0.019 (0.045) —
Median [IQR] 0.000 [0.000, 0.002] 0.000 [0.000, 0.003]

Z-score° Mean ± SD −0.052 (0.819) 0.047 (1.151) .723
Shimwellia blattae Relative abundance (%) Mean ± SD 0.008 (0.038) 0.000 (0.000) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD 0.018 (1.469) −0.016 (0.077) .901

Clostridium lactatifermentans Relative abundance (%) Mean ± SD 0.008 (0.029) 0.011 (0.044) —
Median [IQR] 0.002 [0.001, 0.003] 0.001 [0.000, 0.004]

Z-score° Mean ± SD 0.021 (0.963) −0.019 (1.049) .886
Cluster centroid Z-score (means) Mean ± SD −0.181 (0.099) 0.162 (0.152) <.001

2 Eubacterium ventriosum Relative abundance (%) Mean ± SD 0.073 (0.203) 0.018 (0.032) —
Median [IQR] 0.011 [0.000, 0.074] 0.001 [0.000, 0.021]

Z-score° Mean ± SD 0.213 (1.103) −0.190 (0.875) .145
Raoultella ornithinolytica Relative abundance (%) Mean ± SD 0.008 (0.023) 0.001 (0.002) —

Median [IQR] 0.000 [0.000, 0.003] 0.000 [0.000, 0.001]
Z-score° Mean ± SD 0.305 (1.290) −0.272 (0.534) .035

Bacteroides sp. Marseille- 
P3108

Relative abundance (%) Mean ± SD 0.190 (0.928) 0.151 (0.778) —
Median [IQR] 0.004 [0.002, 0.007] 0.004 [0.002, 0.005]

Z-score° Mean ± SD 0.065 (0.997) −0.058 (1.018) .657
Clostridium disporicum Relative abundance (%) Mean ± SD Absent 0.013 (0.048) —

Median [IQR] 0.000 [0.000, 0.000]
Z-score° Mean ± SD Absent 0.168 (1.365) .095§

Veillonella sp. 2011 Oral VSA 
C3

Relative abundance (%) Mean ± SD 0.013 (0.063) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Z-score° Mean ± SD 0.154 (1.456) −0.137 (0.000) .294
Bacteroides eggerthii Relative abundance (%) Mean ± SD 0.068 (0.194) 0.003 (0.004) —

Median [IQR] 0.002 [0.000, 0.009] 0.001 [0.000, 0.004]
Z-score° Mean ± SD 0.254 (1.254) −0.227 (0.644) .080

Prevotella oris Relative abundance (%) Mean ± SD 0.008 (0.027) 0.035 (0.177) —
Median [IQR] 0.001 [0.000, 0.004] 0.000 [0.000, 0.002]

Z-score° Mean ± SD 0.117 (0.956) −0.104 (1.044) .428
Prevotella sp. 109 Relative abundance (%) Mean ± SD 0.784 (1.625) 0.495 (1.621) —

Median [IQR] 0.008 [0.003, 0.421] 0.005 [0.002, 0.025]
Z-score° Mean ± SD 0.169 (1.073) −0.151 (0.923) .248

Bifidobacterium boum Relative abundance (%) Mean ± SD 0.000 (0.000) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Z-score° Mean ± SD −0.154 (1.456) 0.137 (0.000) .294
Romboutsia sedimentorum Relative abundance (%) Mean ± SD 0.000 (0.000) 0.016 (0.082) —

(Continued)
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multisaccharivorax, Desulfovibrio legallii, Eikenella 
corrodens, Clostridium sp. 14505, and unknown bac
teria, which were decreased in PC met compared to 
PC patients, with the exception of C. disporicum and 
P. oris (mean Z-scores of cluster centroids: 0.093 vs 
−0.083, p = 0.003). At this stage of the analysis, it is 
important to emphasize that two sample t-tests were 
performed for the mere purpose of providing a gen
eral descriptive comparison of cluster centroids and 
not for drawing inferential conclusions. For each 
taxonomic level, Figure 2 shows the distribution of 
Z-scores computed at the cluster centroids in the 
comparison between the PC group and the PC met 
group. Interestingly, at the species level, patients 
without metastases exhibited lower Z-scores at cen
troid one and higher Z-scores at centroid two 
(Figure 2d). Moreover, a scatter plot of the Z-scores 
computed within each cluster showed that the two 
species clusters clearly discriminated PC from PC 
met patients (Figure 2d). The heatmaps in Figure 3 
show the relative abundance of the bacterial taxa 
composing each cluster at the phylum (A), family 
(B), genus (C) and species (D) levels for each study 
participant.

