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ABSTRACT
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Pancreatic cancer has a dismal prognosis, as it is often diagnosed at stage IV of the disease and is
characterized by metastatic spread. Gut microbiota and its metabolites have been suggested to
influence the metastatic spread by modulating the host immune system or by promoting angio-
genesis. To date, the gut microbial profiles of metastatic and non-metastatic patients need to be
explored. Taking advantage of the 16S metagenomic sequencing and the PEnalized LOgistic
Regression Analysis (PELORA) we identified clusters of bacteria with differential abundances
between metastatic and non-metastatic patients. An overall increase in Gram-negative bacteria
in metastatic patients compared to non-metastatic ones was identified using this method.
Furthermore, to gain more insight into how gut microbes can predict metastases, a machine
learning approach (iterative Random Forest) was performed. Iterative Random Forest analysis
revealed which microorganisms were characterized by a different level of relative abundance
between metastatic and non-metastatic patients and established a functional relationship
between the relative abundance and the probability of having metastases. At the species level,
the following bacteria were found to have the highest discriminatory power: Anaerostipes hadrus,
Coprobacter secundus, Clostridium sp. 619, Roseburia inulinivorans, Porphyromonas and Odoribacter
at the genus level, and Rhodospirillaceae, Clostridiaceae and Peptococcaceae at the family level.
Finally, these data were intertwined with those from a metabolomics analysis on fecal samples of
patients with or without metastasis to better understand the role of gut microbiota in the
metastatic process. Artificial intelligence has been applied in different areas of the medical field.
Translating its application in the field of gut microbiota analysis may help fully exploit the potential
information contained in such a large amount of data aiming to open up new supportive areas of
intervention in the management of cancer.
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Introduction

Global statistics updated to 2020 assign pancreatic
cancer (PC) in seventh place among the causes of
cancer-related death.' Indeed, compared to all
other cancers, the 5-year survival rate for PC is
among the lowest (10%),% and it further drops to
approximately 3% when considering stage IV dis-
ease characterized by metastatic spread.’ Such poor

data are mainly linked to the subtle and insidious
onset of PC and its late diagnosis.” In fact, screen-
ing methods are not recommended unless in high-
risk subjects, in the absence of specific biochemical
markers and in the presence of non-typical symp-
toms in the initial stages of the disease, making
early diagnosis difficult to achieve.”® For these
reasons, more than 80% of patients are diagnosed
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with PC when the disease is locally advanced or
metastatic, the tumor is unresectable and palliative
chemotherapy is the standard of care.””
Metastases development is a complex multi-step
process that requires cancer cells to detach from
the primary tumor, invade the adjacent tissue,
migrate into the blood vessels, survive in the blood-
stream, leave the circulatory system and colonize a
distant body site.'®'" Therefore, for productive
metastasis establishment, cancer cells must cope
with a number of hurdles, and the participation of
several actors from the tumor microenvironment
(TME) as well as from outside the tumor is
required."> A study by Fu et al. recently demon-
strated that, as a part of the TME, intra-tumor
microbiota influence the process of breast cancer
metastasis by helping circulating tumor cells re-
organize their cytoskeleton to resist mechanical
stress in circulation.> However, it has been pro-
posed, that the gut microbiota and its metabolites
may be involved at a distance in the process of
tumor spread through different mechanisms.
One of these is the ability of microbes to modulate
the host immune system, thus helping cancer cells
to escape immune surveillance'* and creating the
so-called pre-metastatic niche, a permissive milieu
for primary cancer cell engraftment into second-
ary organ.'>""” Another important contribution of
gut microbiota to metastasis is the promotion of
angiogenesis through stimulation of vascular
endothelial growth factor (VEGF) expression by
lipopolysaccharide (LPS) and Toll-like receptor-4
(TLR-4).'%"

Despite this evidence linking the gut microbiota
to the metastatic process, gut bacterial commu-
nities characterizing metastatic cancer carriers
remain largely uninvestigated.

In the current study, the gut microbial com-
position of a cohort of patients with either local
or metastatic PC was profiled with the aim of
identifying bacterial patterns that could discri-
minate between these two conditions. Moreover,
to gain further insight into how the gut micro-
biota can predict the risk of metastases, a
machine learning approach was also performed
to determine the interactions of the relative
abundance of microorganisms, which may
represent bacterial signatures of localized and
metastatic PC.

Materials and methods
Study participants

Subjects were recruited between June 2019 and
April 2022 from the Fondazione IRCCS “Casa
Sollievo della Sofferenza” Hospital, San Giovanni
Rotondo, Italy, using the same protocols for each
patient for collection, processing, and conservation
of biological samples. Ethical approval from the
IRCCS “Casa Sollievo della Sofferenza” Hospital,
under Ethical Committee approval number N.184/
CE and written informed consent (IC) were
obtained from the study participants. The study
was carried out in accordance with the principles
of good clinical practice, the Declaration of
Helsinki, and in compliance with national legisla-
tion. Epidemiological and lifestyle data as well as
disease stage, follow-up data, diet, drinking, and
smoking habits, were collected at the time of
recruitment when the stool specimen was also col-
lected. All data were retrieved from hospital
records and collected through direct interviews
with the patients. Only patients with PC identified
at the time of diagnosis prior to any cancer treat-
ment were included in the study and were classified
into two groups according to the presence of
metastasis (i.e., non-metastatic and metastatic PC
groups). Both patient groups were examined clini-
cally, including assessment of basic anthropometric
data and evaluation of blood and serum tests. In
addition, patient follow-up data (such as treatment
regimen and vital status) were retrieved after the
recruitment date for descriptive purposes only and
were not utilized in the statistical analyses planned
to pursue the purpose of this study, which aimed to
assess the presence of differentially abundant bac-
terial patterns between metastatic and non-meta-
static patients, collected at recruitment.

Laboratory test analysis

All relevant information on blood and serum/
plasma analyses was manually extracted from the
medical records. Serum glycemia, total protein,
transaminases, gamma-glutamyl transferase
(GGT), alkaline phosphatase (ALP), creatine
kinase (CK), pancreatic amylase, lipase, C-reactive
protein (CRP), Carcino-Embryonic Antigen
(CEA), Carbohydrate Antigen 19-9 (CA19-9),



albumin and bilirubin, as well as erythrocyte sedi-
mentation rate (ESR), blood counts (hemoglobin,
white blood cell counts, neutrophils, and platelets)
and also prothrombin time (PT) and partial throm-
boplastin time (PTT) tests were performed accord-
ing to clinical routine at accredited laboratories at
the Fondazione IRCCS “Casa Sollievo della
Sofferenza” Hospital, San Giovanni Rotondo, Italy.

Sample collection and DNA extraction

Each study participant provided a fresh stool sam-
ple in a sterile tube which was then stored at —80°C
until use. DNA was isolated from a human fecal
sample using the QIAamp Fast DNA Stool Mini
Kit (Qiagen, Milan, Italy, Cat. N° 51604) according
to the manufacturer’s instructions. To optimize the
ratio of non-human to human DNA, cells that were
difficult to dissolve (such as Gram-positive bac-
teria) were lysed by heating the fecal suspension
at 90°C for 5 min. DNA was checked for concen-
tration and purity at the end of the isolation pro-
tocol and stored at —30°C until use.

Next-generation sequencing and analysis of
bacterial 16S rRNA gene

For each sample, 12.5 ng of DNA obtained through the
above procedure was used to amplify the V3-V4 region of
the 16S rRNA gene using KAPA HiFi HotStart Ready Mix
(Roche Diagnostics, Milan, Italy, Cat. N° 07958935001)
and the following primers selected by Klindworth® with
llumina adapters added: forward primer: 5'-
TCGTCGGCAGCGTCAGATGTGTATAAGAGAC-
AGCCTACGGGNGGCWGCAG reverse primer: 5-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGA-
CAGGACTACHVGGGTATCTAATCC.  Samples
were then barcoded with the Nextera XT Index Kit
(Mlumina, Milan, Italy, Cat. N° FC-131-1002), as pre-
viously described.” Next, the libraries were purified,
quantified using a Qubit™ Flex Fluorometer (Thermo
Scientific, Milan, Italy), pooled and sequenced in pairs
(2x300 cycles) on an Illumina MiSeq platform (San
Diego, CA, USA). FASTQ files generated by MiSeq
were deposited in ArrayExpress under the code E-
MTAB-12513 and de-multiplexed and analyzed using
the 16S Metagenomics GAIA 2.0 software, Sequentia
Biotech, Barcelona, Spain (2019). Read pairs were qual-
ity-controlled (ie., trimming, clipping and adapter
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removal) based on FastQC and BBDuk and, to obtain
the taxonomic profile of each sample, they were mapped
with BWA-MEM against the 16S reference database
available in NCBI GenBank. Specifically, all full-length
sequences of the 16S rRNA gene from all prokaryotes are
included except those longer than 3000 bp which are
filtered out, since the gene is expected to be shorter. A
prediction of the microbial functions was carried out
using the Tax4Fun2 package in R. The Mann-Whitney
test was used to analyze the differences of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) meta-
bolic pathways between the two groups, which were
then depicted using STAMP software.

