Synthesis, resolution, and absolute configuration determination of a vicinal amino alcohol with axial chirality. Application to the synthesis of new box and pybox ligands

Pilar López-Ram-de-Víu | José A. Gálvez | María D. Díaz-de-Villegas ©

Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Zaragoza, Spain

Correspondence

Pilar López-Ram-de-Víu and José A. Gálvez, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
Email: pilopez@unizar.es and jagl@unizar.es

Funding information

Government of Aragón, Grant/Award Number: E45_20R

Abstract

New racemic vicinal amino alcohol derivatives with 4-benzylidenecyclohexane skeleton and axial chirality have been prepared. A preparatively easy and efficient protocol for resolution of the N-benzoylamino alcohol is described. Using a $250 \times 20 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{ID}$) Chiralpak ${ }^{\circledR}$ IA column, and the appropriate mixture of n-hexane/ethanol/chloroform as eluent, both enantiomers of N-benzoylamino alcohol $\mathbf{3}$ are obtained with $>99 \%$ enantiomeric excess (ee) by successive injections of a solution of the racemic sample in chloroform. The obtained axially chiral vicinal amino alcohol is used to synthesize structurally novel bisoxazoline ligands in high yields.

KEYWORDS

axial chirality, bisoxazolines, chiral stationary phases, enantiomeric separation, vicinal amino alcohols

1 | INTRODUCTION

Chiral 1,2-amino alcohols are essential structural motifs widely found in natural and synthetic biologically active compounds displaying very diverse activities, ${ }^{1,2}$ with a tremendous versatility in asymmetric synthesis as building blocks, ${ }^{3}$ auxiliaries, ${ }^{4}$ or ligands for metal catalyzed reactions ${ }^{5}$ and organocatalysis. ${ }^{6}$ In most cases, chirality of the 1,2 -amino alcohol is due to the presence of a chiral center, but molecular dissymmetry is not restricted to the presence of a chiral center. Compounds featuring a chirality axis or plane are in fact of tremendous importance ${ }^{7}$ and are present in many natural compounds, ${ }^{8-10}$ ligands or catalysts for asymmetric synthesis, or synthetic intermediates. ${ }^{11-13}$ Synthesis, properties, and applications of axially chiral
atropoisomers (biphenyls and derivatives) and allenes have been widely studied. However, the preparation and use of chiral alkylidene cycloalkanes has been much less studied, in spite of the fact that alkylidene cycloalkanes are chiral compounds, fully stable at the stereogenic axis.

Considering the value of both chiral 1,2-amino alcohols and axially chiral compounds in asymmetric synthesis, we wondered about the potential application of new axially chiral 1,2 -amino alcohols belonging to the alkylidene cycloalkane family.

Focusing on the synthesis and isolation of new α-amino acids and derivatives with unusual structural features, ${ }^{14-16}$ we developed a high-performance liquid chromatographic (HPLC) resolution protocol ${ }^{17}$ for the enantioseparation of unusual amino acid derivatives

[^0]containing a cyclohexylidene moiety on an analytical and semipreparative scale. ${ }^{18-20}$ Now we wish to describe the synthesis and resolution of axially chiral 1,2-amino alcohols containing a 4 -benzylidenecyclohexane moiety.

2 | MATERIALS AND METHODS

2.1 | General information

Unless otherwise specified, all reagents were obtained from commercial suppliers and used without purification. For anhydrous conditions, reactions were carried out under Ar in solvents dried using a solvent purification system (SPS). n-Hexane, ethanol, acetone, and chloroform used for HLPC separations were chromoscan grade from LabScan. Heating was performed using an oil bath mounted on a hot plate magnetic stirrer. Whenever possible, the reactions were monitored by TLC. TLC analysis was performed on precoated silica gel polyester plates with an F_{254} indicator, and products were visualized using ultraviolet (UV) light (254 nm) and ethanolic phosphomolybdic acid solutions followed by heating. Column chromatography was performed on silica gel (Kiesegel 60, 230-400 Mesh) with air pressure or alumina (Aluminum Oxide, 90 Neutral, $50-200 \mu \mathrm{~m}$). Methyl 1 -benzamido-4-oxocyclohexane1 -carboxylate 1 was prepared as previously described. ${ }^{21}$