Machine learning approach to identify microbial 
patterns predictive of metastases

Results from iRFs at the family, genus, and species 
level are shown in Figures 4–6, respectively. The opti
mal number of iterations as well as the regularization 
factor for each iRF were detected in the “tuning phase” 
as shown in Supplemental statistical methods.

In the Variable Importance (VIMP) plot (Figure 
4a), the families Rhodospirillaceae, Clostridiaceae, 
Peptococcaceae, Eggerthellaceae, Hafniaceae were 
found to provide the highest contribution (i.e., 
Relative VIMP > 10%) in detecting the presence of 
metastases, while Enterobacteriaceae and 
Oligosphaeraceae provided the least contribution to 
this discrimination. Sensitivity and specificity 
achieved at each possible cutoff of the predicted prob
abilities (of having metastases) computed by the iRF 
from the out-of-bag data were shown in the ROC 
curve (Figure 4b), in which AUC value of 0.727 (boot
strap 95% CI: 0.583–0.866) means that taking a meta
static PC patient and a non-metastatic PC patient at 
random, the probability that the algorithm assigns a 
higher probability of metastases in the metastatic 
patient (with respect to the non-metastatic patient) 

Table 2. (Continued).

Taxa level
Cluster 
number

Selected bacteria 
(within each cluster) Quantity Statistics

PC 
(N = 25)

PC met 
(N = 28)

p- 
value#

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD −0.167 (0.000) 0.149 (1.370) .254

Parabacteroides distasonis Relative abundance (%) Mean ± SD 0.857 (1.054) 0.822 (1.124) —
Median [IQR] 0.560 [0.242, 0.873] 0.294 [0.111, 1.017]

Z-score° Mean ± SD 0.154 (0.860) −0.137 (1.108) .295
Prevotella multisaccharivorax Relative abundance (%) Mean ± SD 0.202 (1.007) 0.001 (0.002) —

Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.000]
Z-score° Mean ± SD 0.100 (1.394) −0.090 (0.426) .496

Desulfovibrio legallii Relative abundance (%) Mean ± SD 0.010 (0.050) 0.000 (0.002) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]

Z-score° Mean ± SD 0.085 (1.338) −0.076 (0.568) .565
Eikenella corrodens Relative abundance (%) Mean ± SD 0.000 (0.002) 0.004 (0.021) —

Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score° Mean ± SD −0.023 (0.636) 0.020 (1.251) .877

Clostridium sp. 14505 Relative abundance (%) Mean ± SD 0.052 (0.111) 0.007 (0.020) —
Median [IQR] 0.000 [0.000, 0.024] 0.000 [0.000, 0.001]

Z-score° Mean ± SD 0.301 (1.184) −0.269 (0.722) .037
Unknown Relative abundance (%) Mean ± SD 65.723 (9.592) 64.408 (7.335) —

Median [IQR] 62.599 [60.553, 
71.801]

64.064 [57.419, 
69.453]

Z-score° Mean ± SD 0.110 (1.236) −0.098 (0.740) .454
Cluster centroid Z-score (means) Mean ± SD 0.093 (0.168) −0.083 (0.239) .003

Abbreviations: PC: patients with pancreatic tumor without metastasis at enrollment; PC met: patients with pancreatic tumor with metastasis at enrollment; IQR: 
Interquartile range (i.e. first-third quartiles); SD: Standard Deviation; Absent: all values are 0%. Standardized Z-score: As a first step, the relative abundance (%) of each 
bacterium was logit transformed (so that values can theoretically range from negative to positive infinity) and, as a second step, the Z-score was computed by 
standardizing the transformed variable (i.e., taking the variable values, subtracting its mean and dividing by its SD). The centroid is calculated as the average Z-score 
of all the bacteria within each cluster. #All p-values were derived from the parametric two-sample t-test on Z-scores, with the exception of those marked as “§”, which 
were derived from the Mann-Whitney U test. The latter was performed in presence of no variance in one of the two groups (i.e., when the group has all values equals 
to 0% - denoted as “Absent”.
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is 72.7%, although in terms of relative abundance 
none of the families showed statistically significant 
variations in the two groups (Figure 4c). ALE was 
estimated from iRF on the most important variables 
with the aim of showing the relationship between the 
relative abundance levels of specific bacteria and the 
mean predicted probability of having metastases with 
respect to the overall mean predicted probability 
defined at ALE = 0 (i.e., average risk). Specifically, 
the Rhodospirillaceae family showed a sigmoid curve 
in which lower levels (0–0.001%) were associated with 
a higher probability of having metastases (ALE = 0.30, 
i.e. 30% higher than the average risk), whereas higher 
levels (0.01–0.25%) were associated with a lower prob
ability of metastases (ALE = −0.10, i.e. 10% lower than 
the average risk). A non-linear and non-monotonic 
curve was assumed for the Clostridiaceae family, in 
which the probability of metastases decreased within 
the 1.0–2.5% range, whereas it was higher above and 
below this interval. A near linear curve was also 
observed for Peptococcaceae, for which higher 