Metabolomics analysis

The metabolomics and lipidomics analyses of feces
from a subgroup of 20 metastatic and non-meta-
static patients were performed using ultra high
pressure liquid chromatography (UPLC 1290 sys-
tem, Agilent Technologies) directly connected to
mass spectrometry (TripleTOF 5600+ mass spec-
trometer, SCIEX equipped with an electrospray
ionization source (ESI)). Detailed protocol is
reported in Supplementary Material 3.

Statistical methods

Patient characteristics were reported as medians
along with interquartile ranges (i.e., first-third
quartiles) and observed and relative frequencies
for continuous and categorical variables, respec-
tively. For each continuous variable, the assump-
tion of normality distribution was assessed using
the Shapiro-Wilks test, and if the condition was
met, mean * standard deviation (SD) was reported
instead of median. Comparisons between patients
with and without metastases at enrollment were
performed using a two-sample f-test (or Mann-
Whitney U test as appropriate) and chi-square
test with Yates’ continuity correction (or Fisher
exact test as appropriate) for continuous and cate-
gorical variables, respectively. Patients follow-up
was defined as the time elapsed between the date
of enrollment and death or the date of the last visit,
whichever occurred first. The annual mortality rate
was reported as the number of death events per 100
person-years and a Poisson regression model was
used to assess the differences between the two
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groups. Stacked bar charts were used to show the
gut microbiota composition (i.e., mean relative
abundance %) at the phylum, family, genus, and
species levels between patient groups. To identify
clusters of bacterial populations such that the linear
combination of their abundances is differential
between patients with and without metastases, the
PEnalized  LOgistic =~ Regression  Analysis
(PELORA)** was performed on logit-transformed
and standardized relative abundance (i.e. Z-score),
as already shown elsewhere.”> "> When the relative
abundance was exactly 0%, to compute a Z-score
this quantity was replaced by 0.0001% (i.e. half of
the lowest relative abundance found in the entire
dataset). The mean Z-scores of all the bacteria
included in a cluster were defined as “the centroid
of the cluster”. Multiple clusters of bacterial popu-
lations at different taxonomic levels were identified
using this algorithm. However, to ease the inter-
pretation of the results, a maximum of two infor-
mative clusters were considered for each scenario.
Each identified cluster included bacterial popula-
tions whose relative abundances were consistently
higher (or lower) in metastatic patients than in
non-metastatic patients. The optimal penalty para-
meter value was chosen as the one that achieved the
lowest median misclassification rate, computed
after several data resamplings (bootstrapping).
Box plots and scatterplots of the Z-scores com-
puted at cluster centroids and heatmaps of the
relative bacteria abundance (%) identified by
PELORA within each cluster are shown at different
taxonomic hierarchies. As stated by Dettling and
Buhlmann,”* the PELORA algorithm “aims to
identify multiple class-separating groups (i.e., clus-
ters) such that each group exhibits a good trade-off
between expected differential expression and con-
ditional variance of the group mean, and such that
the groups together contribute most in predicting
the response”. In short, to form a new group of
bacteria, their strategy proceeds in a ‘cautious’
manner, starting from scratch and relying on the
incremental growth of the group by adding one
bacterium after another until the L2 penalized
negative log-likelihood function value, defined as
the sum of the negative binomial log-likelihood (i.
e. likelihood of the data) and the magnitude of the
coefficients (L2 “ridge” penalty), in the group sta-
bilizes and cannot be further minimized at the

chosen penalty parameter. Once a group was
found to be terminated, a new group was started,
and the composition of the former groups
remained unchanged, while they could still have
an effect on the construction of the new group.
Please refer to section 3.4.2 of the cited article*
for the detailed steps concerning the implementa-
tion of the PELORA algorithm.

Furthermore, to delve deeper into the data, the
iterative Random Forest (iRF) algorithm® was per-
formed on the same structured dataset as the
PELORA analysis (i.e. one record per patient and a
set of variables in which the presence of metastasis,
clinical information and the relative abundance of
each bacterium with respect to each taxonomic clas-
sification, respectively, was recorded). It should be
noted that the analysis performed with iRF was inde-
pendent of that performed with the PELORA algo-
rithm. The iRF is a generalization of the Random
Forest (RF) algorithm and is commonly used to
train a set of feature-weighted decision trees to detect
stable and high-order interactions.”® In the iRF algo-
rithm, a RF is run iteratively from one to 100 times
and, at the last iteration, the feature-weighted RF is
‘mapped’ extracting and applying its decision rules to
convert continuous or categorical features into binary
variables, a crucial step as it allows the identification
of all prevalent interactions. The proportion of times
(out of several bootstrap samples) an interaction
appears defines a “stability score” (ie., 0 = totally
unstable interaction, 1 = totally stable interaction).
To enable iRF training, a “tuning phase” was per-
formed to set its internal parameters. A similar appli-
cation of the method has been extensively reported
in,”” and additional information about iRF algorithms
along with its “tuning phase” can be found in the
Supplemental Statistical Methods. Accumulated
Local Effects (ALE) were performed to depict the
functional relationship between the relative abun-
dances of the most important bacteria and the prob-
ability of having metastases whereas Partial
Dependence Plots (PDP) were performed to investi-
gate the “most stable” interactions between two
important bacteria, locating all combinations of rela-
tive abundance at high risk of metastasis. The discri-
minatory ability of the iRFs was assessed by the Area
Under the ROC Curve (AUC) on the out-of-bag data,
along with its 95% CI computed after 1000 stratified
bootstrap replicates. Statistical significance was set at



p <0.05. All statistical analyses and plots were per-
formed using R (R Development Core Team 2008,
version 4.2, packages: supclust, iRF, iml, ggplot2,
ggpubr, ComplexHeatmap, pROC, igraph, ggraph).
Concerning the association analysis, pairwise
Spearman correlations between the gut bacteria dis-
criminating the two cohorts of patients according to
Al and the metabolomics compounds were per-
formed, and the Spearman’s rank correlation coeffi-
cients (r) were calculated. Results were considered
significant when p < 0.05.

Results
Sample characteristics

Fifty-three patients with pancreatic tumors
were enrolled in this study, including 25 with
non-metastatic tumors (mean age at enroll-
ment: 65.7years) and 28 with metastatic
tumors (mean age at enrollment: 68.7 years).
For brevity, the acronyms “PC” and “PC met”
were used to refer to these two groups.
Anthropometric, demographic and clinical
data are presented in Table 1. The two groups
were balanced with the respect to all examined
characteristics except for the variables such as:
a) characteristics of the tumor, including tumor
stage (p<.001) which was more advanced in
metastatic patients (85.7% of PC met versus
0% of the PC was at stage IV), jaundice (p
=.004) and endoprosthesis positioning (p
=.010) which were both more abundant in PC
versus PC met patients; b) treatment regimen
(after stool collection) like therapeutic plan (p
=.002), neo-adjuvant chemotherapy
(p<.001) and radiotherapy (p=.001) which
were mainly administered to PC group whereas
PC met mainly underwent, first-line che-
motherapy (p=.016) and radiotherapy (p
=.001); c) biochemical tests at the enrollment
visit, notably hemoglobin (p =.040), red blood
cells (p=0.022) and albumin (p =0.041) which
were lower in PC than in PC met patients,
bilirubin (p=.014), aspartate aminotransferase
(p=.033), GGT (p=.046) and ALP (p=.038)
which were higher in PC than in PC met
patients and d) mortality rate, namely, follow-
up time from enrollment which was shorter in
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PC met (p=.003) and annual mortality rate
which was higher in PC met (p =.002).