2.2 | Instrumentation

HPLC separations were carried out on a Waters HPLC system consisting of an M-600 low-pressure gradient pump, an M-2996 photodiode array detector, and an M2487 dual wavelength absorbance detector, to monitor analytical and preparative separations, respectively. The chromatographic data were acquired and processed with Millennium ${ }^{\circledR}$ chromatography manager software (Waters). A Rheodyne 7125 syringe-loading sample injector was equipped with $20-$ and $500-\mu \mathrm{l}$ loops, respectively, for analytical or semipreparative chromatography. Commercially available polysaccharide chiral stationary phases based on immobilized amylose tris(3,5-dimethylphenylcarbamate), Daicel Chiralpak ${ }^{\circledR}$ IA column, and immobilized cellulose tris (3,5-dimethylphenylcarbamate), Daicel Chiralpak ${ }^{\circledR}$ IB column, were used. Melting points were determined in open capillaries using a Gallenkamp capillary melting point apparatus and are not corrected. The FT-IR spectra of oils were recorded as thin films on NaCl plates; the FT-IR spectra of solids were recorded on pressed KBr pellets using a Thermo Nicolet Avatar 360 FT-IR spectrophotometer. Optical rotations were measured
on a Jasco 1020 digital polarimeter at $\lambda 589 \mathrm{~nm}$ and $25^{\circ} \mathrm{C}$ in cells with 1 or 10 cm path length. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were acquired in deuterated solvents on a Bruker AV-400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR using the solvent residual resonance as the internal standard. ${ }^{22}$ Spectra were acquired at room temperature unless otherwise stated using a $5-\mathrm{mm}$ probe. Highresolution mass spectra were recorded from methanolic solutions on a Bruker Dalton MICROTOF-Q (quadrupole time-of-flight) microinstrument using the positive electrospray ionization mode (ESI^{+}).

2.3 | HPLC analytical assays

The HPLC analytical assays were carried out operating under isocratic conditions at room temperature on Chiralpak ${ }^{\circledR}$ IA and Chiralpak ${ }^{\circledR}$ IB $250 \times 4.6 \mathrm{~mm}(\mathrm{~L} \times$ ID) columns. Different binary and ternary mixtures of solvents were used as eluents. Samples were manually injected. The flow rate was $1 \mathrm{ml} / \mathrm{min}$. The analyte concentration in injected solutions was $5 \mathrm{mg} / \mathrm{ml}$, and the injection volume was 5μ. Detection was performed at 250 nm . The capacity $\left(k^{\prime}\right)$, selectivity (α), and resolution $\left(R_{s}\right)$ factors were calculated according to the equations $k^{\prime}=\left(t_{\mathrm{r}}-t_{0}\right) / t_{0}, a=k^{\prime} / k_{1}^{\prime}$, $R_{s}=1.18\left(t_{\mathrm{r} 2}-t_{\mathrm{r} 1}\right) /\left(W_{0.5 \mathrm{Sh} 1}+W_{0.5 \mathrm{Sh} 2}\right)$. Subscripts 1 and 2 refer to the first and second eluted enantiomer, respectively; t_{r} are their retention times and $W_{0.5 \mathrm{~h}}$ denote their full width to the half maximum of each peak; t_{0} is the dead time.

2.4 | HPLC semipreparative assays

The HPLC semipreparative resolution of compound rac-3 was carried out operating under isocratic conditions at room temperature on a $250 \times 20 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{ID}$) Chiralpak ${ }^{\circledR}$ IA column. A ternary mixture of n-hexane/ ethanol/chloroform was used as the eluent. Injections and collections were made manually. The flow rate was $0.8 \mathrm{ml} / \mathrm{min}$. The wavelength for UV detection was 270 nm . The column loading capacity, W_{s} (defined as the maximum sample mass that the column can hold), was experimentally calculated for the analytical $250 \times 4.6 \mathrm{~mm}$ ($\mathrm{L} \times$ ID) Chiralpak ${ }^{\circledR}$ IA column by injecting increasing amounts of sample with a concentration of $200 \mathrm{mg} / \mathrm{ml}$.