abundance correlated with a higher probability of 
metastases, and for Eggerthellaceae and Hafniaceae, 
for which increased levels predicted a lower probabil
ity of metastases, as compared to the average risk 
(Figure 4d). The network plot of interactions with 
the highest stability among the families is graphically 
represented in Figure 4e (stability score >0.50), with 
the main interactions involving Rhodospirillaceae, 
Peptococcaceae, Eggerthellaceae and Clostridiaceae. 
The aforementioned dual interactions were integrated 
into the PDPs (Figure 4f), highlighting the regions in 
which patients with metastases were more likely to be 
found. Remarkably, patients with Rhodospirillaceae 
abundance within the range of 0.00031–0.003% 
together with Peptococcaceae within 0.002–0.008%, 
Clostridiaceae within 0.19–2.60%, Eggerthellaceae 
within 0.001–0.042%, Hafniaceaea <0.01%, 
Enterobacteriaceae <30.4% showed a 70–80% prob
ability of having metastases at the time of enrollment. 
At the genus level, Porphyromonas and Odoribacter 
provided the highest contribution to detecting 

Figure 2. Box plots of the Z-scores computed by PELORA at different taxonomic levels. Box plots of the Z-scores computed within each 
cluster (i.e. centroid) detected by PEnalized LOgistic Regression Analysis at phylum (a), family (b), genus (c), and species (D1) taxonomic 
hierarchy. As two different clusters of bacteria population were detected at species level, a scatter plot of the Z-scores computed within 
the two centroids was also shown (D2). Points depicted into the scatterplot represent the Z-scores pair, computed at each individual 
patient, and were filled with blue and red colors to denote PC and PC met patients (groups), respectively. Moreover, a polygon 
connecting the outermost data points is shown for each group to aid the visualization.
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metastases, followed by Mailhella, Papillibacter, 
Slackia, Fusobacterium and Raoultella whereas 
Anaerostipes and Butyricicoccus contributed the least 
(Figure 5a). In Figure 5b, the ROC curve is reported, 
which denoted a fair quality level of the iRF discrimi
nation ability: AUC = 0.727 (bootstrap 95% CI: 0.590– 
0.849). The relative abundance of Porphyromonas and 
Mailhella genera was significantly decreased for the 
former and enriched for the latter in the PC met group 
compared the PC group (p = .036 and p = .044, 
respectively) (Figure 5c). Regarding ALE plots, one 
of the lowest Porphyromonas levels (close to 0.005%) 
was associated with a higher probability of metastases 
(ALE = 0.30, i.e. 30% higher than the average risk 
probability). Non-monotonic curves were found for 
the Odoribacter and Papillibacter. For Mailhella and 
Fusobacterium, an increase in the probability of 
metastasis was observed as the relative abundance 
plateaued. In contrast, for Slackia and Raoultella gen
era, after the initial plateau phase, the probability of 
metastases started to decrease slightly (Figure 5d). The 
most stable interaction pathways among the genera 
are shown in Figure 5e. At this taxonomic level, PDPs 

(Figure 5f) suggested that patients with 
Porphyromonas abundance lower than 0.01% together 
with Odoribacter <1.2%, Raoultella <0.01%, Slackia  
<0.02%, Papillibacter <0.025%, or Fusobacterium  
>0.001% showed approximately 70–80% probability 
of having metastases at the time of enrollment. Worth 
of note was also the case of patients with Papillibacter 
levels >0.001% and Fusobacterium levels between 
0.005% and 0.03%, which have more than 60% prob
ability of having metastases. A further interaction 
involving Fusobacterium was the one with 
Anaerostipes: Fusobacterium abundance higher than 
0.001% together with Anaerostipes levels greater than 
0.04% showed an approximately 55–60% probability 
of having metastases. At the species level, Anaerostipes 
hadrus, Coprobacter secundus, Clostridium sp. 619, 
and Roseburia inulinivorans were the most important, 
followed by Bacteroides barnesiae, Bifidobacterium 
breve, Bacillus nealsonii, Paraprevotella clara, 
Roseburia intestinalis, Streptococcus anginosus, 
Oscillibacter sp. Marseille-P3260, Turicibacter sangui
nis, Dialister sp. Oral taxon 502 and seven other 
species with VIMP < 10% (Figure 6a). The ROC 