Comparison of fecal microbiota composition
between PC patients with or without metastases

To highlight any differences in the composition of
the intestinal microbiota in the PC and PC met
groups, 16S rRNA gene sequencing was performed,
producing an  average of  183,749.283
(£129203.7919) read pairs for each of the 53 study
participants. Alpha-diversity indices (Shannon and
Chaol) were calculated both at the genus and the
species level in order to analyze the within-sample
diversity of the bacterial profiles, but no significant
difference emerged between the two groups (data
not shown). Figure 1 shows the gut microbiota
composition at the phylum (A), family (B), genus
(C) and species (D) levels, expressed as relative
abundance (%) in the PC and PC met groups.
Taxonomic analysis data were used to carry out
the PELORA algorithm to detect differences in
the microbial population in the two groups of
patients and identify specific bacterial patterns.
All identified clusters are reported in Table 2. The
phyla Tenericutes, Bacteroidetes and Nitrospinae
were found to be part of a bacterial cluster and
were all enriched in the PC met group compared
to the PC group. Another cluster was identified at
the family level, including the families of
Anaeroplasmataceae, Sutterellaceae, Methanomassi
llicoccaceae, Pasteurellaceae, Porphyromonadaceae,
Lactobacillaceae, Oscillospiraceae, Bacteroidaceae,
Enterococcaceae, Fusobacteriaceae, Morganellaceae
and Xanthomonadaceae, which were all increased in
PC met compared to PC (mean Z-scores of cluster
centroid: —0.149 vs 0.133, p <.001). When compar-
ing the two groups at the genus level, the linear
combination of abundances revealed another cluster
including Provencibacterium, Porphyromonas,
Raoultella, Pseudoramibacter, Kluyvera, Slackia and
Leptotrichia, all of which decreased in PC met with
respect to PC (mean Z-scores of cluster centroids:
0.241 vs. —0.216, p <.001). At the species level, the
PELORA algorithm identifies two clusters. The first
one included Coprobacter secundus, Turicibacter
sanguinis, Phascolarctobacterium succinatutens,
Bacteroides thetaiotaomicron, Pseudomonas aerugi-
nosa, Intestinimonas timonensis, Lactobacillus
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Prevotelasp. DJF B116 Coprobacter fastidosus Oscibacter massiiensis Alstipes finegoldi
Bacteroides salyersiae Bamesiella sp. 5496 Prevotellamassiia timonensis Bacteroides stercoris
Oscilibacter sp.G2 Eubacterium ramuus Bacteroides Bacteroid
Roseburia hominis Biophila wadsworthia Collinsella aerofaciens Sutterella wadsworthensis
Desufovibrio piger [Eubacterium] halli . Blautia obeum Bacteroides coprocola
Butyricimonas sp.GD2 Clostridum sp. BPYS Bfidobacterium longum Ruminococcus bromi
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Massiiprevotella massiiensis Catenbacterium mitsuokai dstasonis
Odorbacter laneus Roseburia sp. 831b Gemmiger formiciis Bacteroides vuigatus
[Ruminococcus]gnavus Eschenchia col Odorbacter splanchnicus Bacteroides caccae

|| sutereta massiensis Dorea longicatena || Prevotetaso. DuF RPS3 Faecalbacterum prausnitzi
Roseburia faecis Bamesiela intestinhominis || Bacterides coprophius Unknown

Paraprevotella clara
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Figure 1. Gut microbiota composition at different taxonomic levels grouped by patients with or without metastases. Gut microbiota
composition (i.e. mean relative abundance %) at phylum (a), family (b), genus (c), and species (d) levels in patients with pancreas
tumor without (PC) and with metastases (PC met) at the enrollment. The “Others” category includes all bacteria whose mean relative
abundance is less than 1% (at phylum and family level), 0.5% (at genus level) and 0.1% (at species level), respectively. As expected, the
percentage of bacteria included in the “Others” category tends to increase as more specific taxa levels are considered.

gasseri, Blautia massiliensis, Parabacteroides sp.
S448, Haemophilus parainfluenzae, Fournierella
massiliensis, Parabacteroides sp. SN4,
Butyricimonas paravirosa, Shimwellia blattae and
Clostridium lactatifermentans, which were all
increased in PC met versus PC, with the exception
of S. blattae (mean Z-scores of cluster centroids:

—0.181 v5 0.162, p < .001). The second species cluster
included Eubacterium ventriosum, Raoultella
ornithinolytica, Bacteroides sp. Marseille-P3108,
Clostridium disporicum, Veillonella sp. 2011 Oral
VSA C3, Bacteroides eggerthii, Prevotella oris,
Prevotella  sp. 109, Bifidobacterium boum,
Romboutsia sedimentorum, Prevotella
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Table 2. Results from PEnalized LOgistic Regression Analysis (PELORA) in patients with PC without and with metastases.

Cluster Selected bacteria PC PC met p-
Taxa level number (within each cluster) Quantity Statistics (N=25) (N=28) value®
Phylum 1 Tenericutes Relative abundance (%) Mean + SD 0.018 (0.064) 1.178 (3.784) —

Median [IQR] 0.003 [0.002, 0.009] 0.004 [0.003, 0.051]
Z-score® Mean + SD —0.288 (0.543) 0.257 (1.232) .047
Bacteroidetes Relative abundance (%) Mean + SD 43.980 (15.421) 46.013 (14.275) —
Median [IQR] 45.795 [38.235, 48.918 [35.411,
50.145] 54.319]
Z-score® Mean + SD —0.104 (1.237) 0.093 (0.739) 481
Nitrospinae Relative abundance (%) Mean + SD 0.000 (0.001) 0.006 (0.026) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD -0.171 (0.627) 0.152 (1.235) 244
Cluster centroid Z-score (means) Mean + SD —0.187 (0.484) 0.167 (0.623) .026
Family 1 Anaeroplasmataceae Relative abundance (%) Mean + SD 0.001 (0.001) 0.106 (0.361) —
Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.003]
Z-score® Mean + SD —0.263 (0.409) 0.235 (1.287) .070
Sutterellaceae Relative abundance (%) Mean + SD 2.481 (2.897) 2.938 (2.684) —
Median [IQR] 1.592[1.214, 2.148] 1.957[1.231, 3.984]
Z-score® Mean + SD —0.207 (1.230) 0.185 (0.711) 155
Methanomassiliicoccaceae Relative abundance (%) Mean + SD Absent 0.016 (0.058) —
Median [IQR] 0.000 [0.000, 0.000]
Z-score® Mean + SD Absent 0.193 (1.358) 0528
Pasteurellaceae Relative abundance (%) Mean + SD 0.064 (0.085) 0.173 (0.242) —
Median [IQR] 0.020 [0.006, 0.113] 0.062 [0.007, 0.214]
Z-score® Mean + SD —0.205 (0.905) 0.183 (1.060) 161
Porphyromonadaceae Relative abundance (%) Mean + SD 3.405 (3.460) 4.438 (3.367) —
Median [IQR] 2.146 [1.520, 3.484] 3.255[1.775,7.025]
Z-score® Mean + SD -0.171 (1.023) 0.153 (0.972) 243
Lactobacillaceae Relative abundance (%) Mean + SD 1.417 (3.578) 2.628 (8.473) —
Median [IQR] ~ 0.120[0.049, 0.337] 0.147[0.057, 0.898]
Z-score® Mean + SD —0.064 (0.945) 0.058 (1.061) 662
Oscillospiraceae Relative abundance (%) Mean + SD 1.207 (1.193) 1.576 (1.183) —
Median [IQR] 1.124[0.472,1.352] 1.347[0.644, 2.232]
Z-score® Mean + SD —0.206 (1.159) 0.184 (0.811) 158
Bacteroidaceae Relative abundance (%) Mean + SD 25.743 (13.190) 26.615 (11.469) —
Median [IQR] 26.584 [16.683, 28.312 [21.088,
31.702] 30.824]
Z-score® Mean + SD —0.097 (1.229) 0.087 (0.753) 510
Enterococcaceae Relative abundance (%) Mean + SD 0.307 (0.663) 1.209 (5.605) —
Median [IQR] 0.057 [0.033,0.192] 0.056 [0.029, 0.135]
Z-score® Mean + SD 0.013 (0.914) —0.011 (1.087) 932
Fusobacteriaceae Relative abundance (%) Mean + SD 0.174 (0.790) 0.223 (0.875) —
Median [IQR] 0.006 [0.001, 0.021] 0.007 [0.003, 0.041]
Z-score® Mean + SD -0.173 (1.013) 0.155 (0.980) 237
Morganellaceae Relative abundance (%) Mean + SD 0.039 (0.074) 0.097 (0.300) —
Median [IQR] 0.018 [0.009, 0.034] 0.014 [0.007, 0.041]
Z-score® Mean + SD —0.057 (0.929) 0.051 (1.074) .698
Xanthomonadaceae Relative abundance (%) Mean + SD 0.003 (0.002) 0.021 (0.098) —
Median [IQR] 0.002 [0.002, 0.003] 0.003 [0.002, 0.004]
Z-score® Mean + SD —0.140 (0.622) 0.125 (1.244) 339
Cluster centroid Z-score (means) Mean + SD —0.149 (0.265) 0.133 (0.241) <.001
Genus 1 Provencibacterium Relative abundance (%) Mean + SD 0.003 (0.008) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.309 (1.356) —0.275 (0.354) .032
Porphyromonas Relative abundance (%) Mean + SD 0.032 (0.023) 0.022 (0.015) —
Median [IQR] 0.030[0.015, 0.037] 0.018[0.013, 0.029]
Z-score® Mean + SD 0.302 (0.875) —0.270 (1.042) .036
Raoultella Relative abundance (%) Mean + SD 0.016 (0.056) 0.002 (0.003) —
Median [IQR] 0.001 [0.000, 0.007] 0.001 [0.000, 0.002]
Z-score® Mean + SD 0.224 (1.267) —0.200 (0.641) 125
Pseudoramibacter Relative abundance (%) Mean + SD 0.005 (0.024) 0.000 (0.000) —
Median [IQR]  0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.203 (1.398) —0.181 (0.340) .164
Kluyvera Relative abundance (%) Mean + SD 0.015 (0.071) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.203 (1.435) —-0.182 (0.151) 164
Slackia Relative abundance (%) Mean + SD 0.016 (0.033) 0.004 (0.005) —
Median [IQR] 0.003 [0.001, 0.009] 0.001 [0.000, 0.005]
Z-score® Mean + SD 0.248 (1.152) —0.221 (0.799) .088
Leptotrichia Relative abundance (%) Mean + SD 0.012 (0.037) 0.002 (0.005) —
Median [IQR] 0.001 [0.000, 0.004] 0.000 [0.000, 0.002]
Z-score® Mean + SD 0.202 (1.183) —-0.180 (0.781) 167
Cluster centroid Z-score (means) Mean + SD 0.241 (0.471) —0.216 (0.288) <.001
Species 1 Coprobacter secundus Relative abundance (%) Mean + SD 0.009 (0.040) 0.056 (0.122) —
Median [IQR] 0.000 [0.000, 0.001] 0.004 [0.000, 0.035]