2.4.1 | Methyl 1-benzamido-4-benzylidenecyclohexane-1-carboxylate (rac-2)

To a stirred suspension of benzyltriphenylphosphonium chloride ($7.77 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF (75 ml) under
argon at room temperature, potassium tert-butoxide ($2.24 \mathrm{~g}, 20 \mathrm{mmol}$) was added and stirring was continued for 45 min . A solution of methyl 1 -benzamido-4-oxocyclohexane-1-carboxylate $\mathbf{1}(2.75 \mathrm{~g}, 10 \mathrm{mmol})$ in dry THF (30 ml) was then added and the reaction mixture was stirred under argon at room temperature for 24 h . On completion, the reaction mixture was acidified to about pH 2 by the addition of 1 N hydrochloric acid solution. The organic solvent was evaporated in vacuo, and the aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{ml}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $4: 1$) to give 3.11 g (90% yield) of compound rac-2 as a colorless oil that solidified by stirring with a small amount of diethyl ether. White solid; m.p. $160^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.79-7.82 (m, 2H), 7.50-7.55 (m, 1 H), 7.42-7.47 (m, 2H), 7.29-7.35 (m, 2H), 7.18-7.24 (m, 3 H), 6.35 (s, 2H), 3.75 (s, 3H), 2.81 (dt, $J=13.9,4.5 \mathrm{~Hz}$, 1 H), 2.42-2.49 (m, 2H), 2.16-2.38 (m, 4H), 2.08 (ddd, $J=13.6,11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ APT NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 173.9$ (C), 167.2 (C), 139.0 (C), 137.5 (C), 134.1 (C), 131.7 (CH), 128.8 (CH), 128.5 (CH), 128.1 (CH), $127.0(\mathrm{CH}), 126.2(\mathrm{CH}), 123.8(\mathrm{CH}), 59.1(\mathrm{C}), 52.4\left(\mathrm{CH}_{3}\right)$, $33.8\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right)$; IR (nujol): $\nu=3308$ (NH), 1742 (COO), 1638 (CONH), 1579, 1557 (C=C), $1527(\mathrm{NH} \delta) \mathrm{cm}^{-1}$; HRMS (ESI, m / z): $[M+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NNaO}_{3}, 372.1560$; found, 372.1570.

2.4.2 | N-(4-Benzylidene-1-(hydroxymethyl) cyclohexyl)benzamide (rac-3)

To a stirred solution of compound rac-2 $(1.51 \mathrm{~g}$, 4.32 mmol) in dry diethyl ether (50 ml) under argon at $0^{\circ} \mathrm{C}$, a 2 M solution of lithium borohydride in dry THF ($4.34 \mathrm{ml}, 8.68 \mathrm{mmol}$) was added and the resulting mixture was stirred for 1 h at room temperature. After completion, the reaction was quenched at $0^{\circ} \mathrm{C}$ by the slow addition of saturated aqueous ammonium chloride solution (35 ml). The solution was extracted with dichloromethane ($3 \times 25 \mathrm{ml}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure to give 1.30 g (94% yield) of compound rac-3. White solid; m.p. $126^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.74-7.77$ (m, 2H), $7.50-7.54$ (m, 1 H), 7.41-7.46 (m, 2H), 7.30-7.35 (m, 2H), 7.19-7.24 (m, $3 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{bs}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H})$, 2.68 (dt, $J=14.6, J=5.2,1 \mathrm{H}), 2.28-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.16-$ $2.24(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=13.5$, $J=8.6, \quad J=6.4,1 \mathrm{H}$), 1.69 (ddd, $\quad J=13.5, \quad J=10.6$, $J=4.5,1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$):
168.8 (C), 139.7 (C), 137.5 (C), 134.7 (C), 131.7 (CH), 128.8 (CH), 128.6 (CH), 128.1 (CH), 126.9 (CH), 126.2 $(\mathrm{CH}), 123.7(\mathrm{CH}), 69.2\left(\mathrm{CH}_{2}\right), 58.5(\mathrm{C}), 33.3\left(\mathrm{CH}_{2}\right), 32.7$ $\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right)$; IR (nujol): $\nu=3304(\mathrm{NH})$, 3218 (OH), 1632 (CONH), 1600, 1577 (C=C), 1535 (NH δ) cm^{-1}; HRMS (ESI, m / z): $[M+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{2}$, 344.1661; found, 344.1633.