Figure 3. Heatmaps of relative abundance of bacterial populations identified by the PELORA within each cluster. Heatmaps of relative 
abundance (%) of bacterial populations identified by the PEnalized LOgistic Regression Analysis within each cluster at different 
taxonomic hierarchy. The order of the rows is determined by the main heatmap, which has been defined at the phylum level. All other 
heatmaps are automatically adjusted according to the settings in the main heatmap.
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curve shown in Figure 6b shows a good quality level of 
iRF discriminatory ability: AUC = 0.804 (boot
strap 95% CI: 0.676–0.916). The relative abun
dance of Coprobacter secundus (p = .002), 
Clostridium sp. 619 (p = .007), Bacillus nealsonii 
(p = .017), and Turicibacter sanguinis (p = .014) 
showed a significant increase in the PC met 
group compared to the PC group, whereas 
Roseburia intestinalis (p = .022) and Streptococcus 
anginosus (p = .033) were increased in PC patients 

compared to PC met patients (Figure 6c). In the 
ALE plots, Anaerostipes hadrus, Coprobacter 
secundus, Clostridium sp. 619, and 
Bifidobacterium breve showed a sigmoid curve 
(Figure 6d). As for Anaerostipes hadrus, 
Coprobacter secundus and Clostridium sp. 619 
metastases were less probable at lower levels and 
then became more probable as the relative abun
dance increased. In contrast, for Bifidobacterium 
breve, the probability of metastases was higher at 

Figure 4. Results from iterative Random Forest of the most important bacteria detected at family level. (a) Variable importance plot is 
rescaled from 0% to 100% (relative VIMP) with respect to the maximum achieved value. Only variables with VIMP > 0 are shown and 
ranked from the most to the less important. (b) ROC curve showing the sensitivity and specificity achieved at each possible cut-off of 
the predicted probabilities computed by the iRF from the out-of-bag data, and hence is not prone to overfitting. The area under the 
ROC curve (AUC) was corroborated by its 95% confidence interval, computed after 1000 stratified bootstrap replicates. The AUC 
quantifies the discriminatory power achieved by the iRF, which reflect the one achieved by the all variables reported in the VIMP plot. 
(c) Boxplots of the relative abundance (%) of all variables detected by the iRF with VIMP > 10%. (d) Accumulated Local Effect (ALE) of 
all variables detected by the iRF with VIMP > 10%. ALE describes how the variables influence the predicted probability on average. The 
gray band is a confidence band for the regression line fitted in the estimated ALE points. (e) Network plot of the most stable two-order 
interactions (i.e. with a stability score ≥0.5). The stability of a recovered interaction is defined as the proportion of times that 
interaction appears as an output of the generalized Random Intersection Trees, after a bootstrap perturbation of the data (i.e. 0 = 
totally instable interaction,1=totally stable interaction). The higher the stability score, the better is the quality of the recovered 
interaction. (f) Partial Dependence Plot (PDP) produced for variables with top stable interactions (i.e. stability score >0.70). PDPs show 
the marginal (total) effect that two variables have on the predicted outcome. Colored zones locate those regions at which the 
metastatic event more likely occurs (green/yellow) and not occurs (blue/violet). Individual observations are plotted with respect to 
each variable combination. Relative abundances (%) values reported in c, d and f panels are in logit scale.
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lower abundance levels and then decreased when 
abundance increased. At this taxonomic level, it 
was interesting to note that the course of Roseburia 
inulinivorans represented by a U-shaped curve 
(Figure 6d). The most stable interaction pathways 
among the detected species are shown in Figure 6e. 
At this taxonomic level, PDPs (Figure 6f) sug
gested that patients with Anaerostipes hadrus 
abundance greater than 0.032% together with 
Clostridium sp. 619 > 0.002% or Roseburia 

intestinalis <0.008%, and patients with 
Clostridium sp. 619 > 0.002% together with 
Bifidobacterium breve <0.001% showed approxi
mately 60–65% probability of having metastases 
at the time of enrollment.

At all taxonomic levels, it should be noted that the 
ALE plots were performed on all variables detected by 
the iRF with VIMP > 10%, whereas the PDPs were 
produced only for those variables with stable interac
tions (i.e., with stability score >0.70).

