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Abstract

The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of

two active domains that act as signalling molecules during embryo development,

namely for the development of the nervous and skeletal systems and the formation

of the testis cord. While only one Hh gene is found typically in invertebrate

genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian

hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression

patterns and functions, which likely helped promote the increasing complexity of

vertebrates and their successful diversification. In this study, we used comparative

genomic and adaptive evolutionary analyses to characterize the evolution of the Hh

genes in vertebrates following the two major whole genome duplication (WGD)

events. To overcome the lack of Hh-coding sequences on avian publicly available

databases, we used an extensive dataset of 45 avian and three non-avian reptilian

genomes to show that birds have all three Hh paralogs. We find suggestions that

following the WGD events, vertebrate Hh paralogous genes evolved independently

within similar linkage groups and under different evolutionary rates, especially

within the catalytic domain. The structural regions around the ion-binding site were

identified to be under positive selection in the signaling domain. These findings

contrast with those observed in invertebrates, where different lineages that

experienced gene duplication retained similar selective constraints in the Hh
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orthologs. Our results provide new insights on the evolutionary history of the Hh

gene family, the functional roles of these paralogs in vertebrate species, and on the

location of mutational hotspots.

Introduction

Cell-to-cell signaling is a process crucial to the development and survival of

multicellular organisms, and is controlled by only a few signaling pathways that

interact with molecules that are responsible for many of the diverse and complex

functions observed in modern vertebrates [1]. Metazoans use numerous signaling

proteins for cell-to-cell communication, all of which are encoded by a small

number of gene families, among which the Hedgehog (Hh) signaling pathway is

‘‘one of the most enigmatic’’ [1, 2]. The Hedgehog (Hh) gene family codes for a

class of secreted proteins that act as key modulators during embryogenesis and

homeostasis of adult tissues in vertebrates and invertebrates [3]. Hh proteins are

synthesized as pro-proteins that undergo auto-cleavage [4] and lipid modifica-

tions [5, 6] in the endoplasmic reticulum (ER) to produce a mature signaling

peptide [7] that leaves the cell and can be incorporated into lipoprotein particles

[8] or diffuse freely to target cells [2]. This is possible because Hh proteins are

composed of two distinct domains: a N-terminal ‘‘Hedge’’ domain and a C-

terminal ‘‘Hog’’ domain [9], separated during an auto-cleavage reaction to

generate two similar-sized globular fragments [4, 9], HhN and HhC (Fig. 1).

The Hog domain is highly conserved [10] and promotes the auto-cleavage

reaction and the addition of a cholesterol moiety to the signaling peptide HhN on

the endoplasmic reticulum (ER) [9, 11] (Fig. 1). The Hog reaction is similar to the

protein-splicing activity of Inteins and requires the ‘‘Hint’’ region and a sterol

recognition region. The Hint region forms the N-terminal part of the Hog domain

[12] and encompasses a highly conserved glycine-cysteine-phenylalanine (GCF)

motif, and the sterol recognition region (SRR) on the Hog domain C-terminal

end recruits cholesterol that acts as an electron donor on the auto-cleavage

reaction and becomes incorporated into the signaling HhN peptide [5]. The

Hedge domain is also highly conserved [10] and, together with a signaling

sequence (SS), forms the HhN peptide after cleavage [9]. Before leaving the ER

and separating from the SS, the HhN peptide undergoes further palmitoylation at

its N-terminal [6, 13] and leaves the cell to act as a long- and short-range signal

molecule recognized by transmembrane co-receptors, including the Interference

hedgehog (IHog), Brother of interference hedgehog (BOI) and their homologs

[14]. These co-receptors present the signaling HhN peptide to the transmembrane

receptor Patched (Ptc), subsequently activating the Ci/Gli transcription factors

[15]. This signaling activity has important roles in differentiation, survival and cell

cycle progression [3, 16], which links the Hedgehog signaling pathway to several

congenital and hereditary diseases, including holoprosencephaly and cyclopia
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[17, 18], acrocapitofemoral dysplasia [19], and gonadal dysgenesis with mini-

fascicular neuropathy [20], and links it to tumerogenesis, including basal cell

carcinoma, medulloblastoma, breast and liver cancers [16, 21].

Hog and Hedge-related proteins, as well Hh pathway proteins, are found in

many organisms from a wide range of phyla [2], but proteins with both the Hedge

and Hog domains are found only in the eumetazoa [22]. Most bilaterians, with

the exception of C. elegans [22, 23], have been shown to possess at least one Hh

gene, with the genome expansions in vertebrates giving rise to at least three Hh:

Shh, Ihh and Dhh. In Drosophila, the only Hh gene is expressed in different

developing embryo stages and tissues [24]. In contrast, in the vertebrates, each Hh

gene has different roles which are reflected in their expression patterns [25]: Shh

has a central role in the development and patterning of the nervous and skeletal

systems [3], Ihh mediates endochondral bone formation and vasculangiogenesis,

and Dhh is essential for the formation of the peripheral neurvous system [26] and

is involved in the differentiation of peritubular myoid cells and consequent

formation of the testis cord [27].

Two Whole-Genome Duplications (WGD) that occurred prior to the

emergence of chordates seem to have led to the emergence of the Hh vertebrate

paralogous genes. The current hypothesis is that the first duplication around 660

million years ago (mya) of an ancestral Hh gene gave rise to the ancestral Shh/Ihh

Fig. 1. Structural features of the Hh proteins. The hedgehog proteins are composed by two main domains: the Hedge (N-terminal) and Hog (C-terminal)
domains. The Hedge domain forms the HhN portion of the Hh proteins (together with the signaling sequence, SS) that is separated from the rest of protein
by an auto-cleavage reaction preformed by the Hog domain [4]. The Hog domain forms the HhC portion of the Hh proteins and shares similarity with self-
splicing Inteins on the Hint module [22]. The auto-cleavage reaction occurs on a GCF (glycine-cysteine-phenylalanine) motif that forms the boundary
between the two main parts of the Hh proteins, with the cysteine residue initiating a nucleophilic attack on the carbonyl carbon of the preceding residue, the
glycine [5]. The sterol-recognition region (SRR) forms the C-terminal region of the Hog domain and binds a cholesterol moiety that acts as an electron donor
on a second nucleophilic attack that results in the cleavage of the bound between the glycine and cystein residues and in the attachment of the cholesterol
moiety to the glycine residue [5]. After auto-cleavage, the sterified HhN fragment is further palmitoylated on the cystein residue immediately after the SS
region [13] and leaves the endoplasmic reticulum (ER) for later export [11].

doi:10.1371/journal.pone.0074132.g001
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and Dhh genes and an additional duplication event around 560 mya generated the

three vertebrate paralogs and a fourth gene that was quickly lost [3, 10, 28].

Mammals have one Hh gene in each of the three subgroups but, as shown later,

only Shh and Ihh genes are found on publicly available avian genomes. Due to the

fish-specific genome duplication (FSGD), up to four or five Hh genes, Dhh, Ihha,

Ihhb, Shha and Shhb, can be found in teleost species [29–32], and a duplicated

Dhh gene is also present in the genome of Xenopus laevis, but not Xenopus

tropicalis, since all but one Xenopus species are allopolyploid [10, 33]. In addition,

two Hh paralogs are found in the cyclostomes Lampreta fluviatilis and Petromyzon

marinus, which cluster with the Shh/Ihh vertebrate group, suggesting that

cyclostomes once had a Dhh gene but lost it [34] and that the Shh, Ihh and Dhh

members of the Hh are more ancient than agnathans. However, the urochordate

Ciona intestinalis has two Hh genes, CiHh1 and CiHh2, that cluster with the

invertebrate Hh group and are likely to result from a lineage-specific duplication

[35].

Studies of adaptive evolution in invertebrate members of the Hh family showed

evidence of positive selection, with different rates in each of the two domains

encompassing the Hh proteins, a pattern which appears to be related with the

divergence of the two main bilaterian groups Ecdysozoa and Deuterostomia [36].

Since duplicated genes often diverge functionally and vertebrate Hh paralogs have

distinct physiological roles, the study of adaptation in the vertebrate members of

the Hh family could provide valuable insights into the evolutionary forces acting

on vertebrate Hh genes and the distinct functional roles of their coded proteins.