2.4.3 | $\quad\left(R_{a}\right)$ - N-(4-Benzylidene-
 1-(hydroxymethyl)cyclohexyl)benzamide $\left[\left(\boldsymbol{R}_{\boldsymbol{a}}\right)\right.$ 3] and (S_{a})- N-(4-benzylidene-1-(hydroxymethyl) cyclohexyl)benzamide [$\left(\boldsymbol{S}_{\boldsymbol{a}}\right)$-3]

Six hundred milligrams of rac-3 dissolved in CHCl_{3} (3 ml) were resolved by successive injections of $200 \mu \mathrm{l}$ of solution ($W_{\mathrm{s}}=40 \mathrm{mg}$) on a $250 \times 20 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{ID}$) Chiralpak ${ }^{\circledR}$ IA column and using a ternary mixture n $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3}(88 / 6 / 6)$ as the eluent (flow rate: $0.8 \mathrm{ml} / \mathrm{min}$). A total of 15 injections were performed, with one injection performed every 8 min . Four separate fractions were collected. The first, second, third, and fourth fractions contained, respectively, $100 / 0(235 \mathrm{mg})$, $75 / 25(80 \mathrm{mg}), 3 / 97(135 \mathrm{mg})$, and $0.5 / 99.5(150 \mathrm{mg})$ mixtures of $\left(\boldsymbol{R}_{\boldsymbol{a}}\right) \mathbf{- 3}$ and $\left(\boldsymbol{S}_{\boldsymbol{a}}\right) \mathbf{- 3}$. Recrystallization of the fourth fraction from ethanol/ether provided 45 mg of enantiomerically pure $\left(\boldsymbol{S}_{a}\right) \mathbf{- 3}$. $\left(\boldsymbol{R}_{a}\right) \mathbf{- 3}$: White solid, m.p. $=138^{\circ} \mathrm{C} ;[\alpha]_{25}{ }^{\mathrm{D}}=-136.6\left(c=0.49\right.$ in $\left.\mathrm{CHCl}_{3}\right) .\left(\boldsymbol{S}_{\boldsymbol{a}}\right)-\mathbf{3}:$ White solid, m.p. $=137^{\circ} \mathrm{C} ;[\alpha]_{25}{ }^{\mathrm{D}}=133.2(c=0.48$ in CHCl_{3}). Spectroscopic data for $\left(\boldsymbol{R}_{\boldsymbol{a}}\right)$-3 and $\left(\boldsymbol{S}_{a}\right)-\mathbf{3}$ were identical to those given above for the racemic compound.

2.4.4 | (1-Amino-4-benzylidenecyclohexyl) methanol (rac-4)

To a stirred solution of compound rac-3 $(0.90 \mathrm{~g}$, 2.80 mmol) in ethanol (20 ml), a solution of potassium hydroxide ($2.01 \mathrm{~g}, 35.82 \mathrm{mmol}$) in water (25 ml) was added and the resulting mixture was stirred under reflux conditions for 3 h . Ethanol was evaporated in vacuo, and the aqueous layer was extracted with diethyl ether $(2 \times 25 \mathrm{ml})$. The combined organic layers were then extracted with 1 N hydrochloric acid solution ($3 \times 25 \mathrm{ml}$). The combined extracts were basified by the addition of 6 N sodium hydroxide aqueous solution. The basic solution was extracted again with dichloromethane ($3 \times 25 \mathrm{ml}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure to give 0.51 g (84% yield) of compound rac-4. White solid; m.p. $117^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.29-7.34 (m, 2H), 7.18-7.21 (m, 3H), 6.29 (s, 1H), 3.41 (s, 2 H), 2.54 (dt, $J=14.5, J=5.7,1 \mathrm{H}), 2.32-2.46$ (m, 2H),
$2.28(\mathrm{dt}, J=14.1, J=5.7,1 \mathrm{H}), 2.10(\mathrm{bs}, 3 \mathrm{H}), 1.54-1.67(\mathrm{~m}$, $2 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ APT NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 141.2$ (C), 137.9 (C), $128.8(\mathrm{CH}), 128.0(\mathrm{CH})$, $126.0(\mathrm{CH}), 123.0(\mathrm{CH}), 69.9\left(\mathrm{CH}_{2}\right), 52.2(\mathrm{C}), 36.5\left(\mathrm{CH}_{2}\right)$, $36.0\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right)$; IR (nujol): $\nu=3335$, $3281\left(\mathrm{NH}_{2}\right), 3155(\mathrm{OH}), 1649,1591(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; HRMS (ESI, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}, 218.1539$; found, 218.1535.

