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In the outer mitochondrial membrane, the voltage-dependent anion channel 1 (VDAC1) 
functions in cellular Ca2+ homeostasis by mediating the transport of Ca2+ in and out of 
mitochondria. VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to the mito-
chondrial intermembrane space. Intramitochondrial Ca2+ controls energy metabolism by 
enhancing the rate of NADH production via modulating critical enzymes in the tricarbox-
ylic acid cycle and fatty acid oxidation. Mitochondrial [Ca2+] is regarded as an important 
determinant of cell sensitivity to apoptotic stimuli and was proposed to act as a “priming 
signal,” sensitizing the organelle and promoting the release of pro-apoptotic proteins. 
However, the precise mechanism by which intracellular Ca2+ ([Ca2+]i) mediates apoptosis 
is not known. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis 
and in apoptosis. Accumulated evidence shows that apoptosis-inducing agents act by 
increasing [Ca2+]i and that this, in turn, augments VDAC1 expression levels. Thus, a 
new concept of how increased [Ca2+]i activates apoptosis is postulated. Specifically, 
increased [Ca2+]i enhances VDAC1 expression levels, followed by VDAC1 oligomeri-
zation, cytochrome c release, and subsequently apoptosis. Evidence supporting this 
new model suggesting that upregulation of VDAC1 expression constitutes a major 
mechanism by which apoptotic stimuli induce apoptosis with VDAC1 oligomerization 
being a molecular focal point in apoptosis regulation is presented. A new proposed 
mechanism of pro-apoptotic drug action, namely Ca2+-dependent enhancement of 
VDAC1 expression, provides a platform for developing a new class of anticancer drugs 
modulating VDAC1 levels via the promoter and for overcoming the resistance of cancer 
cells to chemotherapy.
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OveRview

Intracellular Ca2+concentration ([Ca2+]i) regulates a number of cellular and intercellular events, such 
as the cell cycle, proliferation, gene transcription, and cell death pathways, as well as processes like 
muscle contractility and neuronal processing and transmission (1). The alteration of Ca2+ homeosta-
sis is closely related with various cancer hallmarks, including proliferation, migration, angiogenesis, 
invasion abilities, and resistance to cell death (2).
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Various systems and mechanisms have evolved to control 
and respond to minute changes in Ca2+ concentrations and 
localization (3). Moreover, many cellular compartments 
participate in the Ca2+ signaling network regulation. [Ca2+]i is 
controlled via its transport in and out of the cell or/and in and 
out of intracellular organelles. Within a given compartment, 
[Ca2+] can be buffered by binding to specific proteins and other 
molecules, as well as existing in its free form, albeit differentially 
across compartments (1). The major organelles that participate 
in controlling Ca2+ dynamics include the endoplasmic reticu-
lum (ER) and mitochondria (4). Imbalance in the control of 
[Ca2+]i can lead to mitochondria Ca2+ overload and ultimately, 
to toxic effects. Tumor cells exhibit a well-developed capacity 
for modulating cytosolic Ca2+ levels by remodeling the cellular 
machinery that participates in processes that determine Ca2+ 
dynamics and homeostasis, as well as changes in sensitivity 
to the induction of cell death. This review is focused on the 
mitochondrial gatekeeper protein voltage-dependent anion 
channel 1 (VDAC1) and its role in Ca2+ transport and on Ca2+-
mediated apoptosis involving regulation of VDAC1 expression 
levels.

Ca2+ AND MiTOCHONDRiA

Mitochondria not only play a key role in metabolism but also 
serve as a major hub for cellular Ca2+ homeostasis, regulating 
oxidative phosphorylation (OXPHOS) (4–7) and modulating 
cytosolic Ca2+ signals (8, 9), cell death (10), and secretion (11, 
12). Enclosed by two different membranes, namely the outer 
mitochondrial membrane (OMM) and the inner mitochondrial 
membrane (IMM), mitochondria thus present two aqueous 
compartments, the intermembrane space (IMS) and the matrix 
(M). To reach the matrix, Ca2+ must cross both the OMM and 
the IMM. Indeed, the mitochondrial matrix is one of the major 
cellular Ca2+ stores or buffers and is used to control [Ca2+]i and 
dynamics. Within the mitochondrial matrix, Ca2+ is precipi-
tated as insoluble CaPO4, which exists in equilibrium with free 
Ca2+ (7, 13).