(Continued)
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Cluster Selected bacteria PC PC met p-
Taxa level number (within each cluster) Quantity Statistics (N=25) (N=28) value*
Z-score® Mean + SD —0.418 (0.626) 0.373 (1.128) .003
Turicibacter sanguinis Relative abundance (%) Mean = SD 0.000 (0.001) 0.011 (0.043) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.002]
Z-score® Mean + SD —0.319 (0.460) 0.284 (1.249) .027
Phascolarctobacterium Relative abundance (%) Mean + SD 0.003 (0.014) 0.226 (0.719) —
succinatutens Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.002]
Z-score® Mean + SD —0.281 (0.472) 0.251 (1.261) .052
Bacteroides thetaiotaomicron  Relative abundance (%) Mean + SD 0.251 (0.370) 0.661 (0.995) —
Median [IQR] 0.113[0.023,0.197] 0.318[0.117,0.873]
Z-score® Mean + SD —0.346 (0.960) 0.309 (0.947) .016
Pseudomonas aeruginosa Relative abundance (%) Mean + SD 0.001 (0.001) 0.015 (0.064) —
Median [IQR]  0.000 [0.000, 0.001] 0.000 [0.000, 0.002]
Z-score® Mean + SD —0.284 (0.436) 0.254 (1.271) .049
Intestinimonas timonensis Relative abundance (%) Mean + SD 0.001 (0.001) 0.009 (0.029) —
Median [IQR] 0.001 [0.000, 0.001] 0.001 [0.000, 0.003]
Z-score® Mean + SD —0.290 (0.443) 0.259 (1.267) .045
Lactobacillus gasseri Relative abundance (%) Mean + SD 0.038 (0.118) 0.073 (0.163) —
Median [IQR]  0.000 [0.000, 0.009] 0.001 [0.000, 0.062]
Z-score® Mean + SD —0.142 (0.880) 0.127 (1.096) 333
Blautia massiliensis Relative abundance (%) Mean + SD Absent 0.009 (0.039) —
Median [IQR] 0.000 [0.000, 0.000]
Z-score® Mean + SD Absent 0.179 (1.362) .095°
Parabacteroides sp. 5448 Relative abundance (%) Mean + SD 0.022 (0.109) 0.033 (0.124) —
Median [IQR]  0.000 [0.000, 0.001] 0.000 [0.000, 0.001]
Z-score® Mean + SD —0.103 (0.895) 0.092 (1.093) 483
Haemophilus parainfluenzae  Relative abundance (%) Mean + SD 0.001 (0.004) 0.016 (0.073) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD —0.168 (0.562) 0.150 (1.263) 252
Fournierella massiliensis Relative abundance (%) Mean + SD 0.001 (0.001) 0.019 (0.084) —
Median [IQR] 0.000 [0.000, 0.002] 0.001 [0.000, 0.002]
Z-score® Mean + SD —0.186 (0.492) 0.166 (1.285) 205
Parabacteroides sp. SN4 Relative abundance (%) Mean + SD 0.003 (0.007) 0.055 (0.249) —
Median [IQR] 0.000 [0.000, 0.001] 0.001 [0.000, 0.004]
Z-score® Mean + SD —-0.251 (0.737) 0.224 (1.154) .084
Butyricimonas paravirosa Relative abundance (%) Mean + SD 0.008 (0.020) 0.019 (0.045) —
Median [IQR]  0.000 [0.000, 0.002] 0.000 [0.000, 0.003]
Z-score® Mean + SD —0.052 (0.819) 0.047 (1.151) 723
Shimwellia blattae Relative abundance (%) Mean + SD 0.008 (0.038) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.018 (1.469) —0.016 (0.077) 901
Clostridium lactatifermentans  Relative abundance (%) Mean + SD 0.008 (0.029) 0.011 (0.044) —
Median [IQR] 0.002 [0.001, 0.003] 0.001 [0.000, 0.004]
Z-score® Mean + SD 0.021 (0.963) —0.019 (1.049) .886
Cluster centroid Z-score (means) Mean + SD —0.181 (0.099) 0.162 (0.152) <.001
2 Eubacterium ventriosum Relative abundance (%) Mean + SD 0.073 (0.203) 0.018 (0.032) —
Median [IQR] 0.011 [0.000, 0.074] 0.001 [0.000, 0.021]
Z-score® Mean + SD 0.213 (1.103) —0.190 (0.875) 145
Raoultella ornithinolytica Relative abundance (%) Mean + SD 0.008 (0.023) 0.001 (0.002) —
Median [IQR] 0.000 [0.000, 0.003] 0.000 [0.000, 0.001]
Z-score® Mean + SD 0.305 (1.290) —0.272 (0.534) 035
Bacteroides sp. Marseille- Relative abundance (%) Mean + SD 0.190 (0.928) 0.151 (0.778) —
P3108 Median [IQR] ~ 0.004 [0.002, 0.007] 0.004 [0.002, 0.005]
Z-score® Mean + SD 0.065 (0.997) —0.058 (1.018) 657
Clostridium disporicum Relative abundance (%) Mean + SD Absent 0.013 (0.048) —
Median [IQR] 0.000 [0.000, 0.000]
Z-score® Mean + SD Absent 0.168 (1.365) .095°
Veillonella sp. 2011 Oral VSA  Relative abundance (%) Mean + SD 0.013 (0.063) 0.000 (0.000) —
a Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.154 (1.456) —0.137 (0.000) 294
Bacteroides eggerthii Relative abundance (%) Mean + SD 0.068 (0.194) 0.003 (0.004) —
Median [IQR] 0.002 [0.000, 0.009] 0.001 [0.000, 0.004]
Z-score® Mean + SD 0.254 (1.254) —0.227 (0.644) 080
Prevotella oris Relative abundance (%) Mean + SD 0.008 (0.027) 0.035 (0.177) —
Median [IQR] ~ 0.001 [0.000, 0.004] 0.000 [0.000, 0.002]
Z-score® Mean + SD 0.117 (0.956) —0.104 (1.044) 428
Prevotella sp. 109 Relative abundance (%) Mean + SD 0.784 (1.625) 0.495 (1.621) —
Median [IQR] 0.008 [0.003, 0.421] 0.005 [0.002, 0.025]
Z-score® Mean + SD 0.169 (1.073) —0.151 (0.923) 248
Bifidobacterium boum Relative abundance (%) Mean + SD 0.000 (0.000) 0.000 (0.000) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD —0.154 (1.456) 0.137 (0.000) 294
Romboutsia sedimentorum Relative abundance (%) Mean + SD 0.000 (0.000) 0.016 (0.082) —

(Continued)
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Table 2. (Continued).