Figure 5. Results from iterative Random Forest of the most important bacteria detected at genus level. (a) Variable importance plot is 
rescaled from 0% to 100% (relative VIMP) with respect to the maximum achieved value. Only variables with VIMP > 0 are shown and 
ranked from the most to the less important. (b) ROC curve showing the sensitivity and specificity achieved at each possible cut-off of 
the predicted probabilities computed by the iRF from the out-of-bag data, and hence is not prone to overfitting. The Area under the 
ROC curve (AUC) was corroborated by its 95% confidence interval, computed after 1000 stratified bootstrap replicates. The AUC 
quantifies the discriminatory power achieved by the iRF, which reflect the one achieved by the all variables reported in the VIMP plot. 
(c) Boxplots of the relative abundance (%) of all variables detected by the iRF with VIMP > 10%. (d) Accumulated Local Effect (ALE) of 
all variables detected by the iRF with VIMP > 10%. ALE describes how the variables influence the predicted probability on average. The 
gray band is a confidence band for the regression line fitted in the estimated ALE points. (e) Network plot of the most stable two-order 
interactions (i.e. with a stability score ≥0.5). The stability of a recovered interaction is defined as the proportion of times that 
interaction appears as an output of the generalized Random Intersection Trees, after a bootstrap perturbation of the data (i.e. 0 = 
totally instable interaction,1=totally stable interaction). The higher the stability score, the better is the quality of the recovered 
interaction. (f) Partial Dependence Plot (PDP) produced for variables with top stable interactions (i.e. stability score >0.70). PDPs show 
the marginal (total) effect that two variables have on the predicted outcome. Colored zones locate those regions at which the 
metastatic event more likely occurs (green/yellow) and not occurs (blue/violet). Individual observations are plotted with respect to 
each variable combination. Relative abundances (%) values reported in c, d and f panels are in logit scale.
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Functional prediction of gut microbial profiles

In order to get a more comprehensive view of the role 
of gut microbiota in PC metastatization, we per
formed a prediction of the functional/metabolic cap
abilities of the microbial communities identified by 
16S rRNA sequencing in the two experimental 
groups, by using the software package Tax4Fun2. As 
shown in Figure 7, a prediction of bacterial functions 
at level 1 (A) and 2 (B) of KEGG pathways was 
performed. Among the main differences, the 

biosynthesis and metabolism of amino acids (above 
all aromatic and branched chain amino acids) and the 
transcriptions function were increased in PC patients, 
whereas signal transduction was increased in PC met.

Fecal metabolomics analysis

In addition to the functional profile, a metabolo
mics analysis on fecal samples of a subset of 
patients from each of the two groups was carried 

Figure 6. Results from iterative random forest of the most important bacteria detected at species level. (a) Variable importance plot is 
rescaled from 0% to 100% (relative VIMP) with respect to the maximum achieved value. Only variables with VIMP > 0 are shown and 
ranked from the most to the less important. (b) ROC curve showing the sensitivity and specificity achieved at each possible cut-off 
of the predicted probabilities computed by the iRF from the out-of-bag data, and hence is not prone to overfitting. The Area under 
the ROC curve (AUC) was corroborated by its 95% confidence interval, computed after 1000 stratified bootstrap replicates. The AUC 
quantifies the discriminatory power achieved by the iRF, which reflect the one achieved by the all variables reported in the VIMP 
plot. (c) Boxplots of the relative abundance (%) of all variables detected by the iRF with VIMP > 10%. (d) Accumulated Local Effect 
(ALE) of all variables detected by the iRF with VIMP > 10%. ALE describes how the variables influence the predicted probability on 
average. The gray band is a confidence band for the regression line fitted in the estimated ALE points. (e) Network plot of the most 
stable two-order interactions (i.e. with a stability score ≥0.5). The stability of a recovered interaction is defined as the proportion of 
times that interaction appears as an output of the generalized Random Intersection Trees, after a bootstrap perturbation of the data 
(i.e. 0 = totally instable interaction,1=totally stable interaction). The higher the stability score, the better is the quality of the 
recovered interaction. (f) Partial Dependence Plot (PDP) produced for variables with top stable interactions (i.e. stability score  
>0.70). PDPs show the marginal (total) effect that two variables have on the predicted outcome. Colored zones locate those regions 
at which the metastatic event more likely occurs (green/yellow) and not occurs (blue/violet). Individual observations are plotted 
with respect to each variable combination. Relative abundances (%) values reported in c, d and f panels are in logit scale.
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out. Figure 8 shows the heatmaps representing the 
6 out of 106 polar metabolites (A), the 29 out 545 
lipids identified in positive ionization mode (B) 
and the 14 out of 317 lipids identified in negative 
ionization mode (C) that were significantly differ
ent among the two groups, respectively. As for 
polar compounds (Figure 8a), glutamic acid was 
found to be significantly enriched in PC met 
patients, whereas 4-pyridoxic acid, N-acetylhisti
dine, tyrosine, cytosine and xanthine were found 
increased in non-metastatic PC patients. A greater 
impact was observed on lipid metabolism, in which 
the most relevant classes found in positive polarity 
were diacylglycerols (DG) and N-acyl glycines 
(NAGly). Some DG were found enriched in meta
static patients (DG 40:7|DG 20:2_20:5, DG 37:4| 
DG 16:1_21:3 and DG 37:5|DG 17:0_20:5) while 
others were increased in non-metastatic patients 
(DG 39:1|DG 19:0_20:1, DG 38:1|DG 20:0_18:1 
and DG 37:1|DG 21:0_16:1). Instead, N-acyl gly
cines were statistically more enriched in non-meta
static patients (e.g., NAGly 38:7;O2|NAGly 20:5;O 
(FA 18:1), NAGly 36:5;O2|NAGly 18 :1;O(F 18:3), 
NAGly 34:3;O2|NAGly 18:1;O(F 16:1), NAGly 
36:7;O2|NAGly 18:2;O(F 18:4), NAGly 36:2;O2| 
NAGly 18:0;O(FA 18:1)). However, the most sig
nificant impact on intestinal lipid composition was 
observed in negative polarity, where a class of oxi
dized fatty acids delineated a clear separation 