It is well established that mitochondria can rapidly sequester 
large and sudden increases in [Ca2+]i at the expense of the mem-
brane potential across the IMM that is generated by the electron 
transport chain (6). Intramitochondrial Ca2+ controls energy 
metabolism by enhancing the rate of NADH production via 
modulating critical enzymes, such as those of the tricarboxylic 
acid (TCA) cycle and fatty acid oxidation (14, 15), linking gly-
colysis to the TCA cycle (16). Indeed, matrix Ca2+ is an essential 
cofactor for several rate-limiting TCA enzymes, namely pyruvate 
dehydrogenase, isocitrate dehydrogenase, and α-ketoglutarate 
dehydrogenase.

Mitochondrial Ca2+ ([Ca2+]m) homeostasis is important not 
only for energy production but also for regulating [Ca2+]i and 
activating cell apoptotic pathways (10, 17). Several recent reviews 
have discussed the basic principles that govern [Ca2+]m homeosta-
sis and maintenance of Ca2+ dynamics within organelles (18–22). 
The OMM and IMM pathways allowing Ca2+ entry into and exit 
from mitochondria are presented below.

PATHwAYS MeDiATiNG Ca2+ FLUXeS iN 
THe MiTOCHONDRiA

Several mitochondria membrane proteins play central roles in 
Ca2+ signaling and/or Ca2+ influx and efflux in normal and disease 
conditions. Ca2+ transport across the IMM is mediated via several 
proteins, including the mitochondrial Ca2+ uniporter (MCU) (23, 
24) and the Na+/Ca2+ exchanger, NCLX, the major Ca2+ efflux 
mediator (25, 26). In the OMM, VDAC1 was shown to control 
Ca2+ permeability (27–30).

vDAC1, the Ca2+ Channel in the OMM
Three different isoforms of VDAC have been identified, VDAC1, 
VDAC2, and VDAC3. VDAC1 has been best studied, whereas 
only limited information regarding the cellular functions of 
VDAC2 and VDAC3 is available (31). Thus, we focus here on 
VDAC1.

VDAC1, a Multifunctional Channel, Controls Cell 
Metabolism
VDAC1 at the OMM controls metabolic cross talk between mito-
chondria and rest of the cell by allowing the entry of metabolites 
(pyruvate, malate, succinate, nucleotides, and NADH) into the 
mitochondria and the exit of newly formed molecules, such as 
hemes (32, 33) (Figure 1). VDAC1 is also involved in cholesterol 
transport and mediates the fluxes of ions, including Ca2+ (34), 
serves as a ROS transporter, and contributes to regulating the 
redox states of mitochondria and the cytosol (32–34). Moreover, 
VDAC1 at the OMM interacts with proteins that mediate and 
regulate the integration of mitochondrial functions with other 
cellular activities. VDAC1 forms a complex with adenine nucleo-
tide translocase (ANT) and creatine kinase (35). The interaction 
of VDAC1 with hexokinase (HK) allows for coupling between 
OXPHOS and glycolysis, an important factor in cancer cell 
energy homeostasis (the Warburg effect) (36). Thus, VDAC1 
appears to be a convergence point for a variety of cell survival 
and death signals, mediated through its association with various 
ligands and proteins.

VDAC1 As Ca2+ Transporter at OMM
Found in the OMM, VDAC1 regulates the transport of Ca2+ in 
and out of the mitochondria. VDAC1 is highly Ca2+-permeable 
and modulates the accessibility of Ca2+ to the IMS (27–30) 
(Figure  1). Bilayer-reconstituted VDAC1 under voltage-clamp 
conditions and in the presence of different CaCl2 concentra-
tion gradients showed well-defined voltage-dependent channel 
conductance as observed with either NaCl or KCl solution (27, 
29). Bilayer-reconstituted VDAC1 showed higher permeability to 
Ca2+ in the low conductance state (29). The Ca2+ permeability of 
VDAC1 has also been established upon VDAC1 reconstitution 
into liposomes (27).