Cluster Selected bacteria PC PC met p-
Taxa level number (within each cluster) Quantity Statistics (N=25) (N=28) value*
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD —0.167 (0.000) 0.149 (1.370) 254
Parabacteroides distasonis Relative abundance (%) Mean + SD 0.857 (1.054) 0.822 (1.124) —
Median [IQR]  0.560 [0.242, 0.873] 0.294[0.111,1.017]
Z-score® Mean + SD 0.154 (0.860) —0.137 (1.108) 295
Prevotella multisaccharivorax  Relative abundance (%) Mean + SD 0.202 (1.007) 0.001 (0.002) —
Median [IQR] 0.000 [0.000, 0.001] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.100 (1.394) —0.090 (0.426) 496
Desulfovibrio legallii Relative abundance (%) Mean + SD 0.010 (0.050) 0.000 (0.002) —
Median [IQR]  0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD 0.085 (1.338) —0.076 (0.568) .565
Eikenella corrodens Relative abundance (%) Mean + SD 0.000 (0.002) 0.004 (0.021) —
Median [IQR] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000]
Z-score® Mean + SD —0.023 (0.636) 0.020 (1.251) .877
Clostridium sp. 14505 Relative abundance (%) Mean + SD 0.052 (0.111) 0.007 (0.020) —
Median [IQR]  0.000 [0.000, 0.024] 0.000 [0.000, 0.001]
Z-score® Mean + SD 0.301 (1.184) —0.269 (0.722) .037
Unknown Relative abundance (%) Mean + SD 65.723 (9.592) 64.408 (7.335) —
Median [IQR] 62.599 [60.553, 64.064 [57.419,
71.801] 69.453]
Z-score® Mean + SD 0.110 (1.236) —0.098 (0.740) 454
Cluster centroid Z-score (means) Mean + SD 0.093 (0.168) —0.083 (0.239) .003

Abbreviations: PC: patients with pancreatic tumor without metastasis at enrollment; PC met: patients with pancreatic tumor with metastasis at enroliment; IQR:
Interquartile range (i.e. first-third quartiles); SD: Standard Deviation; Absent: all values are 0%. Standardized Z-score: As a first step, the relative abundance (%) of each
bacterium was logit transformed (so that values can theoretically range from negative to positive infinity) and, as a second step, the Z-score was computed by
standardizing the transformed variable (i.e., taking the variable values, subtracting its mean and dividing by its SD). The centroid is calculated as the average Z-score
of all the bacteria within each cluster. *All p-values were derived from the parametric two-sample t-test on Z-scores, with the exception of those marked as “*”, which
were derived from the Mann-Whitney U test. The latter was performed in presence of no variance in one of the two groups (i.e., when the group has all values equals

to 0% - denoted as “Absent”.

multisaccharivorax, Desulfovibrio legallii, Eikenella
corrodens, Clostridium sp. 14505, and unknown bac-
teria, which were decreased in PC met compared to
PC patients, with the exception of C. disporicum and
P. oris (mean Z-scores of cluster centroids: 0.093 vs
—0.083, p =0.003). At this stage of the analysis, it is
important to emphasize that two sample t-tests were
performed for the mere purpose of providing a gen-
eral descriptive comparison of cluster centroids and
not for drawing inferential conclusions. For each
taxonomic level, Figure 2 shows the distribution of
Z-scores computed at the cluster centroids in the
comparison between the PC group and the PC met
group. Interestingly, at the species level, patients
without metastases exhibited lower Z-scores at cen-
troid one and higher Z-scores at centroid two
(Figure 2d). Moreover, a scatter plot of the Z-scores
computed within each cluster showed that the two
species clusters clearly discriminated PC from PC
met patients (Figure 2d). The heatmaps in Figure 3
show the relative abundance of the bacterial taxa
composing each cluster at the phylum (A), family
(B), genus (C) and species (D) levels for each study
participant.

Machine learning approach to identify microbial
patterns predictive of metastases

Results from iRFs at the family, genus, and species
level are shown in Figures 4-6, respectively. The opti-
mal number of iterations as well as the regularization
factor for each iRF were detected in the “tuning phase”
as shown in Supplemental statistical methods.

In the Variable Importance (VIMP) plot (Figure
4a), the families Rhodospirillaceae, Clostridiaceae,
Peptococcaceae, Eggerthellaceae, Hafniaceae were
found to provide the highest contribution (ie.,
Relative VIMP >10%) in detecting the presence of
metastases,  while  Enterobacteriaceae  and
Oligosphaeraceae provided the least contribution to
this discrimination. Sensitivity and specificity
achieved at each possible cutoff of the predicted prob-
abilities (of having metastases) computed by the iRF
from the out-of-bag data were shown in the ROC
curve (Figure 4b), in which AUC value of 0.727 (boot-
strap 95% CI: 0.583-0.866) means that taking a meta-
static PC patient and a non-metastatic PC patient at
random, the probability that the algorithm assigns a
higher probability of metastases in the metastatic
patient (with respect to the non-metastatic patient)
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Figure 2. Box plots of the Z-scores computed by PELORA at different taxonomic levels. Box plots of the Z-scores computed within each
cluster (i.e. centroid) detected by PEnalized LOgistic Regression Analysis at phylum (a), family (b), genus (c), and species (D1) taxonomic
hierarchy. As two different clusters of bacteria population were detected at species level, a scatter plot of the Z-scores computed within
the two centroids was also shown (D2). Points depicted into the scatterplot represent the Z-scores pair, computed at each individual
patient, and were filled with blue and red colors to denote PC and PC met patients (groups), respectively. Moreover, a polygon

connecting the outermost data points is shown for each group to aid the visualization.

is 72.7%, although in terms of relative abundance
none of the families showed statistically significant
variations in the two groups (Figure 4c). ALE was
estimated from iRF on the most important variables
with the aim of showing the relationship between the
relative abundance levels of specific bacteria and the
mean predicted probability of having metastases with
respect to the overall mean predicted probability
defined at ALE=0 (ie., average risk). Specifically,
the Rhodospirillaceae family showed a sigmoid curve
in which lower levels (0-0.001%) were associated with
a higher probability of having metastases (ALE = 0.30,
i.e. 30% higher than the average risk), whereas higher
levels (0.01-0.25%) were associated with a lower prob-
ability of metastases (ALE = —0.10, i.e. 10% lower than
the average risk). A non-linear and non-monotonic
curve was assumed for the Clostridiaceae family, in
which the probability of metastases decreased within
the 1.0-2.5% range, whereas it was higher above and
below this interval. A near linear curve was also
observed for Peptococcaceae, for which higher

abundance correlated with a higher probability of
metastases, and for Eggerthellaceae and Hafniaceae,
for which increased levels predicted a lower probabil-
ity of metastases, as compared to the average risk
(Figure 4d). The network plot of interactions with
the highest stability among the families is graphically
represented in Figure 4e (stability score >0.50), with
the main interactions involving Rhodospirillaceae,
Peptococcaceae, Eggerthellaceae and Clostridiaceae.
The aforementioned dual interactions were integrated
into the PDPs (Figure 4f), highlighting the regions in
which patients with metastases were more likely to be
found. Remarkably, patients with Rhodospirillaceae
abundance within the range of 0.00031-0.003%
together with Peptococcaceae within 0.002-0.008%,
Clostridiaceae within 0.19-2.60%, Eggerthellaceae
within 0.001-0.042%, Hafniaceaea <0.01%,
Enterobacteriaceae <30.4% showed a 70-80% prob-
ability of having metastases at the time of enrollment.
At the genus level, Porphyromonas and Odoribacter
provided the highest contribution to detecting
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Figure 3. Heatmaps of relative abundance of bacterial populations identified by the PELORA within each cluster. Heatmaps of relative
abundance (%) of bacterial populations identified by the PEnalized LOgistic Regression Analysis within each cluster at different
taxonomic hierarchy. The order of the rows is determined by the main heatmap, which has been defined at the phylum level. All other
heatmaps are automatically adjusted according to the settings in the main heatmap.

metastases, followed by Mailhella, Papillibacter,
Slackia, Fusobacterium and Raoultella whereas
Anaerostipes and Butyricicoccus contributed the least
(Figure 5a). In Figure 5b, the ROC curve is reported,
which denoted a fair quality level of the iRF discrimi-
nation ability: AUC = 0.727 (bootstrap 95% CI: 0.590-
0.849). The relative abundance of Porphyromonas and
Mailhella genera was significantly decreased for the
former and enriched for the latter in the PC met group
compared the PC group (p=.036 and p=.044,
respectively) (Figure 5c). Regarding ALE plots, one
of the lowest Porphyromonas levels (close to 0.005%)
was associated with a higher probability of metastases
(ALE =0.30, i.e. 30% higher than the average risk
probability). Non-monotonic curves were found for
the Odoribacter and Papillibacter. For Mailhella and
Fusobacterium, an increase in the probability of
metastasis was observed as the relative abundance
plateaued. In contrast, for Slackia and Raoultella gen-
era, after the initial plateau phase, the probability of
metastases started to decrease slightly (Figure 5d). The
most stable interaction pathways among the genera
are shown in Figure 5e. At this taxonomic level, PDPs