2.4.5 | $\left(R_{a}\right)$-(1-Amino-4benzylidenecyclohexyl)methanol $\left[\left(\boldsymbol{R}_{a}\right)\right.$-4] and (S_{a})-(1-amino-4-benzylidenecyclohexyl) methanol $\left[\left(\boldsymbol{S}_{\boldsymbol{a}}\right)-4\right]$

Hydrolysis of enantiomerically pure $\left(\boldsymbol{R}_{\boldsymbol{a}}\right) \mathbf{- 3}$ and $\left(\boldsymbol{S}_{\boldsymbol{a}}\right)$-3 as described above provided $\left(\boldsymbol{R}_{\boldsymbol{a}}\right) \mathbf{- 4}$ and $\left(\boldsymbol{S}_{\boldsymbol{a}}\right) \mathbf{- 4}$, respectively. ($\boldsymbol{R a} \boldsymbol{a}$-4: \quad White solid, m.p. $=68^{\circ} \mathrm{C} ; \quad[\alpha]_{25}{ }^{\mathrm{D}}=-6.9$ $\left(c=0.54\right.$ in EtOH). $\left(\boldsymbol{S}_{\boldsymbol{a}}\right)$-3: White solid, m.p. $=68^{\circ} \mathrm{C}$; $[\alpha]_{25}{ }^{\mathrm{D}}=7.0(c=0.31$ in EtOH). Spectroscopic data for $\left(\boldsymbol{R}_{\boldsymbol{a}}\right) \mathbf{- 3}$ and $\left(\boldsymbol{S}_{\boldsymbol{a}}\right)$ - $\mathbf{3}$ were identical to those given above for the racemic compound.

2.4.6 | (5R, $5^{\prime} R$)-2,2 2^{\prime}-(Propane-2,2-diyl)bis (8-(($Z)$-benzylidene)-3-oxa-1-azaspiro[4.5]dec-1-ene) $\left[\left(\boldsymbol{R}_{\mathbf{a}}, \boldsymbol{R}_{\mathbf{a}}\right)\right.$-5]

To a stirred solution of 2,2-dimethyl-malononitrile ($51.7 \mathrm{mg}, 0.55 \mathrm{mmol}$) in dry toluene (7 ml) under argon at room temperature, dry ${ }^{23}$ zinc triflate (200 mg , 0.55 mmol) was added and the resulting mixture was stirred for 5 min . Then a solution of β-amino alcohol $\left(\boldsymbol{R}_{\mathbf{a}}\right) \mathbf{- 4}(217 \mathrm{mg}, 1 \mathrm{mmol})$ in dry toluene (5 ml) was added and the solution was heated under reflux for 48 h . The system was allowed to cool to room temperature and the reaction solution was then washed with brine $(2 \times 20 \mathrm{ml})$ and 5% aqueous solution of NaHCO_{3} ($3 \times 15 \mathrm{ml}$). The organic layer was dried over anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on alumina previously oven-dried for 1 h at $100^{\circ} \mathrm{C}$ (eluent: hexanes $/ \mathrm{Et}_{2} \mathrm{O} 4: 1$) to give 135 mg (55% yield) of compound $\left(\boldsymbol{R}_{\mathbf{a}}, \boldsymbol{R}_{\mathbf{a}}\right)$-5. Colorless oil; $[\alpha]_{25}{ }^{\mathrm{D}}=-36.1(c=0.39$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.29-7.35 (m, $2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 2.76$ (ddd, $J=14.0, J=6.7, J=4.5,1 \mathrm{H}$), 2.56 (ddd, $J=13.8$, $J=6.8, \quad J=4.9,1 \mathrm{H}), 2.14-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (ddd, $J=12.6, \quad J=9.8, \quad J=4.5, \quad 1 \mathrm{H}), \quad 1.78 \quad(\mathrm{ddd}, \quad J=13.9$, $J=9.9, J=4.5,1 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.62(\mathrm{~m}$, 1H), $1.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, §): 167.6 (C), 140.5 (C), 138.0 (C), $128.8(\mathrm{CH}), 128.0(\mathrm{CH})$, $126.0(\mathrm{CH}), 123.1(\mathrm{CH}), 77.2(\mathrm{C}), 70.4(\mathrm{C}), 38.4\left(\mathrm{CH}_{2}\right)$,
37.7 $\left(\mathrm{CH}_{2}\right)$, 33.3 $\left(\mathrm{CH}_{2}\right)$, 25.2 $\left(\mathrm{CH}_{2}\right)$, $24.4\left(\mathrm{CH}_{3}\right)$; IR (nujol): $\nu=1658(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;$ HRMS (ESI, $\left.m / z\right):[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}, 495.3006$; found, 495.3008.