The increased availability of sequenced vertebrate genomes and resolved

tridimensional structures, has facilitated the study of adaptive evolution. The

main goal of this study was to assess the adaptive evolution of Hh genes in all

vertebrates using a comparative genomics framework at two levels. First, we

studied the synteny of vertebrate Dhh genes compared to the other two vertebrate

Hh paralogs, to retrace their evolutionary history after the two rounds of whole

genome duplication but also to search for Dhh-coding sequences on avian

genomes. Second, we evaluated signatures of positive and negative selection using

gene- and protein-level approaches. Due to the small number of non-avian and

avian reptile genomes in public databases and to the reduced information on the

Hh gene family in these lineages, we used a set of recently sequenced extensive

dataset of 45 avian and three non-avian reptilian genomes (Zhang et al. in

preparation; Jarvis et al. in preparation; Green et al. in preparation), and

characterized this gene family in these species. We show that vertebrate Hh-

paralogous genes evolved from conserved duplicated large-scale chromosomal

linkage groups. With non-avian and avian reptile lineages, we confirmed that

most birds seem to have all three Hh paralogs, contrasting with the publically

available genomic data where the Dhh paralog was missing. As observed in

previous works, signatures of selection varied between vertebrate Hh-protein

domains. However, we also found that after duplications the three vertebrate

members of this family evolved under different evolutionary rates, mainly within

the Hog domain. Adaptive evolutionary analyses at the protein-level showed
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evidence of positive selection across the two main domains that comprise

vertebrate Hh proteins, mainly at the protein surface.

Results

Evolution at the Genomic Level

To evaluate why the Dhh paralog is missing in the current publically available

avian genomic databases, we determined the synteny of the Dhh gene in the

genomes of several species that represent major groups of vertebrates using the

GENOMICUS v64.01 database browser [37] and 45 avian and three non-avian

reptilian species provided by the BGI-G10K avian Phylogenomics Project (Zhang

et al.; Jarvis et al. manuscripts in preparation) (Fig. 2). We observed that the Dhh

gene formed a conserved linkage group with the LMBR1L, RHEBL1 and MLL2

genes in all the tetrapods in the database. Teleost fishes had a similar group

composed of the LMBR1L, Dhh and MLL2 genes, where the Dhh and MLL2 genes

are adjacent to each other and the RHEBL1 gene is more-separated.

Using solely data from previous databases, only the LMBR1L and MLL2 genes

were found in the genome of a songbird, the zebra finch, a Neoaves species

(Taeniopygia gutatta). In Galloanserae (Gallus gallus and Meleagris gallopavo) only

MLL2 was annotated (Fig. 2) but BLAST (TBLASTN and BLASTp) searches of the

45 avian and non-avian reptilian genomes showed evidence of all the genes that

comprise this cluster in this tetrapod lineage (Table S9 in S1 Tables). The best

results were obtained from the genomes of the Neoavian species Falco peregrinus

(peregrine falcon), Melopsittacus undulatus (budgerigar) and Haliaeetus leucoce-

phalus (bald eagle) and the two non-avian reptiles, Alligator mississippiensis

(american alligator) and Chelonia mydas (green turtle) (Table S9 in S1 Tables).

The conserved tetrapod LMBR1L–Dhh-RHEBL1-MLL2 linkage group was intact

in F. peregrinus and C. mydas (Fig. 3A) while in M. ondulatus, H. leucocephalus

and A. mississippiensis, all four genes were identified, but were dispersed on small

scaffolds.

Comparing the synteny of the Dhh gene in the lizard (A. carolinensis) and turtle

(C. mydas) with the birds F. peregrinus and G. gallus by BLAST searches (S1

Material), we found four main turtle scaffolds and six falcon scaffolds that had

high similarity with specific regions of the lizard GL343198.1 scaffold (Fig. 3B and

C), while in the chicken genome we found similarity with regions of two

macrochromosomes, a linkage group and the Un_random chromosome

(Fig. 3C). Although the correspondence among the genomes was clear for the

portions of the lizard GL343198.1 scaffold that are outside the region of Dhh

synteny, it was more difficult to discern clear correspondence within the Dhh and

syntenic regions (Fig. 3B, C and D). This is likely because upstream of the

LMBR1L gene on the lizard scaffold there are three genes that are members of the

Tubulin-a family [37, 38], a highly conserved and gene-rich family coding for an

important structural family of proteins [39, 40]. As expected, we found matches

beyond this region on a turtle scaffold (429) and falcon scaffold (373.1), without

Evolutionary Genomics of the Hedgehog Gene Family
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dispersed matches. In the chicken WUGSC2.1 assembly the best matches were

with the partially-assembled Un_random chromosome, with many highly

dispersed hits representing small portions of the genes composing the linkage

group (Fig. 3B, C and D).

In F. peregrinus, the 373.1 scaffold had high similarity with several random

regions of the G. gallus Un_random chromosome and the E22C19w28_E50C23

linkage group, which also matched portions of the turtle scaffolds 429 and 438

(Fig. 3E and F). Similarly, the F. peregrinus 350.1 scaffold had regions with high

similarity with random positions on the G. gallus Un_random chromosome, as

well as with two regions of the G. gallus E22C19w28_E50C23 linkage group, one

located near the 373.1 scaffold hit. On the other hand, when we looked at the

region of the 373.1 scaffold where the Dhh and syntenic genes were found on the

falcon genome (Fig. 3G), we found matches in the G. gallus genome only for the

falcon MLL2 gene, which is highly dispersed on the chicken Un_random

chromosome.

To infer if a similar linkage group is also common among the other Hh

paralogs, we searched for paralogs of LMBR1L, RHEBL1 and MLL2 associated

with the Shh, Ihh and Hh genes (Fig. 2). Such paralogs were found on the same

chromosome/scaffold as the Shh gene in the genome of all tetrapod species

studied but none were near the Ihh gene (Fig. 2 and Table S9 in S1 Tables).

LMBR1, RHEB and MLL3 were located alongside of Shh and in the same relative

Fig. 2. Illustrative representation of the presence of Hh and syntenic related genes in vertebrates according to Genomicus 64.01 [37] and the
GenBank [42] and Ensembl [38] databases. Information for all vertebrate and invertebrate species listed on Genomicus 64.01 [37]. A dotted line between
two genes is equivalent to a gap in the alignment, i.e. the two genes are neighbors in this species but not in the reference species, where their orthologs are
separated by one or more genes. On the other hand, a large white space indicates that the genes are found on the subject genome but are located on
different chromosomes/scaffolds. A question mark (?) indicates that the syntenic relationship is not known. Genes outlined by a black line where found using
Genomicus 64.01 [38] and genes outlined by a grey line were found by blast searches over the GenBank [42] and Ensembl [38] databases. The absence of
a gene represents that that gene is not annotated on Genomicus 64.01 and was not found by blast searches.

doi:10.1371/journal.pone.0074132.g002
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Fig. 3. Homology between the Anolis carolinensis Dhh gene synteny and the Chelonia mydas, Falcon
peregrinus and Gallus gallus genomes, using nucleotide information. (A) The tetrapod LMBR1L–Dhh-
RHEBL1-MLL2 gene cluster is found on the scaffold GL343198.1 scaffold of the A. carolinensis assembly
(anoCar 2.0 [105]), and a similar cluster is also found on the 373.1 scaffold of the F. peregrinus genome
assembly. (B) The four main C. mydas scaffolds show great homology for specific regions of the lizard
GL343198.1 scaffold, (C) six on the F. peregrinus genome, and (d) on G. Gallus genome homology is found

Evolutionary Genomics of the Hedgehog Gene Family
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order across all tetrapods as is also observed in the LMBR1L–Dhh-RHEBL1-MLL2

linkage group. However, these genes were separated by several other interspersed

genes, which together formed a high-dimension linkage group that was present in

at least all tetrapods.

Teleost fishes had a similar linkage group (Fig. 2), with the Shh and LMBR1

genes located together on the same chromosome/scaffold. However, in this case,

RHEB and MLL3 were located elsewhere. Danio rerio (zebra fish, the only available

representative of an ostariophysi fish), has a duplication of the Shh gene (Shha

and Shhb) [29] and we observed that Shha and LMBR1 were on the same

chromosome but were separated from RHEB and MLL3. MLL3 is also duplicated

in the genome of teleost fishes [37, 41], where MLL3a is on the same chromosome

as RHEB and MLL3b is on the same chromosome as Shhb. However, in the

genome of euteleost fishes, the RHEB and MLL3 duplicates were separated

(Fig. 2).