(Figure 5f) suggested that patients with
Porphyromonas abundance lower than 0.01% together
with Odoribacter <1.2%, Raoultella <0.01%, Slackia
<0.02%, Papillibacter <0.025%, or Fusobacterium
>0.001% showed approximately 70-80% probability
of having metastases at the time of enrollment. Worth
of note was also the case of patients with Papillibacter
levels >0.001% and Fusobacterium levels between
0.005% and 0.03%, which have more than 60% prob-
ability of having metastases. A further interaction
involving Fusobacterium was the one with
Anaerostipes: Fusobacterium abundance higher than
0.001% together with Anaerostipes levels greater than
0.04% showed an approximately 55-60% probability
of having metastases. At the species level, Anaerostipes
hadrus, Coprobacter secundus, Clostridium sp. 619,
and Roseburia inulinivorans were the most important,
followed by Bacteroides barnesiae, Bifidobacterium
breve, Bacillus nealsonii, Paraprevotella clara,
Roseburia intestinalis, Streptococcus anginosus,
Oscillibacter sp. Marseille-P3260, Turicibacter sangui-
nis, Dialister sp. Oral taxon 502 and seven other
species with VIMP <10% (Figure 6a). The ROC
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Figure 4. Results from iterative Random Forest of the most important bacteria detected at family level. (a) Variable importance plot is
rescaled from 0% to 100% (relative VIMP) with respect to the maximum achieved value. Only variables with VIMP > 0 are shown and
ranked from the most to the less important. (b) ROC curve showing the sensitivity and specificity achieved at each possible cut-off of
the predicted probabilities computed by the iRF from the out-of-bag data, and hence is not prone to overfitting. The area under the
ROC curve (AUC) was corroborated by its 95% confidence interval, computed after 1000 stratified bootstrap replicates. The AUC
quantifies the discriminatory power achieved by the iRF, which reflect the one achieved by the all variables reported in the VIMP plot.
(c) Boxplots of the relative abundance (%) of all variables detected by the iRF with VIMP > 10%. (d) Accumulated Local Effect (ALE) of
all variables detected by the iRF with VIMP > 10%. ALE describes how the variables influence the predicted probability on average. The
gray band is a confidence band for the regression line fitted in the estimated ALE points. (e) Network plot of the most stable two-order
interactions (i.e. with a stability score =0.5). The stability of a recovered interaction is defined as the proportion of times that
interaction appears as an output of the generalized Random Intersection Trees, after a bootstrap perturbation of the data (i.e. 0 =
totally instable interaction,1=totally stable interaction). The higher the stability score, the better is the quality of the recovered
interaction. (f) Partial Dependence Plot (PDP) produced for variables with top stable interactions (i.e. stability score >0.70). PDPs show
the marginal (total) effect that two variables have on the predicted outcome. Colored zones locate those regions at which the
metastatic event more likely occurs (green/yellow) and not occurs (blue/violet). Individual observations are plotted with respect to
each variable combination. Relative abundances (%) values reported in ¢, d and f panels are in logit scale.

curve shown in Figure 6b shows a good quality level of
iRF discriminatory ability: AUC = 0.804 (boot-
strap 95% CI: 0.676-0.916). The relative abun-
dance of Coprobacter secundus (p=.002),
Clostridium sp. 619 (p =.007), Bacillus nealsonii
(p=.017), and Turicibacter sanguinis (p =.014)
showed a significant increase in the PC met
group compared to the PC group, whereas
Roseburia intestinalis (p = .022) and Streptococcus
anginosus (p = .033) were increased in PC patients

compared to PC met patients (Figure 6c). In the
ALE plots, Anaerostipes hadrus, Coprobacter
secundus,  Clostridium  sp. 619, and
Bifidobacterium breve showed a sigmoid curve
(Figure 6d). As for Anaerostipes hadrus,
Coprobacter secundus and Clostridium sp. 619
metastases were less probable at lower levels and
then became more probable as the relative abun-
dance increased. In contrast, for Bifidobacterium
breve, the probability of metastases was higher at
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Figure 5. Results from iterative Random Forest of the most important bacteria detected at genus level. (a) Variable importance plot is
rescaled from 0% to 100% (relative VIMP) with respect to the maximum achieved value. Only variables with VIMP > 0 are shown and
ranked from the most to the less important. (b) ROC curve showing the sensitivity and specificity achieved at each possible cut-off of
the predicted probabilities computed by the iRF from the out-of-bag data, and hence is not prone to overfitting. The Area under the
ROC curve (AUC) was corroborated by its 95% confidence interval, computed after 1000 stratified bootstrap replicates. The AUC
quantifies the discriminatory power achieved by the iRF, which reflect the one achieved by the all variables reported in the VIMP plot.
(c) Boxplots of the relative abundance (%) of all variables detected by the iRF with VIMP > 10%. (d) Accumulated Local Effect (ALE) of
all variables detected by the iRF with VIMP > 10%. ALE describes how the variables influence the predicted probability on average. The
gray band is a confidence band for the regression line fitted in the estimated ALE points. (e) Network plot of the most stable two-order
interactions (i.e. with a stability score >0.5). The stability of a recovered interaction is defined as the proportion of times that
interaction appears as an output of the generalized Random Intersection Trees, after a bootstrap perturbation of the data (i.e. 0 =
totally instable interaction,1=totally stable interaction). The higher the stability score, the better is the quality of the recovered
interaction. (f) Partial Dependence Plot (PDP) produced for variables with top stable interactions (i.e. stability score >0.70). PDPs show
the marginal (total) effect that two variables have on the predicted outcome. Colored zones locate those regions at which the
metastatic event more likely occurs (green/yellow) and not occurs (blue/violet). Individual observations are plotted with respect to
each variable combination. Relative abundances (%) values reported in ¢, d and f panels are in logit scale.

lower abundance levels and then decreased when  intestinalis <0.008%, and patients with

abundance increased. At this taxonomic level, it
was interesting to note that the course of Roseburia
inulinivorans represented by a U-shaped curve
(Figure 6d). The most stable interaction pathways
among the detected species are shown in Figure 6e.
At this taxonomic level, PDPs (Figure 6f) sug-
gested that patients with Anaerostipes hadrus
abundance greater than 0.032% together with
Clostridium sp. 619>0.002% or Roseburia

Clostridium sp. 619 >0.002% together with
Bifidobacterium breve <0.001% showed approxi-
mately 60-65% probability of having metastases
at the time of enrollment.

At all taxonomic levels, it should be noted that the
ALE plots were performed on all variables detected by
the iRF with VIMP > 10%, whereas the PDPs were
produced only for those variables with stable interac-
tions (i.e., with stability score >0.70).
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Figure 6. Results from iterative random forest of the most important bacteria detected at species level. (a) Variable importance plot is
rescaled from 0% to 100% (relative VIMP) with respect to the maximum achieved value. Only variables with VIMP > 0 are shown and
ranked from the most to the less important. (b) ROC curve showing the sensitivity and specificity achieved at each possible cut-off
of the predicted probabilities computed by the iRF from the out-of-bag data, and hence is not prone to overfitting. The Area under
the ROC curve (AUC) was corroborated by its 95% confidence interval, computed after 1000 stratified bootstrap replicates. The AUC
quantifies the discriminatory power achieved by the iRF, which reflect the one achieved by the all variables reported in the VIMP
plot. (c) Boxplots of the relative abundance (%) of all variables detected by the iRF with VIMP > 10%. (d) Accumulated Local Effect
(ALE) of all variables detected by the iRF with VIMP > 10%. ALE describes how the variables influence the predicted probability on
average. The gray band is a confidence band for the regression line fitted in the estimated ALE points. (e) Network plot of the most
stable two-order interactions (i.e. with a stability score >0.5). The stability of a recovered interaction is defined as the proportion of
times that interaction appears as an output of the generalized Random Intersection Trees, after a bootstrap perturbation of the data
(i.e. 0 = totally instable interaction,1=totally stable interaction). The higher the stability score, the better is the quality of the
recovered interaction. (f) Partial Dependence Plot (PDP) produced for variables with top stable interactions (i.e. stability score
>0.70). PDPs show the marginal (total) effect that two variables have on the predicted outcome. Colored zones locate those regions
at which the metastatic event more likely occurs (green/yellow) and not occurs (blue/violet). Individual observations are plotted
with respect to each variable combination. Relative abundances (%) values reported in ¢, d and f panels are in logit scale.

biosynthesis and metabolism of amino acids (above
all aromatic and branched chain amino acids) and the
transcriptions function were increased in PC patients,
whereas signal transduction was increased in PC met.