Various studies support the function of VDAC1 in the 
transport of Ca2+ and in cellular Ca2+ homeostasis. VDAC1 
overexpression increases [Ca2+]m concentration in HeLa cells and 
skeletal myotubes (37), and silencing of VDAC1 expression by 
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FiGURe 1 | Schematic representation of voltage-dependent anion channel 1 (vDAC1) as a multifunctional protein involved in Ca2+ and metabolite 
transport, energy production, and the structural and functional association of mitochondria with the endoplasmic reticulum (eR). The various 
functions of VDAC1 in cell and mitochondria functions are presented. These include (A) Ca2+ signaling by transporting Ca2+; (B) control of metabolic cross talk 
between the mitochondria and the rest of the cell; (C) mediating cellular energy production by transporting ATP/ADP, NADH, and acyl-CoA from the cytosol to the 
intermembrane space and regulating glycolysis via the association with hexokinase (HK); (D) involvement in structural and functional association with the ER, 
mediating Ca2+ transport from the ER to mitochondria; (e) participation in apoptosis via its oligomerization to form a protein-conducting channel within a VDAC1 
homo-oligomer, allowing Cyto c release and apoptotic cell death. Ca2+ influx and efflux transport systems in the outer mitochondrial membrane (OMM) and IMM are 
shown. In the OMM, VDAC1 is presented as a Ca2+ channel and also functions in the transport of Mg2+. In the IMM, Ca2+ uptake into the matrix is mediated by a 
Ca2+-selective transporter, the mitochondrial Ca2+ uniporter (MCU), regulated by a calcium-sensing accessory subunit (MCU1). Ryanodine receptor (RyR) in the IMM 
mediates Ca2+ influx. Ca2+ efflux is mediated by NCLX, an Na+/Ca2+ exchanger. High levels of matrix Ca2+ accumulation trigger the opening of the PTP, a fast Ca2+ 
release channel. The function of Ca2+ in regulation of energy production is mediated via tricarboxylic acid (TCA) cycle regulation. This includes activation of pyruvate 
dehydrogenase (PDH), isocitrate dehydrogenase (ICDH), and α-ketoglutarate dehydrogenase (αKGDH) by intramitochondrial Ca2+, leading to enhanced activity of 
the TCA cycle. The electron transport chain (ETC) and the ATP synthase (FoF1) are also presented. Molecular fluxes are indicated by arrows. VDAC1 mediates the 
transfer of fatty acid acyl-CoAs across the OMM to the IMS, where they are converted into acylcarnitine by CPT1a for further processing by β-oxidation. VDAC1 is 
involved in cholesterol transport by being constituent of a multi-protein complex, the transduceosome, containing Star/TSPO/VDAC1. The ER associated with the 
mitochondria is presented with key proteins indicated. These include the inositol 3 phosphate receptor type 3 (IP3R3), the sigma1 receptor (Sig1R) (a reticular 
chaperone), binding immunoglobulin protein (BiP), the ER heat shock protein (HSP70) chaperone, and glucose-regulated protein 75 (GRP75). IP3 activates the IP3R 
in the ER to release Ca2+ that is directly transferred to the mitochondrion via VDAC1.
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siRNA attenuates [Ca2+]m uptake and cell apoptosis induced by 
H2O2 or ceramide (38). It was also proposed that the magnitude 
of Ca2+ transfer into the mitochondrial matrix is regulated by 
protein–protein interactions between Bcl-xL and VDAC1 or 
VDAC3, with this interaction promoting matrix Ca2+ accumula-
tion by increasing Ca2+ transfer across the OMM (39).

Silencing each of the VDAC isoforms in the presence of a pro-
apoptotic stimulus revealed that each was differentially sensitive 
to H2O2, with VDAC1 silencing potentiating H2O2-induced apop-
tosis and impairing [Ca2+]m loading, while VDAC2 silencing had 
the opposite effects (38). In addition, several VDAC-interacting 
molecules like 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid 
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(DIDS), 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disulfonic 
acid, and dinitrostilbene-2,2′-disulfonic acid were shown to pre-
vent apoptosis and also inhibit the rise in [Ca2+] levels associated 
with apoptosis induction (40). In another example, 5-aminole-
vulinic precluded Ca2+-mediated oxidative stress and apoptosis 
through VDAC1 inhibition (41).

VDAC1 Possesses Ca2+-Binding Sites
Several lines of evidence suggest that VDAC1 possesses divalent 
cation-binding site(s). [Ca2+], at micromolar concentrations, 
switched VDAC1 from a low to high conductance state (30). 
The trivalent ions La3+ and Tb3+, known to bind to Ca2+-binding 
proteins (42), reduced the channel conductance of bilayer-recon-
stituted VDAC (43). This and the direct demonstration of Tb3+ 
binding to purified VDAC1, as reflected in an enhanced green 
fluorescence, further suggest that VDAC1 possesses divalent 
cation-binding site(s) that its occupation by La3+ or Tb3+ lead to 
reduced channel conductance.