We identified all these genes, with the exception of Dhh gene as expected [34],

in the sea lamprey Petromyzon marinus, the only available representative of jawless

fishes. However, it was not possible to determine their synteny, as the currently

available lamprey assembly (WUGSC v3.0) is more fragmented and each of the

genes of interest are found on different small scaffolds (Fig. 2). We observed that

one RHEB gene has been annotated in the genome of Drosophila melanogaster and

is located on the same chromosome as Hh. LMBR1 and MLL2/3 in the D.

melanogaster genome have not been annotated, but our searches (TBLASTN and

BLASTp) of the GenBank [42] and Ensembl [38] databases for LMBR1 and MLL2/

3 in this invertebrate genome revealed that the CG5807 matched LMBR1 genes

with about 60% sequence identity [42] and Trx matched MLL genes with about

50% sequence identity [43, 44], as expected. These genes were found on the same

chromosome, co-linear with Hh and RHEB and in the same order as in the

described linkage groups of other species (Fig. 2), but separated by larger gene

gaps. These findings suggest the presence of a linkage group in Drosophila, which

in vertebrates evolved into three different clusters after the two WGD.

2. Evolution at the Gene and Protein Level

After identifying all three homologs in some avian species, we were able make

comparisons of protein coding sequence evolution across all three vertebrate

lineages. At the nucleotide coding-sequence level, the three vertebrate Hh paralog

genes (Shh, Ihh, Dhh) are conserved [45] in all vertebrate species studied, with

0.57 substitutions per site between Shh and Ihh and 0.67 between Ihh and Dhh and

also 0.67 between Dhh and Shh (Fig. 4C). This pattern was also observed at the

on two macrochromosomes, a linkage group and the Un_random chromosome. (e) The 429 and 439 C.
mydas scaffold have high homology with a great part of the chicken E22C19W28_E50C23 linkage group and
several random regions of the chicken Un_random chromosome. (F) The 350.1 and 373.1 F.
peregrinusscaffold have high homology with several random regions of the G. gallus Un_random
chromosome. (E) Hits for the F. peregrinus cluster are found on G. gallus genome mainly for the MLL2 gene.

doi:10.1371/journal.pone.0074132.g003
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protein level, with 64.1% sequence identity between Shh and Ihh proteins, 59.91%

between Ihh and Dhh and 60.9% between Dhh and Shh (Fig. 4B). Within each

group, the sequences also had different substitution and identity rates, with Shh

showing the highest, and Dhh the lowest values (Fig. 4B and C). The invertebrate

Hh genes used as outgroups had a mean of 0.87 substitutions per site within Hh

coding sequences and a mean of 0.84 among Hh coding sequences and Dhh, Ihh

and Shh. At the protein level, the Hh sequences had 54.0% similarity with each

other and a mean of 54.65% with Dhh, Ihh and Shh proteins. However, these

results are not significant because the represented outgroups are highly divergent.

We performed a phylogenetic analysis of Hh coding sequences in 50 species and

found similar overall topologies with both Bayesian (BY) and Maximum

Fig. 4. Phylogenetic relationship of Hh coding sequences. (A) The phylogenetic tree was constructed using Maximum Likelihood (PhyML [83]) and
Bayesian inference (MrBayes [84, 85]) algorithms, with supporting values as branch labels (ML/Bayesian). The tree is drawn to scale, with branch lengths in
the same units as those of the evolutionary distances used to infer the phylogenetic tree. The post-duplication branches tested with the branch model
implemented in PAML [46] are represented in bold and the faster evolving ones are coloured red. (B) The degree of similarity between Hh proteins and (C)
the evolutionary distances between Hh coding sequences, inferred using MEGA 5 [77], and (D) the type I functional divergence coefficient values (hI)
between Hh proteins, inferred using DIVERGE 2.0 [60], are shown.

doi:10.1371/journal.pone.0074132.g004
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Likelihood (ML) methods. In agreement with previous works [3, 10, 28], the two

phylogenetic methods retrieved the (Hh, (Dhh, (Ihh, Shh))) topology (Fig. 4A).

The three vertebrate Hh-paralog groups were highly conserved but after

duplications the Shh group experienced more constrained evolution, while Ihh

and Dhh were more divergent and thus apparently evolved under increasingly

relaxed constraints. To better understand the forces influencing this gene family

evolution we used this estimated phylogenetic tree to test for selection signatures

and functional divergence in the vertebrate members of the Hedgehog family.

2.1 Selective constraints at the nucleotide codon-level after Hh genes

duplications

To test for different evolutionary rates upon duplication, we first assessed positive

selection on post-duplication branches using the branch models implemented in

PAML v4.03 [46]. The likelihood ratio test (LRT) between the alternate and null

model likelihoods showed that only the Dhh branch fit the two-ratio model

(Table 1), suggesting that this branch has evolved at a different rate than the other

three. When checked for evidence of positive selection [47], the null hypothesis

was not rejected, suggesting that this branch has not been under positive selection

but instead has evolved under relaxed selective constraints (Table 1). However,

this lineage-base analysis assumes that all amino acid coding sites have

experienced the same selective pressure and since many sites can be evolving at a

different rate, it is a very conservative test for adaptive evolution [48]. Thus, we

used the site models implemented in PAML to test for signatures of adaptive

evolution across the Dhh, Ihh and Shh coding sequences (Table 2) and found that

they had overall v values of 0.114, 0.080 and 0.058, respectively, with no positively

selected residues. In all cases the M3 and M7 models were accepted, which

signifies that each codon on Dhh, Ihh and Shh sequences were under variable

selective pressures, with no evidence of positive selection.

As our data do not show evidence of positive selection, we used the Single

Likelihood Ancestor Counting (SLAC) and the Fixed Effects Likelihood (FEL)

methods [49], as implemented in the Datamonkey web server [50, 51], to test for

evidence of purifying selection and to identify the corresponding residues. In

agreement with our previous results, no evidence of positive selection was

observed for the three Hh paralogs in all species with either method [49] (Table S1

in S1 Tables). With a significance threshold of 0.05 (P,0.05), both methods did

not identify any residues under positive selection but found a large percent of

residues under negative selection. Being less-conservative and more-powerful, the

FEL method was able to find more residues under negative selection than the

SLAC model [50]: the SLAC model showed that for the Dhh, Ihh and Shh

proteins, 28%, 39% and 38% of the residues experienced negative selection while

the FEL method detected patterns of negative selection at 45%, 54% and 55% of

the residues for each respective paralog (Table S1 in S1 Tables). Although, both

methods identified codons with dN/dS .1 (Fig. 5), none were statistically

significant (Table S2 in S1 Tables). With a relaxed significance threshold of 0.10,

these codons were still not positively-selected and, as expected, the number of
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negatively selected codons increased (Table S1 in S1 Tables). Despite the lack of

high dN/dS, we found that among the four main functional regions of the three

vertebrate Hh gene coding sequences, most of the codons with stronger purifying

Table 1. Likelihood parameter estimates under lineage-specific model of post-duplication branches of Hh vertebrate paralogs, branch calculated with PAML
v4.3 [51].

Model v0 v1 Lnl Models compared
LRT
(2Dl) p-value df

A One-ratio (M0) 0.0610 NA 229435.14

B Dhh two-ratio (unconstrained) 0.0610 999 229432.95 A and B 4.38 0.04 1

C Dhh two-ratio (constrained) 0.0610 1 229433.13 C and B 0.36 0.55 1

D Ihh/Shh two-ratio 0.0612 921 229434.62 A and D 1.05 0.31 1

E Ihh two-ratio 0.0610 0.8302 229434.96 A and E 0.37 0.54 1

F Shh two-ratio 0.0610 0.1115 229434.85 A and F 0.59 0.44 1

doi:10.1371/journal.pone.0074132.t001

Table 2. Likelihood parameter estimates under site-specific models of Hh vertebrate paralogs, branch calculated with PAML v4.3 [51].