between the metastatic and non-metastatic groups, 
being enriched in the latter. This class includes FA 
18:2, FA 18:3 and FA 20:5, known, respectively, as 
linolic acid, linolenic acid and 5,8,11,14,17-eicosa
pentaenoic acid (EPA) (Figure 8b).

Correlations between gut microbiota and the fecal 
metabolome

Both the polar and the lipidic metabolites which 
were differently represented in PC and PC met 
were then correlated with the bacteria which best 
discriminate the two microbial profiles (Figure 9a, b, 
respectively). Regarding the polar metabolites, 4- 
pyridoxic acid showed a significant negative correla
tion with Clostridiaceae (r= − 0.56), Peptococcaceae 
(r= − 0.46), Bacillus nealsonii (r= − 0.52), 
Oscillibacter sp. Marseille-P3260 (r= − 0.62) and a 
significant correlation with Bifidobacterium breve (r  
= 0.67); cytosine was negatively associated with 
Peptococcaceae (r= − 0.49) and Turicibacter sangui
nis (r = − 0.55) and positively associated with 
Bifidobacterium breve (r = 0.55); tyrosine was nega
tively correlated with and positively correlated with 
Turicibacter sanguinis (r= − 0.61) and positively 
associated with Streptococcus anginosus (r = 0.45). 
Concerning lipids, a considerable number of both 
positive and negative correlations were observed. 

Figure 7. Functional prediction for gut microbial populations in PC and PC met patients. Significant KEGG pathways for gut microbiota 
between PC and PC met patients at level 1 (a) and 2 (b), respectively. Pathways were considered significant when the p-value from 
Mann–Whitney test was <0.05.
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Figure 8. Fecal metabolic profile in PC and PC met patients. Heatmaps showing the significantly different (t-test, p < .05) metabolites 
between PC (blue squares) and PC met (red squares) patients. Polar metabolites (a) and lipidic metabolites obtained in positive 
polarity (b) and negative polarity (c) are shown, respectively. Shades of colors from blue to pink represent the abundance of each 
compound.

Figure 9. Associations between gut microbiota and the fecal metabolome. Spearman’s rank correlations of the quantities of the 
significantly different polar metabolites (a) and lipids (b) from fecal samples with the intestinal bacteria discriminating the two groups 
of patients. Shades of colors from blue (negative correlation) to pink (positive correlation) indicate the value of the R correlation 
coefficient.

GUT MICROBES 19



Remarkably, at the family level, Peptococcaceae 
exhibited a significant negative correlation with FA 
22:0;O (r = −0.61). At the genus level, Papillibacter 
was negatively correlated with DG 38:1|DG 
20:0_18:1 (r = −0.77), NAGly 36:5;O2|NAGly 18:1; 
O(FA 18:3) (r = −0.68), DGDG 39:1|DGDG 
21:0_18:1 (r = −0.72), PG 32:7|PG 16:3_16:4 (r =  
−0.67), LPE O-18:0 Isomer 2 (r = −0.62), and FA 
20:5 (r = −0.63). At the species level, Bacteroides 
barnesiae and Oscillibacter sp. Marseille-P3260 
showed significant negative correlations with DG 
39:1|DG 19:0_20:1 (r = −0.65) and PG 32:7|PG 
16:3_16:4 (r = −0.61), respectively. Finally, 
Bifidobacterium breve alone exhibited positive cor
relations with FA 18:0;O2 isomer 1 (r = 0.61), FA 
22:1;O isomer 1 (r = 0.61), PG 32:7|PG 16:3_16:4 (r  
= 0.65), LPE O-18:0 Isomer 2 (r = 0.73), and FA 20:5 
(r = 0.61).