Similarly, molecules known to specifically interact with sev-
eral Ca2+-binding proteins like ruthenium red (RuR) (43) and 
ruthenium amine binuclear complex (Ru360) (44), as well as a 
photo-reactive analog, azido ruthenium (AzRu) (45), induced 
VDAC1 channel closure in a time-dependent manner and sta-
bilized the channel in a low conducting state. These compounds 
also inhibited apoptosis (43–45).

The putative VDAC1 metal binding site for RuR and AzRu was 
analyzed by mutation of specific VDAC1 residues (43). It has been 
demonstrated that E72 and E202 are essential for RuR-mediated 
reduction of bilayer-reconstituted VDAC1 conductance and for 
RuR-mediated protection against VDAC1-induced cell death 
(43, 46). This suggests that these two glutamate residues, located 
in two different β-strands, may form the VDAC1 Ca2+-binding 
site(s), or part thereof. However, their distant location and their 
being located in transmembrane sequences, suggest that these 
residues may stabilize VDAC1 in a conformation that is recog-
nized by RuR and AzRu. Thus, these Ru-containing molecules 
may bind to a non-defined site in VDAC1 to induce conforma-
tion changes leading to reduced conductance and inhibited 
apoptosis.

The competition between Ca2+ and RuR (43), as well as the 
demonstration of VDAC gating regulation by physiological levels 
of Ca2+, whereby Ca2+ increases the conductance of the VDAC1 
channel (30), supports the physiological function of the VDAC1 
Ca2+-binding site(s).

VDAC1 Protein–Protein Interactions Regulate  
[Ca2+]m Transport
Interactions between VDAC1 and Bcl-2 family proteins, such as 
Bax/Bak, Bcl-2, and Bcl-xL, mediating the regulation of apoptosis, 
are well documented (33, 47–55). It has been shown that interac-
tion of Bcl-xL with VDAC1 or VDAC3 promoted [Ca2+]m uptake 
(39). It was also reported that all three VDAC isoforms interact 
with regulator of microtubule dynamics protein 3 (56), a protein 
at the OMM involved in [Ca2+]i homeostasis regulation (57, 58). 
VDAC1 interacts with endothelial NO synthase (eNOS), with 
such interaction amplifying eNOS activity in a [Ca2+]i-mediated 
manner (59). VDAC also interacts with the L-type Ca2+ channel, 

and it was suggested that impaired communication between 
the L-type Ca2+ channel and mitochondrial VDAC contributes 
to cardiomyopathy (60). Thus, such interactions of VDAC with 
proteins associated with Ca2+ transport or activated by Ca2+ point 
to VDAC as functioning not only in [Ca2+]i homeostasis but also 
in many Ca2+-regulated cellular activities.

VDAC1 Function in Mitochondria—ER/Sarcoplasmic 
Reticulum (SR) Ca2+-Cross Talk
The participation of VDAC1 in supramolecular complexes and 
intracellular communication, including Ca2+ signal delivery 
between the ER and mitochondria, was postulated over a decade 
ago (28, 61, 62). The components involved in ER–mitochondria 
interaction include the IP3 receptor and grp75 on the ER as teth-
ering components and VDAC1 on the OMM (63). VDAC1 (but 
not VDAC2 or VDAC3) was found to provide the route for Ca2+ 
entry into mitochondria upon apoptotic stimulus, representing 
a fundamental factor in mitochondria physiology (38). It was, 
moreover, proposed that the magnitude of Ca2+ transfer from 
the ER into the mitochondrial matrix is regulated by Bcl-xL (39, 
51). ER–mitochondria cross talk regulates not only Ca2+ transfer 
but also different processes, such as mitochondrial fission, 
autophagy, and inflammation (64). Finally, Ca2+ dynamics are 
greatly enhanced where there is close apposition of the ER with 
mitochondria, as compared to the bulk cytosol. Such changes in 
Ca2+ signal profiles were modified by ROS, as monitored with 
genetically encoded redox indicators (65).

MCU and Auxiliary Subunits Form a 
Selective Ca2+ Transporter in the iMM
Ca2+ transport across the IMM and into the matrix is mediated 
via the MCU (23, 24), with the driving force being the steep 
mitochondrial membrane potential (8, 66, 67) (Figure 1). Such 
delivery is inhibited by RuR and its derivative, Ru360 (68).