Gene Model Parameters Lnl Models Compared LRT (2Dl) p-value df

Dhh M0 v050.08479 27360.011 M0 vs M3* 190.185 0.000 4

M3 v050.00492 v150.08337
v250.31612

27162.160

p050.39785 p150.34084
p250.26131

M7 p50.41513 q53.11107 27163.063 M7* vs M8 0.006 0.997 2

v50.114

M8 p050.99999 p50.41486 q53.10767 27163.066

(p150.00001) v152.90725

Ihh M0 v050.06236 28206.454 M0 vs M3* 740.516 0.000 4

M3 v050.00520 v150.11825
v250.34903

27836.196

p050.59836 p150.27289
p250.12874

M7 p50.25686 q52.77341 27838.824 M7* vs M8 0.002 0.999

v50.080

M8 p050.99999 p50.25687 q52.77361 27838.825

(p150.00001) v151.00000

Shh M0 v050.04658 27648.861 M0 vs M3* 612.130 0.000 4

M3 v050.00188 v150.06952
v250.26493

27342.796

p050.60204 p150.25287
p250.14509

M7 p50.20836 q53.15101 27342.669 M7* vs M8 0.007 0.996 2

v50.058

M8 p050.99999 p50.20836 q53.15102 27342.672

(p150.00001) v155.18630

An asterisk (*) marks the accepted model.

doi:10.1371/journal.pone.0074132.t002
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signatures were located in the Hedge/signaling domain (Fig. 5). Values for each

codon were lowest for Shh and highest for Dhh.

2.2 Selective constraints at the amino acid-level after Hh genes duplications

Concerns have been raised over the utility of the site selection models that use v

ratios to detect subtle molecular adaptations, as they can fail to detect positively

and negatively selected sites evolving under possible biochemical constrains [52–

55]. Therefore, we used TreeSAAP [56] to detect evidence of positive and negative

selection across destabilizing substitutions to infer the biochemical forces acting

on the evolution of Hh genes and to compare diversification patterns of vertebrate

Hh proteins relative to invertebrates. We started by assessing which destabilizing

properties were under negative and positive selection in each of the three

vertebrate Hh paralogs and found that 24 of 31 biochemical properties were under

Fig. 5. Differences in the selection pattern of the three vertebrate Hh paralogs. Sliding windown analysis of the dN/dS ratio applying the SLAC and FEL
methods [49] for the three vertebrate Hh paralogs, represented as a mobile mean with a period of 3. The phylogenetic relationship between each group and
the mean omega value (v) for each branch calculated with PAML v4.3 [46] are shown. The Hh proteins domains are displayed as annotated for the Hh, Dhh,
Ihh and Shh proteins on the GenBank [42] and UniProt [113] databases.

doi:10.1371/journal.pone.0074132.g005
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negative selection, of which six were under strong purifying selection (Fig. 6).

These negatively-selected properties are classified as having both chemical and

structural properties, highlighting the importance of the chemical and structural

features of Hh proteins in the activation of the Hh signaling pathway.

Interestingly, one property, the amino acid isoeletric point, was under strong

Fig. 6. Amino acid properties under positive (red) and negative (green) selection in vertebrate Hh coding sequences. Two different signifcance
levels are shown: (Z-score . |1.64|) to detect significant selective signatures and (Z-score . |3.09|) to detect strong selective signatures. Amino acid
properties are classified as chemical (C), structural (S) and other (O), according to da Fonseca et al. [54].

doi:10.1371/journal.pone.0074132.g006
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positive selection in all paralogs. This chemical property correlates with the pH at

which the amino acid surface carries no net electrical charge, suggesting that this

may be an adaptive feature of the vertebrate Hh paralogs. The sliding window

analysis of amino acid isoelectic property Z-scores (Fig. 7) showed strong positive

selection (P,0.001) in the Hog domain and to a lesser extent over the Hedge

domain (P,0.05).

The amino acid isoelectric point was positively selected in all vertebrate Hh

paralogs, but in different regions for each paralog (Fig. 7). Across the Hedge

domain alignment, codon positions were under positive selection from positions

33–55 for the three paralogs, including between positions 33–44 was in the Ihh

group, and positions 44–55 in the Shh and Dhh paralogs. Two other regions in the

Dhh Hedge domain were under positive selection for the amino acid isoelectric

point: one between positions 62 and 84 and other from 126–142. In the Hog

domain, 7 regions were under positive selection for this property: 5 on the Hint

module and 2 on the SRR. Of these, only two regions of the Hint module were not

common to the three paralogs: one from positions 240–260 was common to Shh

and Dhh and another from 285–296 was unique to Shh.

Different patterns of amino acid properties selection were also observed within

paralogs at different significance thresholds (Fig. 6). At a significance of 0.05, the

same number of negatively selected properties was found for both Shh and Dhh

paralogs, but a reduced number was found for Ihh. In addition, the amino acid

equilibrium constant (ionization of COOH) was under positive selection for the

Ihh and Dhh paralogs. When we reduced the significance threshold to 0.001,

despite the common properties described above, other properties were under

strong negative-selection within different paralogs. As expected from the

nucleotide codon-level analyses, a higher number of amino acid properties were

under strong negative selection in the Shh proteins. The higher number of

strongly negatively-selected properties for Dhh than Ihh was unexpected, as Ihh

showed stronger purifying signatures at the nucleotide codon level. However, the

amino acid equilibrium constant was under strong positive selection for Dhh,

which was not observed for the other two paralogs at this threshold. Despite these

differences, the majority of these strong negatively-selected changes corresponded

to altered chemical properties.

At the amino acid level, we found 20 strongly positive-selected positions in the

Shh group for at least one amino acid property, while for Ihh and Dhh there were

27 and 32 sites, respectively (Table S3 in S1 Tables). The majority of these were

located in the Hog domain, as expected, and many of them comprised sites that at

a codon level had dN/dS .1 but were not statistically detected to be under

positive selection (Table S2 and Table S3 in S1 Tables). However, some of the

positively selected sites detected by TreeSAAP were identified to be under negative

selection with FEL (Table S1 and Table S3 in S1 Tables). From the codon and

amino acid alignments these positions corresponded to variable sites with a high

rate of non-synonymous substitutions, surrounded by highly conserved positions,

suggesting that FEL overestimated the dS value for these positions because of their

very negatively-selected environment. When we applied the empirical threshold of
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at least three properties showing signatures of positive selection, the number of

positively selected residues decreased to 8 in Dhh, 3 in Ihh and 1 in Shh. These

were only found in the Hog domain and none of them were previously identified

as being under negative selection at the codon level. However, 3 in Dhh and 1 in

Ihh had v values above 1 (Table S3 in S1 Tables). Notably, Shh residue 385

(numbered according to the Homo sapiens sequence) showed positive selection in

7 amino acid properties and was the only positively selected residue identified in

this paralog. No homologous residues to this one were found in the alignment of

the Dhh and Ihh paralogs, but positions surrounding this position shared the same

signatures of positive selection within both paralogs: residue 358 for Dhh and

residues 372 and 373 for Ihh (Table S3 in S1 Tables). In addition, despite being

located at some distance from these residues on the Dhh protein sequence, the

Dhh residue 396 also had 7 amino acid properties under positive selection.

Fig. 7. Differences on the amino acid isoelectric point property selection pattern for the three vertebrate Hh paralogs. Sliding window analysis for
the Z-scores calculated for categories 7 and 8 using TreeSAAP [56] for the three vertebrate Hh paralogs, showing the phylogenetic relationship between
each group.

doi:10.1371/journal.pone.0074132.g007
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2.3 Functional divergence of Hh proteins after duplication

After gene duplication, the historic pattern appears to have been that one Hh gene

copy maintained most of the original function while the other copies accumulated

changes leading to functional diversification, with different Hh paralogs and

selection signatures. Therefore, we tested our data for the prevalence of type I and

type II functional divergence using DIVERGE 2.0 [57–60]. We found statistically

significant changes for type I functional divergence, but not type II divergences.

Given the topology presented in Fig. 4, the ML estimate of the coefficient (hI) of

type I functional divergence lowest between Shh and Ihh, intermediate between

Ihh and Dhh, and highest between Shh and Dhh (Fig. 4D and Table S4 in S1

Tables).

The site-specific profile based on the posterior analysis for scoring amino acid

residues that are likely to be involved in type I functional divergence between

vertebrate Hh paralogs is presented in Fig. 8, and shows that the higher posterior

probabilities are found within the Hog domain. Between Shh and Ihh, 18 of 358

sites were above a posterior probability of 0.5, and that number increased to 46

between Shh and Dhh and to 19 comparing Ihh and Dhh (Fig. 8). Using the cutoff

of 0.91 (corresponding to a posterior odd ratio R(S1|S0) .10), we identified 3 sites

that significantly accounted for the type I functional divergence between Shh and

Ihh, 8 between Shh and Dhh and 2 between Ihh and Dhh (Table S5 in S1 Tables

and Fig. 8). These predicted functional sites were not equally distributed

throughout their respective proteins, but clustered in the N-terminal region of the

Hedge domain and in the Hint and SRR regions. Different clusters were found for

different pairs of paralogs (Fig. 8) and those across the Hog domain were in

regions that were positively selected for the amino acid isoelectric point property

(Fig. 7 and Fig. 8).