Discussion

In the current study, a cohort of 53 patients with 
PC was recruited; 28 of these patients were already 
metastatic at the time of diagnosis. As expected, the 
PC met group showed a more advanced disease 
(the vast majority of patients had stage IV cancer) 
and a higher mortality rate than non-metastatic PC 
patients. Interestingly, the two groups differed sig
nificantly in terms of jaundice and endoprosthesis 
use, which were both more frequent in non-meta
static patients. Liver injury caused by endoprosth
esis positioning could explain why hepatic 
biomarkers such as bilirubin, AST, GGT and ALP 
were remarkably higher than those in metastatic 
patients.

Metastases in PC represent a huge burden because 
they prevent patients from accessing potentially cura
tive surgery; therefore, deeply delving into the 
mechanisms behind this process remains an urgent 
need. Recent studies suggest that the microbiota may 
be involved in both cancer progression and metasta
sis, through its interaction with the host immune 
system and the production of bacterial metabolites 
and molecules.14,18 In particular, LPS constituting the 
cell wall of Gram-negative bacteria has been described 
to induce epithelial-mesenchymal transition28,29 and 
promote angiogenesis through its interaction with 

TLR-4 on the host cell membranes and VEGF 
expression.19,30 To our knowledge, this is the first 
report investigating gut microbiota composition in 
patients with metastatic and non-metastatic PC. 
First, the PELORA approach was used to identify 
patterns of bacteria at different taxonomic levels, 
identified by 16S sequencing, that best discriminate 
the two groups. At first glance, an overall increase in 
Gram-negative bacteria was observed in metastatic 
PC patients compared to that in non-metastatic 
ones. Indeed, the taxa whose abundance increased 
the most in metastatic subjects, such as Tenericutes, 
Anaeroplasmataceae, Phascolarctobacterium succina
tutens, Pseudomonas aeruginosa, Haemophilus para
influenzae, Fournierella massiliensis, Parabacteroides 
sp. SN4, were all Gram-negative bacteria, leading us 
to speculate that an increase in the LPS-TLR4-VEGF 
pathway could have occurred, promoting angiogen
esis and subsequent metastases. To further dissect the 
potential use of gut microbes and their abundance 
and to improve their performance in the identifica
tion of PC patients at risk of metastases, a machine 
learning algorithm was also implemented. This 
approach identified bacterial signatures and recipro
cal interactions with good discriminatory power 
between patients with metastatic and non-metastatic 
PC. Among the bacterial taxa identified by the 
machine learning, the genera Porphyromonas and 
Fusobacterium deserve particular attention given 
their well-established association with PC, as well as 
with colorectal cancer.31–34 Surprisingly, according to 
our analysis, the risk of metastasis decreased as abun
dance of Porphyromonas increased. On the contrary, 
lower abundances of Fusobacterium slightly 
decreased the probability of metastatic events, in 
good agreement with the literature, according to 
which F. nucleatum promotes metastases in 
colorectal35 and esophageal36 cancers and elicits 
migration in pancreatic cancer cell lines.34 At the 
species level, the machine learning algorithm detected 
Anaerostipes hadrus, Roseburia inulinivorans and 
Roseburia intestinalis, well-known producers of 
butyrate,37,38 which has been reported to inhibit pan
creatic cancer cell invasion in vitro.39 Consistently, in 
our analysis, the abundance of R. inulinivorans and R. 
intestinalis was inversely correlated with the risk of 
metastases, whereas A. hadrus was not. However, 
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previous studies, have shown that A. hadrus is over
abundant in children with type 1 diabetes mellitus40 