The major channel-forming subunit of the MCU complex 
(CCDC109A) consists of two transmembrane and the N-terminal 
domains and forms a complex in the IMM with many gatekeeper 
membrane proteins (23, 24, 69–71). The calcium-sensing acces-
sory subunits MICU1, MICU2, and MCUb are proposed to 
serve as negative regulators, while mitochondrial Ca2+ uniporter 
regulator 1 (MCUR1), essential MCU regulator, and SLC25A23 
are essential for MCU activity (72–76). MCUR1 may, however, 
also play other roles, such as in cytochrome c oxidase assembly 
(77), as a cytosolic Ca2+-buffering agent (78), or in ROS genera-
tion (79).

The functional role of MCU under physiological conditions 
was extensively studied using several silencing techniques 
(80–85). Interestingly, MCU knockout mice did not exhibit 
obvious defects in mitochondrial number or morphology and 
any physiological function (82, 86, 87). MCU deletion was found 
to be lethal for C57BL/6 mice, whereas knockout mice with 
an outbred CD1 background were viable, albeit with reduced 
numbers (88). Basal organ functions were maintained, and 
impairment was only observed in the physiological adaptation 
of skeletal muscle to exercise (82). In cardiac-specific conditional 
MCU-deficient mice, the heart displayed increased resistance to 
ischemia–reperfusion injury (87, 89).
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Na+/Ca2+ exchanger Function in Ca2+ 
efflux and its Regulation
Mitochondrial Ca2+ is mainly determined by the balance 
between influx through the MCU and efflux via NCLX (90). To 
restore resting [Ca2+]m levels, Ca2+ efflux across IMM is medi-
ated by the Na/Ca/Li exchanger (NCLX) or Na+/Ca2+ exchanger 
(25, 26, 91), and possibly by Letm1, under certain conditions, 
which functions as a Ca2+/H+ anti-porter in addition to being a 
H+/K+ anti-porter (see Other Proteins Proposed as Participating 
in or Mediating Ca2+ Efflux from Mitochondria) (92). NCLX 
mediates efflux of Ca2+ from the mitochondrial matrix to the 
IMS (20, 25, 93–95). In contrast to the plasma membrane 
Na+/Ca2+ exchanger, NCLX transports Li+ ions in addition to 
Na+ and Ca2+ (96). NCLX has also been proposed to regulate 
Ca2+-induced NAD(P)H production and matrix redox state 
modulation (97).

Mitochondrial Ca2+ regulates heart metabolism, where steady-
state [Ca2+]m is determined by the dynamic balance between 
MCU-based Ca2+ influx and NCLX-based Ca2+ efflux (98). 
It has been proposed that a novel role of NCLX is to regulate 
the automaticity of cardiomyocytes via modulating SR Ca2+  
handling (99). NCLX has been proposed to be involved in 
several pathological conditions. In ischemia, NCLX acts as a key 
regulator of [Ca2+]m accumulation (100), while in diabetic cardiac 
myocytes, NCLX is more susceptive to changes in the outside 
(cytosolic) Na+ concentration, as compared with controls (101). 
Phosphorylation of NCLX has been reported to reverse Ca2+ 
mitochondrial overload and promote survival of PINK1-deficient 
dopaminergic neurons (102).

Other Proteins Proposed as Participating 
in or Mediating Ca2+ efflux from 
Mitochondria
The transient opening of the mitochondrial permeability transi-
tion pore (MPTP or PTP) represents another mechanism for 
Ca2+ release from mitochondria. However, its function is prob-
ably related to non-physiological Ca2+ overload that depolarizes 
mitochondria by an irreversible opening of the PTP, leading 
to apoptotic and necrotic cell death associated with disease 
pathogenesis (103, 104). Multiple proteins have been proposed 
to constitute the PTP and thus to play a role in PTP opening by 
Ca2+ or ROS challenge, such as  VDAC1 in the OMM, ANT in 
the IMM, and cyclophilin D in the matrix (105, 106). However, 
silencing approaches have only confirmed cyclophilin D as 
being essential for Ca2+-sensitive PTP opening. One recent view 
considered parts of the FoF1 ATPase as components of the PTP, 
while other candidates has also emerged [for review, see Ref. 
(107)]. Recently, SPG7 at the IMM has been proposed as a key 
component of Ca2+- and ROS-induced PTP opening, forming 
a complex with VDAC1 at the OMM and cyclophilin D in the 
matrix (108).