We observed 3 sites with a posterior probability above 0.91 that were

responsible for type I functional divergence between Shh and Ihh and that were

highly conserved in Shh proteins but highly variable in Ihh proteins. The same was

observed for the Shh/Dhh pair, but not for the Ihh/Dhh pair (S1 Fig.). In addition,

2 of the type I functionally divergent sites between Shh and Ihh and 5 found

between Shh and Dhh corresponded to negatively selected residues (Table S3 and

Table S5 in S1 Tables). Thus, these residues accounted for the functional

divergence of Shh proteins relatively to the other two paralogs.

2.4 Structural analysis of selected domains

To further relate the spatial position of the regions under selection and the

divergent sites on the tridimensional structure of the three vertebrate Hh paralog

proteins, it was necessary to assess them relative to the tridimensional structure of

the Shh, Ihh and Dhh proteins. We started by mapping the negatively-selected sites

identified at the codon level on the tridimensional structure of Hedge domain for

each paralog and observed that they are evenly distributed on the interior and on

the surface of the HhN peptide (Fig. 9 and S2 Fig.). Given that the function and

folding of proteins are affected by the interactions each residue can form on the

surface and core of the tridimensional structure, they can be significantly affected
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by mutation. Therefore, the finding of such strong negative selection suggests the

action of strong constraints that keep the function and the tridimensional

structure of the globular signaling peptide unchanged. As the number of

negatively selected sites decreased from Shh to Ihh to Dhh, there were fewer sites

that were exposed on the peptide surface. This would preserve the interior of the

peptide and the zinc and calcium binding cleft, which are important for the

interactions of Hedge peptides with receptor proteins (reviewed in [61]).

The regions that were under positive selection based on the amino acid

isoelectric point property of the Hedge peptide were located on the surface of the

signaling peptides at locations specific to each paralog (Fig. 9 and S2 Fig.). For

Shh and Ihh signaling peptides, the two identified regions comprised a large

surface loop of the Hedge signaling peptides close to the binding site. However,

both defined different parts of this loop, forming two distinct regions in highly

negatively-selected areas and that may provide different adaptive features for these

two lineages. With the Dhh signaling peptide, the same loop was under positive

selection, grouping the two regions that define Shh and Ihh. However, despite

being separate on the primary structure of the Dhh signaling peptide, the other

two areas previously identified as being under positive selection for this property

(Fig. 7) are folded so that the region formed by the positively-selected loop

around the binding site is expanded (Fig. 9 and S2 Fig.). Interestingly, the sites

identified to be under positive selection for at least one amino acid property are

not located in this region.

Fig. 8. Type I functional divergence over the vertebrate Hh paralogs. Posterior probability for predicting critical amino acid residues for the functional
divergence between the three vertebrate members of the Hh family. The arrows point to the residues with P(S1|S0) .0.91 and their position on the Hh
proteins primary structure.

doi:10.1371/journal.pone.0074132.g008
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Fig. 9. Tridimensional arrangement of negatively and positively regions in the Hedge domain of
vertebrate Hedgehog proteins. (A) Tridimensional representation of Hedge (PDB: 3HO5) and Hog (Shh
modelled by homology) domains, coloured according to key identified regions. A straight orange line denotes
how both domains may be linked in the pro-protein. Key residues important for binding and forming the
catalytic site are represented in yellow spheres, numbered according to the human Shh protein [72, 113, 114].
(B) Tridimensional arrangement of negatively and positively selected regions across the Hedge (HhN) and
Hog (HhC) domains. Proteins (ShhN: PDB 3HO5, DhhN: PDB 2WFR; IhhN: PDB 3K7G) represented in grey
cartoon with transparent surface. Calcium ions are not represented on the IhhN peptide due to the absence of
the ions on the PDB file. Negatively selected sites (green) identified with FEL, positively selected regions for
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The tridimensional structure of the Hog domain was predicted for each of the

vertebrate Hh paralogs using the Drosophila melanogaster HhC peptide as a

template. Due to the high divergence among vertebrate Hog sequences, the best

three models were similar, but did not superimpose on the spatial space (RMSD:

ShhC/DhhC – 2.14 Å; ShhC/IhhC – 2.20Å; IhhC/DhhC – 1.70Å). Interestingly, the

catalytic site was always located within a deep pocket on the peptide interior

(Fig. 9 and S3 Fig.). When mapped on these models, the negatively-selected sites

identified at the codon level comprised residues that were probably located on the

interior of the Hog domain and were all arranged around the catalytic site (Fig. 9

and S3 Fig.). The positively-selected regions for the amino acid isoelectric point

property were mainly located on the surface of the Hog domain, as were the

residues detected as positively selected for at least one amino acid property (Fig. 9

and S3 Fig.). Dhh residues 358 and 396, Ihh residues 372 and 373 and Shh residue

385 were located on the surface around the catalytic site of the Hog domain

(Fig. 9 and S3 Fig.), but did not have the same spatial organization in different

paralogs. These results suggest, unlike what was observed for the Hedge domain,

that purifying constraints only act across the Hog domain to maintain an intact

catalytic site, allowing the tridimensional structure of this domain to change

under relaxed chemical and structural constrains.

Discussion

With our discovery of all three members of the Hh family in some avian genomes,

we confirm and show that all three vertebrate members of the Hh family evolved

through two rounds of genome duplications in vertebrate ancestors [10]. Our

synteny analyses of the Dhh gene, compared with the other Hh genes, suggested

that although the synteny of each of the three vertebrate Hh paralogs has remained

very conserved, these genes seem to have evolved independently after duplica-

tions. This is consistent with the recent finding of an ancestral linkage group that

is shared between the amphioux Hh and mouse Hh genes [62]. Therefore, we

hypothesize that before the first round of whole genome duplication, ancestral Hh

synteny consisted of a conserved linkage group that encompassed at least the

ancestral LMBR, Hh, RHEBL and MLL genes. These genes were present in the

ancestral vertebrate genome in this same order, but the genes were separated from

each other by many other genes and thus formed a high-dimension linkage group.

Given these results, we propose (Fig. 10) that after the first duplication, two

linkage groups were formed, one including the ancestor of Shh and Ihh and the

other the ancestor of Dhh. Before the second round of whole genome duplication,

these two clusters may have began to evolve independently, experiencing

the amino acid isoelectric point property (orange) and positively selected sites (red) identified with TreeSAAP
are shown for each paralog domain. A dashed circle denotes the position of the zinc/calcium binding site and
the catalytic site.

doi:10.1371/journal.pone.0074132.g009
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rearrangements that reduced the size of both linkage groups, but that retained the

ancestral duplicated LMBR, Hh, RHEBL and MLL genes. After the second round

of duplication, to explain our results, four duplicated linkage groups could have

been produced, each with a duplicated version of the more-ancestral conserved

linkage group. Further rearrangements before the emergence of vertebrates may

have led to the loss of a duplicated Dhh gene and to the creation of the synteny

currently observed in each of the vertebrate Hh paralogs, which has been

conserved in the tetrapod lineage, and exists with some further arrangements in

the teleostei lineage.

As there is evidence of these linkage group on the genome of all of the studied

vertebrate genomes, including jawless fishes, the vertebrate members of the Hh

gene family would have appeared 600–500 mya, as suggested by Kumar et al. [10].

Although it was not possible to study the synteny of the LMBR, Hh, RHEBL and

MLL genes in the jawless fish genomes available to-date, the presence of the

LMBR1L, RHEBL1 and MLL2 in these genomes is consistent with the hypothesis

that cyclostomes diverged after the two WGDs that characterized vertebrate

evolution [63]. When we analyzed the teleostei lineage, a different, albeit

conserved pattern was found within the two main analyzed classes (ostariophysi

and euteleost fishes), suggesting that further rearrangements may have occurred

before the third whole genome duplication in early teleosts evolution about 350

MYA [32]. The three conserved syntenic groups seem to have only retained their

original order in tetrapods.

We wondered if birds could be an exception, as evidence of genes encompassing

the Dhh conserved synteny is not found in some of the available avian genomes.

However, our comparative genomics analyses using the lizard physical position of

this conserved cluster showed that regions neighboring these genes are found in

several galliform and neoaves genomes and have been randomly assigned to the

Un_Random chromosome of those avian genomes that have mapped karyotypes.