and worsens colitis in mice,37 suggesting that, 
although potentially beneficial in healthy conditions, 
this butyrate producer may be harmful in diseased 
subjects.37 Interestingly, Bifidobacterium breve higher 
abundance showed a protective effect against metas
tases. Although, to the best of our knowledge, no anti- 
metastatic action has been documented yet for this 
bacterium, B. breve is generally regarded as a bene
ficial probiotic. It showed anti-tumor properties in 
mice with oral carcinoma,41 and it was associated 
with increased progression-free survival in lung can
cer patients.42 Finally, among the main species with 
discriminatory power between the two groups we also 
found Streptococcus anginosus, whose abundance was 
reduced in metastatic compared to non-metastatic 
patients. This result is in line with a previous in 
vitro study in which S. anginosus supernatant inhib
ited the proliferation, migration and invasion ability 
of oral squamous cell carcinoma.43 AI, in which 
machine learning represents a field, is already widely 
applied in different areas of pancreatic cancer, from 
diagnosis to prognosis, including the prediction of 
survival, recurrence, metastases, and response to 
treatment.44 In our cohort of patients, with this 
approach, it was possible to understand that micro
bial variations within the intestinal microbiota may 
contribute to development of metastases in PC 
patients. Further research could expand the potential 
applications of this intervention strategy and guide 
clinicians in discriminating between patients with 
metastatic and non-metastatic PC. Specifically, by 
considering not only a single microorganism but 
also bacterial patterns with already known interac
tions, important information could be obtained for 
the development of new therapeutic and/or integra
tive strategies in PC treatment, as well as indications 
for improving the diagnostic process. In this regard, it 
will also be appropriate to pay attention to the relative 
abundance of microorganisms, since even minimal 
variations could have completely different effects 
from those expected. This can pave the way for new 
diagnostic devices based on new algorithms to sup
port clinicians in their diagnosis.

When metabolomics analysis was performed on 
fecal samples from a subset of PC and PC met 
patients, a number of statistically significant changes 
emerged. Glutamic acid was found significantly 

enriched in the fecal samples from metastatic 
patients. Interestingly, glutamate has been impli
cated in increasing pancreatic cancer cells migration 
and invasion through binding to specific receptors 
and activating Kras-MAPK signaling.45 Tyrosine 
increase in the feces from PC patients without 
metastasis was consistent with the functional predic
tion performed on gut microbiota, in which pheny
lalanine, tyrosine and tryptophan biosynthesis 
resulted increased as well. Moreover, higher fecal 
levels of xanthine in the same group were again in 
agreement with the functional profile, which pre
dicted an increase in purine metabolism in PC 
patients as compared to PC met. Lipidomics showed 
a number of statistically significant lipids, capable of 
highlighting changes between the PC group and the 
PC met group. Among lipids obtained in positive 
polarity, a class of DGs was found enriched in 
patients with metastases. Indeed, DG appears to be 
involved in several cellular mechanisms such as 
motility, survival and cell proliferation and an 
imbalance in its homeostasis or in the functioning 
of its effectors, especially protein kinase C (PKC), 
seems to be involved in the progression and devel
opment of metastasis.46 In a study on triple-negative 
breast cancer, high expression of a diacylglycerol 
kinase ζ (DGKZ) was observed to promote metasta
sis in vitro and in vivo.47 On the contrary, NAGly 
were found statistically enriched in patients without 
metastases. Interestingly, reduced expression of the 
glycine N-acyltransferase (GLYAT) gene was corre
lated with increased cell proliferation and increased 
migratory properties of tumor cells, perhaps due to 
the activation of PI3K/AKT/Snail signaling, which 
induces epithelial-mesenchymal transition (EMT).48 

The lipidomics analysis conducted in negative polar
ity highlights a notable increase in the fatty acid class 
in patients without metastases in agreement with the 
study by Luo et al.49 In detail, the level of 
5,8,11,14,17-eicosapentaenoic acid (EPA), increased 
in PC group, was found statistically reduced in the 
tumor tissue of metastatic patients with colorectal 
cancer.50 Although the fecal metabolome is the 
result of both host and gut microbiota metabolism, 
a remarkable number of significant correlations 
between metabolites and gut bacteria were recorded. 
Strikingly, B. breve was the species most associated 
with the metabolomic differences observed. For 
instance, it positively correlated with 4-pyridoxic 
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acid, a vitamin B6 metabolite, whose imbalance has 
been involved in tumor progression.51 Moreover B. 
breve also showed positive correlations with lipids 
mostly belonging to the fatty acids class. Some 
research has highlighted the antineoplastic role of 
fatty acids due to apoptotic induction in tumor cells 
or to the reduction of resistance to chemotherapy 
treatments.52,53 Furthermore, in a study conducted 
on patients with non-small-cell lung cancer and 
healthy individuals, B. breve was included among 
the intestinal bacteria capable of promoting progres
sion-free survival in patients undergoing immuno
combined chemotherapy.42 To date, further studies 
are required to investigate any interactions between 
intestinal bacteria and the metabolomic and lipido
mic features that could characterize a pathophysio
logical condition. Therefore, since the gut 
microbiota is gaining an emerging role in the patho
genesis and development of cancer, we believe that 
investigating the microbiome to its full potential 
may open the way to new supportive approaches 
for the management of this devastating disease.
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PTT partial thromboplastin time
TLR-4 toll-like receptor 4
TME tumor microenvironment
VEGF vascular endothelial growth factor
VIMP variable importance
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