Functional prediction of gut microbial profiles

In order to get a more comprehensive view of the role
of gut microbiota in PC metastatization, we per-
formed a prediction of the functional/metabolic cap-
abilities of the microbial communities identified by
16S rRNA sequencing in the two experimental
groups, by using the software package Tax4Fun2. As
shown in Figure 7, a prediction of bacterial functions
at level 1 (A) and 2 (B) of KEGG pathways was
performed. Among the main differences, the

Fecal metabolomics analysis

In addition to the functional profile, a metabolo-
mics analysis on fecal samples of a subset of
patients from each of the two groups was carried
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Figure 7. Functional prediction for gut microbial populations in PC and PC met patients. Significant KEGG pathways for gut microbiota
between PC and PC met patients at level 1 (a) and 2 (b), respectively. Pathways were considered significant when the p-value from

Mann-Whitney test was <0.05.

out. Figure 8 shows the heatmaps representing the
6 out of 106 polar metabolites (A), the 29 out 545
lipids identified in positive ionization mode (B)
and the 14 out of 317 lipids identified in negative
ionization mode (C) that were significantly differ-
ent among the two groups, respectively. As for
polar compounds (Figure 8a), glutamic acid was
found to be significantly enriched in PC met
patients, whereas 4-pyridoxic acid, N-acetylhisti-
dine, tyrosine, cytosine and xanthine were found
increased in non-metastatic PC patients. A greater
impact was observed on lipid metabolism, in which
the most relevant classes found in positive polarity
were diacylglycerols (DG) and N-acyl glycines
(NAGly). Some DG were found enriched in meta-
static patients (DG 40:7|DG 20:2_20:5, DG 37:4|
DG 16:1_21:3 and DG 37:5|DG 17:0_20:5) while
others were increased in non-metastatic patients
(DG 39:1|DG 19:0_20:1, DG 38:1|DG 20:0_18:1
and DG 37:1|DG 21:0_16:1). Instead, N-acyl gly-
cines were statistically more enriched in non-meta-
static patients (e.g., NAGly 38:7;02|NAGly 20:5;0
(FA 18:1), NAGly 36:5;02|NAGly 18 :1;0(F 18:3),
NAGly 34:3;02|NAGly 18:1;0(F 16:1), NAGly
36:7;02|NAGly 18:2;0(F 18:4), NAGly 36:2;02]
NAGly 18:0;0(FA 18:1)). However, the most sig-
nificant impact on intestinal lipid composition was
observed in negative polarity, where a class of oxi-
dized fatty acids delineated a clear separation

between the metastatic and non-metastatic groups,
being enriched in the latter. This class includes FA
18:2, FA 18:3 and FA 20:5, known, respectively, as
linolic acid, linolenic acid and 5,8,11,14,17-eicosa-
pentaenoic acid (EPA) (Figure 8b).

Correlations between gut microbiota and the fecal
metabolome

Both the polar and the lipidic metabolites which
were differently represented in PC and PC met
were then correlated with the bacteria which best
discriminate the two microbial profiles (Figure 9a, b,
respectively). Regarding the polar metabolites, 4-
pyridoxic acid showed a significant negative correla-
tion with Clostridiaceae (r= — 0.56), Peptococcaceae
(r= — 0.46), Bacillus nealsonii (r= - 0.52),
Oscillibacter sp. Marseille-P3260 (r= — 0.62) and a
significant correlation with Bifidobacterium breve (r
=0.67); cytosine was negatively associated with
Peptococcaceae (r= — 0.49) and Turicibacter sangui-
nis (r = — 0.55) and positively associated with
Bifidobacterium breve (r = 0.55); tyrosine was nega-
tively correlated with and positively correlated with
Turicibacter sanguinis (r= — 0.61) and positively
associated with Streptococcus anginosus (r =0.45).
Concerning lipids, a considerable number of both
positive and negative correlations were observed.
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Figure 8. Fecal metabolic profile in PC and PC met patients. Heatmaps showing the significantly different (t-test, p <.05) metabolites
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polarity (b) and negative polarity (c) are shown, respectively. Shades of colors from blue to pink represent the abundance of each
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4-Pyridoxic acid_BEHAMIDE_POS
Glutamic acid _BEHAMIDE_POS
Cytosine _BEHAMIDE_POS
Tyrosine “BEHAMIDE_POS
Xanthine_BEHAMIDE_POS
N-Acetylhistidine _BEHAMIDE_POS

BEHAMIDE_POS

BEHAMIDE_POS

IAMIDE_POS
ine _E

BEHAMIDE_POS

hadrus
secundus
sp. 619
sp.

cter sanguinis
sp. oral taxon 502

BEHAMIDE_POS

Glutamic acid _BEHAMIDE_POS
e

4-Pyridoxic acid
Peptococcaceae
Raoultella

Hafniaceae

Mailhella
Papillibacter
Slackia

Raoultella [
ipes hads

Coprobacter secundus
sp. 619

Roseburia inulini

bamesiae

Bifidobacterium breve
Bacillus nealsonii

11

clara
Roseburia intestinalis.
angino:

ginosus
Oscillibacter sp. Marseille-P3260
Turicibacter sanguinis

Dialister sp. oral taxon 502

=

0P
R
TRy

BE351(BS 23

HexCer 32:4;04|HexCer 16:1

2
20

e

O

NS

2
5

TG 52:4;02/TG 18:1
DG 40°

i

oy sa7 ooy ns o

HexCor 42:1;04[HexCer 18109

oo
5

0.5

G
NAGIy 36:5,02 NAGI

NAGIY 34:3,02/NAGIY 1

fex2Cer 28:1:

HexCor 40°1

04
NAGly 36:2;

s

ot

$1f
0:0 —Ca}
Clostridiaceae |

Eggerthellacoas

Hafniace

026
Peptococcaceae

ca
Rholospiriliace:

Porphyromonas

Hainelta

Papillibacter.

‘Stack

oscilibals 35 Harsene-psss |

Siarseil
i Bibactar sanguins

Diatstor 5. oral 1woh 503

-1.0

Figure 9. Associations between gut microbiota and the fecal metabolome. Spearman’s rank correlations of the quantities of the
significantly different polar metabolites (a) and lipids (b) from fecal samples with the intestinal bacteria discriminating the two groups
of patients. Shades of colors from blue (negative correlation) to pink (positive correlation) indicate the value of the R correlation

coefficient.



20 A. VILLANI ET AL.

Remarkably, at the family level, Peptococcaceae
exhibited a significant negative correlation with FA
22:0;0 (r=-0.61). At the genus level, Papillibacter
was negatively correlated with DG 38:1|DG
20:0_18:1 (r=-0.77), NAGly 36:5;02|NAGly 18:1;
O(FA 183) (r=-0.68), DGDG 39:1|DGDG
21:0_18:1 (r=-0.72), PG 32:7|PG 16:3_16:4 (r=
—-0.67), LPE O-18:0 Isomer 2 (r=-0.62), and FA
20:5 (r=-0.63). At the species level, Bacteroides
barnesiae and Oscillibacter sp. Marseille-P3260
showed significant negative correlations with DG
39:1|DG 19:0_20:1 (r=-0.65) and PG 32:7|PG
16:3_16:4 (r=-0.61), respectively. Finally,
Bifidobacterium breve alone exhibited positive cor-
relations with FA 18:0;02 isomer 1 (r=0.61), FA
22:1;0 isomer 1 (r=0.61), PG 32:7|PG 16:3_16:4 (r
=0.65), LPE O-18:0 Isomer 2 (r = 0.73), and FA 20:5
(r=0.61).

Discussion

In the current study, a cohort of 53 patients with
PC was recruited; 28 of these patients were already
metastatic at the time of diagnosis. As expected, the
PC met group showed a more advanced disease
(the vast majority of patients had stage IV cancer)
and a higher mortality rate than non-metastatic PC
patients. Interestingly, the two groups differed sig-
nificantly in terms of jaundice and endoprosthesis
use, which were both more frequent in non-meta-
static patients. Liver injury caused by endoprosth-
esis positioning could explain why hepatic
biomarkers such as bilirubin, AST, GGT and ALP
were remarkably higher than those in metastatic
patients.