Fig. 10. Illustrative representation of the evolution of the LMBR1L–Dhh-RHEBL1-MLL2 linkage group evolution in vertebrates and their paralogs
on the synteny of vertebrate Shh and Ihh genes. A dotted line between two genes is equivalent means these two genes are neighbors in this species but
not in the reference species, where their orthologs are separated by one or more genes. The 3rd WGD duplication in the teleost lineage is not represented.

doi:10.1371/journal.pone.0074132.g010
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The general avian karyotype is composed of 7–9 pairs of macrochromosmes and

30–32 pairs of microchromosomes [64]. Microchromosomes are very small

chromosomes that range in size from 3.5 to 23 Mb [65], are remarkably gene rich,

have a high recombination rate and consist of a high content on CpG islands [64],

which makes them difficult to clone, sequence and distinguish using standard

cytogenetic approaches. Thus, genes from many microchromosomes might not

have been included in the current avian assemblies but instead represented among

the contigs that could not be assigned to a chromosome and have been placed in

the virtual Un_Random chromosome [66, 67]. It has previously been demon-

strated that sequences arranged on the Un_Random chromosome often can be

assigned to small microchromosomes and that many chicken cDNA and EST

sequences are absent from avian genome assemblies as well as from the

Un_Random fraction, suggesting the absence of large amounts of the

corresponding DNA sequences in the chicken genome assembly [68]. Therefore,

our hypothesis is that this conserved linkage group may be present in all avian

genomes, including galloanserans and neoaves, but that they are probably

physically located on one of the microchromosomes. In the Gallus gallus linkage

group, a good candidate is microchromosome 21, as Trukhina and Smirnov [69]

have shown that microsatellites from the linkage group E50C23 are located on this

chicken microchromosome.

It would be interesting to perform such comparative genomic analysis for both

the Shh and Ihh syntenies, and compare them with our results. This would

provide deeper insights into the genomic evolution of the Hh gene family in

vertebrates and better uncover the phylogenetic relationships of the vertebrate Hh

paralogs. Our phylogenetic analysis of vertebrate Hh-coding sequences supported

the (Hh, (Dhh, (Ihh, Shh))) phylogenetic topology for the evolution of the

vertebrate Hh genes, as previously suggested [3, 10, 28]. However, one of our

most-significant insights on Hh gene family evolution was that strong and

variable-purifying selection and type I functional divergence have occurred across

the three vertebrate Hh branches. Shh coding sequences seem to be more

conserved than those of Ihh and Dhh and we showed that each of these vertebrate

genes are evolving at very different selective rates, which explains why this

phylogenetic relationship is always obtained.

At the codon-level, no evidence of positive selection was identified using the

standard PAML models for the three paralogs, although the Dhh branch seemed

to have been evolving under more relaxed constraints than the other two

duplicated branches, in contrast with the other two more slowly-evolving

paralogs. Our results suggest that Shh coding sequences are evolving with more

purifying constraints than the other two vertebrate Hh paralogs. This would be

consistent with the role of the Shh protein in the pathways of more-complex traits

compared the other two members, which is central to the development and

patterning of the nervous and skeletal systems and is the most-broadly expressed

vertebrate Hh member (reviewed in [25]). In contrast, Ihh is specifically expressed

in only a narrowed number of tissues and Dhh is confined to the gonads and

narrow regions of the peripheral nervous system and is mainly expressed in
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combination with Ihh [25]. Therefore, mutations affecting the fitness of the Shh

protein should be more deleterious than those affecting Ihh, and Ihh changes

should be more deleterious than those of Dhh. Our results are also consistent with

previously published observations that there are stronger purifying constraints on

the evolution of genes expressed in early stages of embryonic development, as

these mutations will, on average, have more deleterious fitness consequences than

mutations in genes expressed later [70, 71]. Shh is the first member of the

vertebrate Hh family to be expressed during vertebrate embryonic development,

followed by Ihh and Dhh [25].

An average of 50% of the vertebrate Hh proteins residues were evolving under

strong purifying selection and those with the strongest selection signature (most

conserved) were located on the N-terminal domain. Most of these residues have

been reported to be disease-causing mutational hotspots (Table S1 in S1 Tables).

Our results are consistent with two previous studies on the Hh gene family where

Kumar et al. [10] found that in Drosophila Hh genes, the Hedge domain coding

region had a slower evolutionary rate than the Hog coding region and where

Gunbin et al. [36] reported that invertebrate members of the Hh gene family

shared a similar pattern of selective signatures across these two main domains.

However, these two papers also suggested that positive selection occurred in the

Hint coding region. In contrast, although our codon-level analyses found that

evolutionary rates differed among vertebrate Hh paralogs and that their distinct

regions showed different evolutionary rates, codon models did not identify any

significantly positively selected residues in the three vertebrate Hh paralogs. Our

protein-level analyses were consistent with these two previous works, but

provided additional evidence of strong positive selection across the Hog domain

and more-relaxed positive selection across the Hedge domain. The Shh members

showed lower levels of positive selection and Dhh displayed the strongest

signatures of positive selection. Strong purifying selection may be acting on the

interior of the two domains that comprise these proteins, both at a chemical and

structural level and within both domains, suggesting that strong evolutionary

constraints have maintained the core role of the Hh proteins.

The signaling activity of the Hedge domain requires a highly conserved

tridimensional structure to be recognized by its receptors, as is clear from the

highly conserved structure of the HhN peptide among Hh paralogs (Fig. 9) [72].

This may explain why strong negative selection is found both on the interior and

on the surface of the signaling peptide. However, being composed primarily of

surface-loop regions, positively selected areas found surrounding the ion-binding

site may provide adaptive features to the signaling peptide, probably for

interactions with different receptor proteins. As different areas of these regions

had different patterns of positive selection within vertebrate Hh paralogs, these

regions likely facilitate the binding of different Hh proteins and receptors. On the

other hand, the evidence of more-relaxed conservation and a great amount of

positive selection over the Dhh signaling domain was expected from its targeted

involvement in the development of gonads and is consistent with previousl

reports that genes involved in reproduction and sexual differentiation have higher
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rates of divergence and positive selection than other genes in the genome,

providing reproductive adaptations [73, 74]. Therefore, we hypothesize that a

similar link between the physiological signaling role of Dhh in gonadal

development and its relaxed evolution may have provided adaptive signaling

features during the embryonic development of gonads.

However, negative selection appears to be acting only on the interior of the

HhC peptide and mainly around the catalytic site, while positive selection was

found on the peptide surface. Our results also suggest that these constraints act

only to maintain the catalytic sites and a pocket on the interior of the Hog

domain, assuring that the catalytic activity of this domain is retained. It is this

domain that provides most of the functional divergence observed among

vertebrate Hh paralogs. As the sites responsible for this feature are found within

areas under positive selection on the surface of the peptide, this divergence may be

responsible for their structural features and not for their chemical activity.

Methods

1. Synteny analysis

Synteny analysis was performed using the GENOMICUS v64.01 browser [37],

which makes an integration of the data available on the Ensembl database [38] to

provide a better visualization of conserved synteny blocks and to reconstruct

ancient genomes organization, using the Homo sapiens sequences as query. Genes

not annotated on the GENOMICUS v64.01 browser [37] were searched on the

respective species by TBLASTN and BLASTp over the GenBank [42] and Ensembl

[38] databases and mapped localizations were annotated in order to compare it

with the localization of putative syntenic genes. Local BLAST databases of 45

avian and three non-avian reptilian genomes provided by BGI and their

collaborators (Table S9 in S1 Tables) were created using the Blast+ software

package [75] and blasts searches (TBLASTN and BLASTp) were performed over

these avian genomes to search for Hh, LMBR1, RHEB and Trx/MLL2,3 coding

sequences and relative locations annotated. All putative sequences identified were

confirmed by TBLASTN and BLASTp over the GenBank [42] database.

Comparative Dhh gene synteny analysis across the reptilian group (birds and

non-avian reptiles) was conducted by BLASTn of the GL343198.1 scaffold of the

Anolis carolinensis anoCar2.0 assembly [105] over the F. peregrinus [106], A.

mississippiensis [107] and C. mydas and the Gallus gallus WUGSC2.1 [108]

assemblies. The results were confirmed by aligning the best-matched scaffolds/

chromosomes with the lizard GL343198.1 scaffold using Mauve 2.3.1. [109, 110].