A potential candidate for the [Ca2+]m/H+ anti-porter was sug-
gested, the leucine zipper-EF-hand-containing transmembrane 
protein 1 (Letm1) (19, 92, 109–111). Letm1 has two Ca2+-binding 
EF hand domains and catalyzes the electronic exchange of Ca2+ 
for H+. Letm1 Ca2+ transport activity is pH-sensitive and is 

inhibited by RuR (111). Letm1 not only imports Ca2+ into the 
matrix through the IMM but can also extrude Ca2+ from the 
matrix when [Ca2+]m concentration is high (19, 109, 110).

Channels function in Ca2+ transport in membranes other 
than in the mitochondria as ryanodine receptors (RyRs) and 
the transient receptor potential 3 (TRPC3) channel were 
reported to function in Ca2+ homeostasis [for review, see Ref. 
(112, 113)]; RyRs, the main Ca2+-release channels in the SR/
ER in excitable cells, were reported to be expressed at the 
IMM and mediate Ca2+ uptake in cardiomyocytes (114, 115).  
Recently, it was demonstrated that neuronal mitochondria express 
RyR at the IMM and accumulate Ca2+ in a manner that can be 
inhibited by dantrolene or ryanodine (116). Finally, canonical 
TRPC3 was shown to be located in the IMM and contributing to 
[Ca2+]m uptake and thus functions in regulating [Ca2+]m homeo-
stasis (117).

vDAC1 AT THe NeXUS OF 
MiTOCHONDRiA-MeDiATeD APOPTOSiS

Mitochondria-mediated or intrinsic apoptotic pathway is acti-
vated via the release of mitochondrial pro-apoptotic proteins 
(e.g., Cyto c, AIF, Smac/DIABLO) from the IMS to the cytosol 
(32, 33, 52, 54, 118–126), leading to the activation of caspases. 
Some models for the release of apoptotic proteins suggest that 
release exclusively involves an increase in OMM permeability 
due to the formation of a channel large enough to allow the 
passage of apoptogenic proteins (32, 33, 124, 127–129), while 
others consider release to be due to disruption of OMM integrity 
(120, 130, 131). Recent studies demonstrated that upon apoptosis 
induction, VDAC1 is oligomerized to form a large pore, allow-
ing the release of mitochondrial pro-apoptotic proteins (129, 
132–139). VDAC1 oligomerization was found to be a general 
mechanism common to numerous apoptogens acting via dif-
ferent initiating cascades (135, 140, 141). Moreover, apoptosis 
inhibitors (135, 142) and recently identified VDAC1-interacting 
molecules [diphenylamine-2-carboxylate (DPC)] (40) and a 
molecule developed in our lab designated as VBIT-4 were found 
to prevent VDAC1 oligomerization and subsequent apoptosis 
(143). Furthermore, cyathin-R, a cyathane-type diterpenoid 
derived from a fungal secondary metabolite library from the 
medicinal fungus Cyathus africanus, was found to interact with 
purified VDAC1 and reduce its channel activity, as well as induce 
apoptosis via promoting VDAC1 oligomerization and the asso-
ciated cytochrome c release in Bax/Bak-depleted cells but not 
when VDAC1 was depleted. Cyathin-R-induced apoptosis was 
inhibited by DPC (142).

VDAC1 also regulates apoptosis via the direct interaction 
with the anti-apoptotic protein HK (144–152), with apoptosis-
regulating proteins, such as Bcl-2, Bcl-xL (33, 47, 48, 50, 144, 
153–155), and with the pro-apoptotic proteins Bax and Bak (156).

Ca2+-induced Apoptosis through vDAC1 
Overexpression
Apoptosis induction affects cell Ca2+ homeostasis and energy 
production (157). The intrinsic apoptotic pathway, initiated 
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TABLe 1 | Anticancer, pro-apoptotic drugs, and chemical agents that increase voltage-dependent anion channel 1 expression level in cancer cells.

Drugs or chemical agent Cancer cell type Reference

Prednisolone—synthetic glucocorticoid, a derivative of cortisol, used to 
treat a variety of inflammatory and autoimmune conditions and some 
cancers

Acute lymphoblastic leukemia cell lines, REH, 697, Sup-B15, and 
RS4;11

(165)

Cisplatin—a chemotherapy drug, the first member of a class of platinum-
containing anticancer drugs

Cervix squamous cell carcinoma line (A431), human cervical 
adenocarcinoma (HeLa), non-small human lung carcinoma (A549), and 
human ovarian carcinoma (SKOV3)

(141, 166)