Metastases in PC represent a huge burden because
they prevent patients from accessing potentially cura-
tive surgery; therefore, deeply delving into the
mechanisms behind this process remains an urgent
need. Recent studies suggest that the microbiota may
be involved in both cancer progression and metasta-
sis, through its interaction with the host immune
system and the production of bacterial metabolites
and molecules.'*'® In particular, LPS constituting the
cell wall of Gram-negative bacteria has been described
to induce epithelial-mesenchymal transition®* and
promote angiogenesis through its interaction with

TLR-4 on the host cell membranes and VEGF
expression."”* To our knowledge, this is the first
report investigating gut microbiota composition in
patients with metastatic and non-metastatic PC.
First, the PELORA approach was used to identify
patterns of bacteria at different taxonomic levels,
identified by 16S sequencing, that best discriminate
the two groups. At first glance, an overall increase in
Gram-negative bacteria was observed in metastatic
PC patients compared to that in non-metastatic
ones. Indeed, the taxa whose abundance increased
the most in metastatic subjects, such as Tenericutes,
Anaeroplasmataceae, Phascolarctobacterium succina-
tutens, Pseudomonas aeruginosa, Haemophilus para-
influenzae, Fournierella massiliensis, Parabacteroides
sp. SN4, were all Gram-negative bacteria, leading us
to speculate that an increase in the LPS-TLR4-VEGF
pathway could have occurred, promoting angiogen-
esis and subsequent metastases. To further dissect the
potential use of gut microbes and their abundance
and to improve their performance in the identifica-
tion of PC patients at risk of metastases, a machine
learning algorithm was also implemented. This
approach identified bacterial signatures and recipro-
cal interactions with good discriminatory power
between patients with metastatic and non-metastatic
PC. Among the bacterial taxa identified by the
machine learning, the genera Porphyromonas and
Fusobacterium deserve particular attention given
their well-established association with PC, as well as
with colorectal cancer.”'>* Surprisingly, according to
our analysis, the risk of metastasis decreased as abun-
dance of Porphyromonas increased. On the contrary,
lower abundances of Fusobacterium slightly
decreased the probability of metastatic events, in
good agreement with the literature, according to
which F. nucleatum promotes metastases in
colorectal”® and esophageal®® cancers and elicits
migration in pancreatic cancer cell lines.>* At the
species level, the machine learning algorithm detected
Anaerostipes hadrus, Roseburia inulinivorans and
Roseburia intestinalis, well-known producers of
butyrate,””*® which has been reported to inhibit pan-
creatic cancer cell invasion in vitro.”> Consistently, in
our analysis, the abundance of R. inulinivorans and R.
intestinalis was inversely correlated with the risk of
metastases, whereas A. hadrus was not. However,



previous studies, have shown that A. hadrus is over-
abundant in children with type 1 diabetes mellitus*’
and worsens colitis in mice,”’ suggesting that,
although potentially beneficial in healthy conditions,
this butyrate producer may be harmful in diseased
subjects.”” Interestingly, Bifidobacterium breve higher
abundance showed a protective effect against metas-
tases. Although, to the best of our knowledge, no anti-
metastatic action has been documented yet for this
bacterium, B. breve is generally regarded as a bene-
ficial probiotic. It showed anti-tumor properties in
mice with oral carcinoma,*' and it was associated
with increased progression-free survival in lung can-
cer patients.*” Finally, among the main species with
discriminatory power between the two groups we also
found Streptococcus anginosus, whose abundance was
reduced in metastatic compared to non-metastatic
patients. This result is in line with a previous in
vitro study in which S. anginosus supernatant inhib-
ited the proliferation, migration and invasion ability
of oral squamous cell carcinoma.*’ Al, in which
machine learning represents a field, is already widely
applied in different areas of pancreatic cancer, from
diagnosis to prognosis, including the prediction of
survival, recurrence, metastases, and response to
treatment.** In our cohort of patients, with this
approach, it was possible to understand that micro-
bial variations within the intestinal microbiota may
contribute to development of metastases in PC
patients. Further research could expand the potential
applications of this intervention strategy and guide
clinicians in discriminating between patients with
metastatic and non-metastatic PC. Specifically, by
considering not only a single microorganism but
also bacterial patterns with already known interac-
tions, important information could be obtained for
the development of new therapeutic and/or integra-
tive strategies in PC treatment, as well as indications
for improving the diagnostic process. In this regard, it
will also be appropriate to pay attention to the relative
abundance of microorganisms, since even minimal
variations could have completely different effects
from those expected. This can pave the way for new
diagnostic devices based on new algorithms to sup-
port clinicians in their diagnosis.

When metabolomics analysis was performed on
fecal samples from a subset of PC and PC met
patients, a number of statistically significant changes
emerged. Glutamic acid was found significantly
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enriched in the fecal samples from metastatic
patients. Interestingly, glutamate has been impli-
cated in increasing pancreatic cancer cells migration
and invasion through binding to specific receptors
and activating Kras-MAPK signaling.* Tyrosine
increase in the feces from PC patients without
metastasis was consistent with the functional predic-
tion performed on gut microbiota, in which pheny-
lalanine, tyrosine and tryptophan biosynthesis
resulted increased as well. Moreover, higher fecal
levels of xanthine in the same group were again in
agreement with the functional profile, which pre-
dicted an increase in purine metabolism in PC
patients as compared to PC met. Lipidomics showed
a number of statistically significant lipids, capable of
highlighting changes between the PC group and the
PC met group. Among lipids obtained in positive
polarity, a class of DGs was found enriched in
patients with metastases. Indeed, DG appears to be
involved in several cellular mechanisms such as
motility, survival and cell proliferation and an
imbalance in its homeostasis or in the functioning
of its effectors, especially protein kinase C (PKC),
seems to be involved in the progression and devel-
opment of metastasis.*® In a study on triple-negative
breast cancer, high expression of a diacylglycerol
kinase { (DGKZ) was observed to promote metasta-
sis in vitro and in vivo.’ On the contrary, NAGly
were found statistically enriched in patients without
metastases. Interestingly, reduced expression of the
glycine N-acyltransferase (GLYAT) gene was corre-
lated with increased cell proliferation and increased
migratory properties of tumor cells, perhaps due to
the activation of PI3K/AKT/Snail signaling, which
induces epithelial-mesenchymal transition (EMT).*®
The lipidomics analysis conducted in negative polar-
ity highlights a notable increase in the fatty acid class
in patients without metastases in agreement with the
study by Luo et al.*’ In detail, the level of
5,8,11,14,17-eicosapentaenoic acid (EPA), increased
in PC group, was found statistically reduced in the
tumor tissue of metastatic patients with colorectal
cancer.”® Although the fecal metabolome is the
result of both host and gut microbiota metabolism,
a remarkable number of significant correlations
between metabolites and gut bacteria were recorded.
Strikingly, B. breve was the species most associated
with the metabolomic differences observed. For
instance, it positively correlated with 4-pyridoxic
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acid, a vitamin B6 metabolite, whose imbalance has
been involved in tumor progression.”’ Moreover B.
breve also showed positive correlations with lipids
mostly belonging to the fatty acids class. Some
research has highlighted the antineoplastic role of
fatty acids due to apoptotic induction in tumor cells
or to the reduction of resistance to chemotherapy
treatments.”>> Furthermore, in a study conducted
on patients with non-small-cell lung cancer and
healthy individuals, B. breve was included among
the intestinal bacteria capable of promoting progres-
sion-free survival in patients undergoing immuno-
combined chemotherapy.** To date, further studies
are required to investigate any interactions between
intestinal bacteria and the metabolomic and lipido-
mic features that could characterize a pathophysio-
logical condition. Therefore, since the gut
microbiota is gaining an emerging role in the patho-
genesis and development of cancer, we believe that
investigating the microbiome to its full potential
may open the way to new supportive approaches
for the management of this devastating disease.

List of abbreviations

Al artificial intelligence

ALE accumulated local effects

ALP alkaline phosphatase

CA19-9  carbohydrate antigen 19-9

CEA carcino-embryonic antigen

CK creatine kinase

CRP C-reactive protein

DG diacylglycerol

DGKZ diacylglycerol kinase ¢

EMT epithelial-mesenchymal transition

EPA 5,8,11,14,17-eicosapentaenoic acid

ESR erythrocyte sedimentation rate

GLYAT  glycine N-acyltransferase

GGT gamma-glutamyl transferase

IC informed consent

iRF iterative random forest

LPS lipopolysaccharide

NAGly  N-acyl glycine
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PDPs partial dependence plot

PELORA PEnalized  LOgistic =~ Regression
Analysis
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PT prothrombin time

PTT partial thromboplastin time
TLR-4 toll-like receptor 4

TME tumor microenvironment

VEGF vascular endothelial growth factor
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