The localization of the Dhh gene and the conserved LMBR1L–Dhh-RHEBL1-

MLL2 cluster over the Anolis carolinensis genome was accessed from the

GENOMICUS v64.01 browser [37], the complete genome assembly was down-

loaded from the UCSC database [111] and the subject scaffold extracted using

UGENE 1.7.2 [112]. The complete G. gallus WUGSC2.1 assembly was down-

loaded also from the UCSC database [111] and local databases of the F. peregrinus
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and G. gallus genomes created using the Blast+ software package [75]. BLAST

searches were performed using the Blast+ software package [75] and best hits

chosen for Score, E-value and. Circular plots were created using Circos [113].

2. Sequence alignment and phylogenetic analyses

Hh coding sequences were retrieved from the GenBank [42] and Ensembl [38]

databases and BLAST searches were used to recover non-annotated sequences

from avian and other vertebrate genomes (Table S6 in S1 Tables). Local BLAST

databases for 44 avian and two non-avian reptilian genomes provided by BGI-

G10K and other groups (Table S9 in S1 Tables) were created using the Blast+
software package [75], and blasts searches (TBLASTN and BLASTp) were

performed to search for Hh coding sequences. All putative sequences identified

were confirmed by TBLASTN and BLASTp across the GenBank [42] database. We

collected 120 Hh coding sequences and reduced the number to 50 by excluding

sequences with less than 50% of the sites (relative to the Homo sapiens sequences)

and equally represented each vertebrate class. A codon-based coding sequence

alignment was constructed with the 50 sequences using MUSCLE 3.3 [76],

manually adjusted using MEGA 5 [77] and viewed and edited in SEAVIEW [78].

It was previously reported that the alignment of Hh sequences produced indels on

the C-terminal/39 portion [10] and, as indels carry phylogenetic signal [79],

filtering softwares were not applied. To assess the selective pressures acting on the

three vertebrate Hh paralogs, four different alignments were produced: one for

each paralog and a fourth with all sequences excluding outgroups. Nucleotide and

amino acid conservation over Hh sequences was assessed using MEGA 5 [77].

For phylogenetic analyses, the substitution model that best fit our dataset

(GTR+I+G) was selected using the Akaike Information Criterion (AIC)

implemented in jModelTest [80], starting with 11 substitution schemes and using

the fixed BIONJ-JC base tree for likelihood calculations. The dataset was checked

for saturation bias in DAMBE [81], both by plotting the rate of transitions and

transversions versus the genetic distance and by applying the Xia et al. test [82] to

measure substitution saturation. This test compares half of the theoretical

saturation index expected when assuming full saturation (ISS.C, critic value) with

the observed saturation index (ISS). If ISS is significantly lower than ISS.C, the data

has no evidence of saturation bias and can be further used for phylogenetic

analysis. Although the saturation plot suggests a lower extent of substitution

saturation, no statistically significant evidence of saturation was found in our

dataset (S4 Fig. and Table S7 in S1 Tables). Therefore, the phylogeny was

estimated using the Maximum Likelihood (ML) and Bayesian inference methods.

The ML phylogenetic tree was constructed in PhyML 3.0 [83], with 1000

bootstrap replicates and the NNI branch search algorithm. Bayesian inference

methods with Markov chain Monte Carlo (MCMC) sampling were preformed in

MrBayes [84, 85], with 1,000,000 generations, a sample frequency of 100 and

burn-in set to correspond to 25% of the sampled trees. For site tests of the Hh

vertebrate paralogs, independent phylogenies for each gene were produced.
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3. Adaptive selection detection

3.1 Codon-level analysis

The four alignments produced and the ML/Bayesian trees were filtered with

GBLOCKS 0.91 [86, 87] and used in the program codeml from the PAML v4.3

package [46] to evaluate adaptive evolution in the Dhh, Ihh and Shh coding

sequences. To examine the ratio of non-synonymous substitutions per non-

synonymous site (dN) to the number of synonymous substitutions per

synonymous site (dS) (the dN/dS or v ratio), the branch-specific and site-specific

codon substitution models of maximum likelihood analysis were used.

For branch tests, four likelihood ratio-tests (LRT) were preformed to compare

the log likelihood values of a two-ratio model, where the selected post-duplication

branch has a different evolutionary rate relative to other branches (model52, NS

sites50), against a one-ratio model, where all branches are supposed to evolve at a

same rate (model50, NS sites50) [47]. The two-ratio (unconstrained two-ratio)

model, if found to better fit the data, was tested against another null (constrained

two-ratio) model where the v1 value for the branch of interest was constrained to

v1,1 fixing v151. The LRT between these two nested two-ratio models allows

the detection of the prevalence of positive selection or relaxed selection

constraints [47]. Hypothesis decision was performed assuming that LRT

approximately follows the chi-square 2DlnL approximation (P,0.05), the double

of the difference between the alternative and null model log likelihood [88]. LRT

degrees of freedom were calculated as the difference of free parameters between

the nested models. Individual two-ratio models were created using as foreground

branch each one of the branches to test: the branch leading to the Dhh group, the

branch leading to the Ihh/Shh group and the branches leading to the Shh and Ihh

groups.

To detect signatures of adaptive evolution over the Dhh, Ihh and Shh codon

sequences, three smaller phylogenetic trees were built for each group and each

topology used for site analysis with PAML v4.03 [46]. Two LRTs were preformed

to compare the log likelihood values of two nested models, a model that does not

allow and a model that allows site positive selection [88]. First, the M0 (uniform

selective pressure among sites; model50, NS sites50) and M3 (variable selective

pressure among sites; model50, NS sites53) models were compared; and finally

the M7 (beta distributed variable selective pressure; model50, NS sites57) and

M8 (beta plus positive selection; model50, NS sites58) models. The identifica-

tion of sites under positive selection was performed by Bayes Empirical Bayes

(BEB) analysis [89].

The Single Likelihood Ancestor Counting (SLAC) and the Fixed Effects

Likelihood (FEL) methods [49], implemented in the Datamonkey web server

[50, 51], were used to detect signatures of purifying selection over the data. SLAC

is a modified and improved derivative of the Suzuki-Gojobori counting approach

that maps changes in the phylogeny to estimate selection on a site-by-site basis

and it calculates the number of non-synonymous and synonymous substitutions

that have occurred at each site using ML reconstructions of ancestral sequences

[49, 50]. On the other hand, the FEL model estimates the ratio of non-
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synonymous to synonymous substitutions not assuming a priori distribution of

rates across sites substitution on a site-by-site analysis [49].

Since the Dhh and Shh avian sequences, as well the turkey Ihh and lamprey Hh

sequences, are incomplete (Table S9 in S1 Tables), these sequences were removed

from the analysis, in order to improve the calculations and reduce the number of

ambiguous sites.

3.2 Amino acid-level analysis

To detect destabilizing selection signatures over Dhh, Shh and Ihh coding

sequences, the three codon alignments and ML/Bayesian trees used for site-

selection analysis where analyzed with the method implemented in TreeSAAP

[56], finding which sites and significant physicochemical properties can be under

positive and negative selection over the three analyzed lineages. TreeSAAP [56]

compares the observed distribution of physicochemical changes inferred from the

phylogenetic tree with an expected distribution based on the assumption of

completely random amino acid replacement expected under the condition of

selective neutrality. The evaluation of the magnitude of property change at non-

synonymous residues and their location on a protein tridimensional structure

may provide important information into the structural and functional

consequences of the substitutions [52, 53].

Eight magnitude categories (1 to 8) represent one-step nucleotide changes in a

codon and rank the corresponding variation on a property scale of the coded

amino acid: categories 1 to 3 indicate stabilizing substitutions (small variations

that tend to maintain the overall biochemistry of the protein) while categories 6 to

8 represent destabilizing substitutions (variations that result in radical structural

and functional shifts in local regions of the protein). By accounting for the

property changes across the data set, a set of relative frequency changes for each

category is obtained, allowing the test of the null hypothesis under the assumption

of neutral conditions: (1) positive selection is detected when the number of

inferred amino acid replacements significantly exceeds the number expected by

chance alone, resulting in positive Z-scores; (2) negative selection is detected when

the expected number of amino acid replacement significantly exceeds those that

are inferred, resulting in negative Z-scores [52, 53]. To detect both strong negative

and positive selective pressures, only changes corresponding to categories 7 and 8

at the P#0.05 (Z-score . |1.64|) and P#0.001 (Z-score . |3.09|) levels were

considered, due to the strong purifying signatures over our data. A total of 31

amino acid properties [53] were evaluated for each paralog and, to verify which

specific regions were affected by negative and positive destabilizing selection, we

performed a sliding window analysis using the properties which were significant

for the signal. Sliding windows of 10 amino acid length with a sliding step of one

codon were selected to show the best signal-to-noise ratio and to identify regions

in the vertebrate Hh proteins that differ significantly from a nearly neutral model

[90]. In addition, we identified the total number of changes per site assuming it as

the sum of those occurring in each branch of the phylogeny [54].
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4. Functional divergence analysis

The detection of functional divergence was carried out with DIVERGE 2.0 [60],

using the Gu2001 method [58] for Type I functional divergence and the Gu et al.

method [59] for Type II functional divergence. Type I functional divergence

represents amino acid residues that are universally conserved through one

subfamily but highly variable in another, implying that these residues have

experienced altered functional constraints after duplication [58]. On the other

hand, Type II functional divergence represents amino acid configurations that are

much conserved in each subfamily but whose biochemical properties are very

different, implying that these residues may be responsible for functional

specification [59].