Mechlorethamine and its derivative, melphalan—DNA cross-linking agents, 
a group of anticancer chemotherapeutic drugs

Human cervical adenocarcinoma (HeLa) (167)

ROS—reactive oxygen species (H2O2 and sodium nitroprusside) Human cervical adenocarcinoma (HeLa), non-small human lung 
carcinoma (A549), human ovarian carcinoma (SKOV3), and rat PC12 
cells

(141, 168)

UV irradiation B cell mouse lymphoma (LYas) (169)

Arbutin—(hydroquinone-O-β-d-glucopyranoside), tyrosinase inhibitor, and 
potential anticancer agent, extracted from the bearberry plant

Human malignant melanoma cells (A375) (170, 171)

Orf3—hepatitis E virus protein Hepatoma cells (172)

Somatostatin—a peptide hormone Human prostate cancer cell line (LNCaP) (173)

Endostatin—20-kDa C-terminal fragment derived from type XVIII collage Human microvascular endothelial cells (126)

Selenite—inorganic compound Human cervix carcinoma (HeLa) cells (141, 174)

Thapsigargin—non-competitive inhibitor of the sarco/endoplasmic 
reticulum Ca2+-ATPase, extracted from the plant Thapsia garganica

U266 myeloma cells and human cervical adenocarcinoma (HeLa) cells (141, 175)

Etoposide—topoisomerase inhibitor, cytotoxic anticancer drug Human cervical adenocarcinoma (HeLa), non-small human lung 
carcinoma (A549), and human ovarian carcinoma (SKOV3)

(141)

Arsenic trioxide As O2 3
−( )—inorganic compound Human cervical adenocarcinoma (HeLa), non-small human lung 

carcinoma (A549), and human ovarian carcinoma (SKOV3)
(141)
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in response to various stimuli, including high [Ca2+]i, oxygen 
radicals, activation of pro-apoptotic Bcl-2 family proteins, UV 
damage, and various anticancer drugs and cytotoxic agents, such 
as thapsigargin, staurosporine, As2O3, and selenite, disrupts cel-
lular Ca2+ homeostasis and induces apoptosis (140). Indeed, the 
contribution of Ca2+ signals to cell death is well documented, and 
a few mechanisms that connect apoptotic stimuli, via a rise in 
[Ca2+]i, to cell death have been suggested (158–164).

Recently, it was demonstrated that a panel of apoptotic 
inducers, such as UV irradiation, H2O2, etoposide, cisplatin, or 
selenite, elevated [Ca2+]i and upregulated VDAC1 expression 
levels in a Ca2+-dependent manner (Table 1), resulting in VDAC1 
oligomerization, Cyto c release, and subsequent apoptosis (140, 
141) (Figure 2). Furthermore, direct elevation of [Ca2+]i by the 
Ca2+-mobilizing agents A23187, ionomycin, or thapsigargin led to 
VDAC1 overexpression, VDAC1 oligomerization, and apoptosis, 
while decreasing [Ca2+]i using the cell-permeable Ca2+-chelating 
reagent BAPTA-AM inhibited these events (141).

It has also been shown that the sensitivity of the CD45-positive 
(CD45+) U266 myeloma cell line to various apoptotic stimuli is 
well correlated with the elevated levels of VDAC1 expression 
that follow Ca2+ signals in response to apoptosis stimulation 
(169, 175). This suggests that apoptosis-inducing agents act by 
increasing [Ca2+]i and that this, in turn, leads to an upregulation 
of VDAC1 expression, which is connected to apoptosis induction 

(Table 1). The proposed sequence of events leading to VDAC1-
mediated apoptosis can be schematically depicted as:

Support for this model comes with the findings that several 
VDAC-interacting molecules prevent its oligomerization, the 
elevation in [Ca2+]i associated with apoptosis induction, Cyto c 
release, and apoptosis (40, 41, 141, 151, 165, 166, 170, 171, 173, 
176–178). DIDS was shown to prevent the apoptosis stimuli-
inducing increase in [Ca2+]i levels (40) and Ca2+-mediated oxida-
tive stress and apoptosis, as induced by 5-aminolevulinic (41). 
The small molecules AKOS-022 and VBIT-4 that bind to VDAC1 
prevent its oligomerization, the elevation [Ca2+]i associated 
with apoptosis induction, Cyto c release, and apoptosis (166). 
Furthermore, mitochondria-mediated apoptosis was correlated 
with VDAC1 expression levels (141, 165–175). Thus, although 
different apoptosis inducers elicit cell death via different mecha-
nisms, all induce VDAC1 overexpression in a Ca2+-dependent 
manner, raising the possibility that elevating [Ca2+]i represents a 
common mechanism for various apoptosis stimuli, subsequently 
leading to an elevation in VDAC1 expression. We, therefore, 
suggest that the upregulation of VDAC1 expression constitutes a 
major mechanism by which apoptosis inducers lead to apoptosis 
(Figure 2).
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FiGURe 2 | Proposed model for apoptosis stimuli-induced increase in voltage-dependent anion channel 1 (vDAC1) expression levels leading to 
vDAC1 oligomerization, Cyto c release, and apoptosis and possible inhibition steps. A schematic model describing the novel pathway proposed for 
apoptosis induction involving elevation of [Ca2+]i leading to VDAC1 overexpression. (A) This facilitates VDAC1 oligomerization to form a large channel mediating 
cytochrome c release from the mitochondrion into the cytosol, resulting in apoptosis activation. It is proposed that the overexpression of VDAC1 in diseases such as 
Alzheimer’s disease, cardiovascular diseases, and diabetes is associated mitochondrial dysfunction, including apoptosis induction (B).
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Although many studies in various experimental systems have 
demonstrated increased VDAC1 expression levels following 
apoptosis stimulation (Table 1), only a few have linked VDAC1 
overexpression to the rise in [Ca2+]i following apoptosis induc-
tion. Indeed, the expression level of VDAC1 has been shown 
to be a crucial factor in the process of mitochondria-mediated 
apoptosis (141, 165–175). Moreover, exogenous VDAC1 expres-
sion leads to apoptosis in the absence of any apoptotic stimulus 
(32, 34, 137, 141, 144, 151, 165, 179). There are several potential 
Ca2+-dependent steps that could contribute to the process of gene 
expression and a few, such as mRNA transcription, elongation, 
splicing, stability, and translation, have been suggested as being 
regulated by Ca2+ (180, 181).

This new mode of action for apoptosis stimulus involving 
increased expression of VDAC1 leading to dynamic VDAC1 
oligomerization, release of Cyto c, and apoptosis provides a plat-
form for developing a new class of anticancer drugs modulating 
VDAC1 expression via its promoter.

vDAC1 AND Ca2+ iN CANCeR AND OTHeR 
DiSeASeS

Various cancer hallmarks, such as proliferation, migration, 
angiogenesis, invasion abilities, and resistance to cell death, 
are associated with alterations of Ca2+ homeostasis (2). As a 
transporter of metabolites and Ca2+, VDAC1 contributes to the 
metabolic phenotype of cancer cells, possibly as reflected in 
its overexpression in many cancer types (182, 183). Moreover, 
its downregulation resulted in reduced metabolite exchanges 
between mitochondria and cytosol and inhibited cell and tumor 
growth (122, 176, 182, 184, 185).

Tumor cells exhibit a well-developed capacity for modulat-
ing [Ca2+]i levels by remodeling the cellular machinery that 

participates in processes that determine Ca2+ dynamics and 
homeostasis, as well as changes in sensitivity to cell death induc-
tion (186). It was recently demonstrated that the basal [Ca2+]m 
uptake via the ER–mitochondria junction is essential for tumori-
genic cell viability, and that inhibition of this pathway in cancer 
cells might be used as a therapeutic approach (187). Moreover, 
some cancer cells are addicted to such constitutive Ca2+ transfer to 
sustain their mitochondrial metabolism, particularly nucleoside 
production (188). Thus, the increase in VDAC1 levels in cancer 
(182, 183) also contributes to this enhanced transport of Ca2+.

In diabetic mouse coronary vascular endothelial cells (MCECs), 
VDAC levels were increased, as were [Ca2+]m, mitochondrial O2 
production, and PTP opening activity (189). Downregulation of 
VDAC1 in diabetic MCECs decreased [Ca2+]m and subsequently 
normalized the levels of PTP activity and mitochondrial ROS 
production (190). VDAC1 has proposed to mediate the protective 
effects of hesperidin, a bioactive flavonoid compound, against 
amyloid β-induced mitochondrial dysfunction, mitochondrial 
PTP opening, [Ca2+]i increase, and ROS production (191). It has 
also shown that blocking of VDAC1-mediated [Ca2+]m release 
in Schwann cells prevented demyelinating neuropathies (192). 
Thus, VDAC function in Ca2+ homeostasis is connected to several 
diseases.
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