The coefficient of Type I and Type II functional divergence (hI and hII) between

each pair of Hh paralogs were estimated. A parameter significantly greater than

zero means that either altered selective constraints or a radical shift of amino acid

physicochemical properties after gene duplication were likely to have occurred.

LRT calculations for the null hypothesis (i.e., the absence of functional

divergence) were performed to assess the significance of the parameter. In order to

detect which residues are more likely to be responsible for functional divergence,

the posterior probability [P(S1|X)] for the functional divergence for each position

in the alignment was calculated. The cut-off value for the posterior probability

was first set to P(S1|X) .0.5, which corresponds to a posterior odd ratio

R(S1|S0)5P(S1|X)/P(S0|X) .1 and to a meaningful evidence [91]. A more

stringent cutoff was selected based on the Harold Jeffreys scale for interpretation

of R(S1|S0), selecting P(S1|X) $0.91 as it corresponds to R(S1|S0) $10 (strong

evidence) [92].

5. Protein structural modeling and manipulation

Only the tridimensional structures of the two separated Hedgehog domains are

currently available on the Protein Data Bank (PDB) [61, 93]: the human and

murine ShhN, IhhN and DhhN regions and the Drosophila melanogaster HhN and

HhC domains. Thus, we used the 3HO5 (Human ShhN), 2WFR (Human DhhN)

and the 3K7G (Human IhhN) PDB files in order to represent the Hedge domain

of the human Hh proteins and modeled the tridimensional structure of the

human ShhC, IhhC and DhhC domains using I-TASSER [94]. I-TASSER is a

platform for protein tridimensional structure and function prediction imple-

mented on the I-TASSER server [95] that combines ab initio and comparative

modeling approaches to generate a high quality tridimensional model and has

been ranked as the best method for automated protein structure prediction in the

last CASP experiments [96–101].

The I-TASSER platform measures the quality of the generated model using two

different scoring functions: (1) the C-score is a confidence score for estimating the

quality of the predicted models and it is calculated based on the significance of

threading template alignments and the convergence parameters of the structure

assembly simulations [102]; (2) the TM-score is a scale for measuring the
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structural similarity between two structures and is used to measure the accuracy of

structure modeling when the native structure is known in order to test if the result

topology is not random [103]. As in these cases the native structure is not known,

the TM-score is calculated based on the C-score [102]. To accurately infer the

correct topology, the model should have a C-score above 21.5, varying from

[-5;2], and TM-score above 0.5 [102, 103] (Table S8 in S1 Tables). Visualization

and manipulation of the generated models, as well as root-mean-square deviation

(RMSD) deviation values determination, were assessed with PyMol [104].

Conclusions

In addition to the characterization of the three Hh vertebrate paralogs in newly

sequenced avian and non-avian reptilian species, this work provided new insights

into the evolutionary history of the Hh gene family after two independent WGD

events. We showed that in contrast with invertebrates, vertebrates experienced

different evolutionary fates and evolved under different selective constraints after

duplication. The structural regions around the ion binding site that were

identified to be under positive selection at the signalling domain may provide new

insights into the functional roles and expression patterns of these paralogs in

vertebrate species and lead to the discovery of new mutational hotspots. It will

also be interesting to reanalyze our results with complete, instead of processed,

vertebrate Hh-protein tridimensional structures. We could then assess if residues

identified under positive and negative selection that are on the protein surface and

that are separate from the active sites (Hedge ion binding site and Hog catalytic

site) are responsible for interactions formed between both domains before

processing, thus enhancing the reaction, or if they are only involved in helping

maintain an intact domain structure.

Supporting Information

S1 Fig. Amino acid configurations of the sites with a type I functional

divergence posterior probability P(S1|X) 0.91 for each pair of vertebrate Hh

paralog proteins.

doi:10.1371/journal.pone.0074132.s001 (TIF)

S2 Fig. Tridimensional arrangement of negatively and positively regions over

the Hog domain of vertebrate Hedgehog proteins. Proteins (ShhN: PDB 3HO5,

DhhN: PDB 2WFR; IhhN: PDB 3K7G) represented in grey cartoon with

transparent surface. Negatively selected sites (green) identified with FEL,

positively selected regions for the amino acid isoelectric point property (orange)

and positively selected sites (red) identified with TreeSAAP are shown for each

paralog domain. A dashed circle denotes the position of the calcium/zinc binding-

site.

doi:10.1371/journal.pone.0074132.s002 (TIF)
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S3 Fig. Tridimensional arrangement of negatively and positively regions over

the Hedge domain of vertebrate Hedgehog proteins. Proteins (modelled by

homology with the human sequence for each paralog, using Drosophila

melanogaster Hh protein as a template on I-TASSER) represented in grey cartoon

with transparent surface. Negatively selected sites (green) identified with FEL,

positively selected regions for the amino acid isoelectric point property (orange)

and positively selected sites (red) identified with TreeSAAP are shown for each

paralog domain. Arrows marks those residues surrounding the 324 codon

alignment position. A dashed circle denotes the position of the catalytic site.

doi:10.1371/journal.pone.0074132.s003 (TIF)

S4 Fig. Nucleotide saturation plot for coding sequences of vertebrate Hh paralogs.

Representation of transitions (s) and transversions (v) at all three codon positions

versus the genetic distance retrieved by the GTR nucleotide substitutions model.

doi:10.1371/journal.pone.0074132.s004 (TIF)

S1 Tables. Table S1. Positively and negatively selected residues detected by SLAC

and FEL. The percentage and the numbering of the negatively selected residues is

in agreement with the Homo sapiens sequences and residues associated to a

disease or to a functional processe, as annotated on the GenBank and UniProt

databases, are highlighted. Table S2. Sites detected by SLAC and FEL with dN/dS

values above 1 but not statistically positively selected. Table S3. Sites under strong

positive selection (p,0.001) on the three vertebrate Hh paralogs, according to

TreeSAAP. Site numbering refers to the Homo sapiens sequences and an asterisk

marks the sites which were detected as under negative selection with SLAC ad

FEL. Table S4. Estimates of the coefficient of fucntional divergence type I (hI)

calculated with DIVERGE 2.0 for each pair of vertebrate Hh paralog proteins.

Table S5. Amino acid residues with a type I functional divergence posterior

probability P(S1|X)$0.91 for each pair of vertebrate Hh paralog proteins,

calculated with DIVERGE 2.0. The site position in each alignment is listed, as well

the correspondent position on the human protein sequence. Homo sapiens First

refers to the first member of the pair, and Homo sapiens Second to the second

member of the pair. An asterisk (*) marks negatively selected residues presented

on Table S1. Table S6. List of Hh sequences collected from currently available

genomes. Table S7. Test of substitution saturation by Xia et al. using DAMBE.

Analysis performed on fully resolved sites only, testing whether the observed Iss is

significantly lower than Iss.c. IssSym is Iss.c. assuming a symmetrical topology;

IssAsym is Iss.c. assuming an asymetrical topology. Table S8. Quality scores for

modelled ShhC, IhhC and DhhC protein domains, determined using I-TASSER.

Table S9. List of studied non-avian and avian reptile species included on the BGI

Birs Phylogenomic Project. The taxonomic classification of each species was

retrieved from the Integrated Taxonomic Information System on-line database

(ITIS) (http://www.itis.gov/).

doi:10.1371/journal.pone.0074132.s005 (XLSX)

S1 Material. Supplementary material.

doi:10.1371/journal.pone.0074132.s006 (DOCX)
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