2.4.7 | 2,6-Bis((R)-8-((Z)-benzylidene)-3-oxa-1-azaspiro[4.5]dec-1-en-2-yl)pyridine $\left[\left(\boldsymbol{R}_{\mathbf{a}}, \boldsymbol{R}_{\mathrm{a}}\right)-6\right]$

To a stirred solution of pyridine-2,6-dicarbonitrile ($71 \mathrm{mg}, 0.55 \mathrm{mmol}$) in dry toluene (7 ml) under argon at room temperature, dry ${ }^{23}$ zinc triflate $(20 \mathrm{mg}$, 0.055 mmol) was added and the resulting mixture was stirred for 5 min . Then a solution of β-amino alcohol $\left(\boldsymbol{R}_{\mathbf{a}}\right) \mathbf{- 4}(217 \mathrm{mg}, 1 \mathrm{mmol})$ in dry toluene (5 ml) was added and the solution was heated under reflux for 24 h . The system was allowed to cool to room temperature, and the reaction solution was diluted by the addition of ethyl acetate $(15 \mathrm{ml})$. The obtained solution was then washed with brine ($2 \times 20 \mathrm{ml}$) and aqueous saturated solution of $\mathrm{NaHCO}_{3}(3 \times 15 \mathrm{ml})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on alumina previously oven-dried for 1 h at $100^{\circ} \mathrm{C}$ (eluent: gradually form $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $/ 4: 1$ to $\mathrm{Et}_{2} \mathrm{O}$) to give 185 mg (70% yield) of compound $\left(\boldsymbol{R}_{\mathbf{a}}, \boldsymbol{R}_{\mathbf{a}}\right)-\mathbf{6}$. Colorless oil; $[\alpha]_{25}{ }^{\mathrm{D}}=-23.6 \quad\left(c=0.30\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ $\left[[\alpha]_{25}{ }^{\mathrm{D}}=24.5 \quad\left(c=0.10\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $\left.\left(\boldsymbol{S}_{\mathbf{a}}, \boldsymbol{S}_{\mathbf{a}}\right)-6\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.20 (d, $J=7.9,2 \mathrm{H}$), 7.86 (t, $J=7.9,1 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.35$ (s, 2H), 4.31 (s, 4H), 2.80 (ddd, $J=13.9, J=7.5, J=4.8$, 2 H), 2.68 (ddd, $J=12.7, J=7.5, J=4.4,2 \mathrm{H}$), 2.36 (ddd, $J=12.8, \quad J=8.1, \quad J=4.0, \quad 2 \mathrm{H}$), $2.27 \quad(\mathrm{ddd}, \quad J=13.4$, $J=8.8, J=4.1,2 \mathrm{H}$), 2.01 (ddd, $J=12.9, J=8.7, J=4.7$, 2 H), 1.90 (ddd, $J=13.1, J=8.6, J=4.5,2 \mathrm{H}), 1.80$ (ddd, $J=12.5, J=7.7, J=4.7,2 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 161.0 (C), 147.0 (C), 140.4 (C), 138.0 (C), 137.3 (CH), 128.9 (CH), 128.1 (CH), $126.1(\mathrm{CH}), 125.8(\mathrm{CH}), 123.4(\mathrm{CH}), 78.1(\mathrm{C}), 71.5(\mathrm{C})$, $39.0\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{2}\right)$; IR (nujol): $\nu=1589\left(\mathrm{C}=\mathrm{C}_{\mathrm{Py}}\right) \mathrm{cm}^{-1}$; HRMS (ESI, $m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{2}, 552.2621$; found, 552.2592.

3 | RESULTS AND DISCUSSION

We started the synthesis from the known 4-substituted cyclohexanone 1, prepared through Diels-Alder reaction between methyl 2-benzamidoacrylate and 2-trimethylsilyloxy-1,3-butadiene in the presence of ZnI_{2} as a catalyst. ${ }^{21}$ Wittig olefination of this ketone featuring a symmetry plane with benzyltriphenylphosphonium
bromide led to axially chiral alkene $\boldsymbol{r a c}-\mathbf{2}$ in 90% yield, as a racemic mixture. Racemic N-benzoyl amino alcohol rac-3 was obtained in 94% yield by reduction of the ester moiety of compound rac-2 with lithium borohydride. Final basic hydrolysis led to the desired axially chiral 1,2 -amino alcohol rac-4 in 84% yield, as a racemic mixture (Scheme 1).

With axially chiral compound rac-2, rac-3, and rac-4 in hand, we studied their enantiomeric separation by high-performance liquid chromatography using chiral stationary phases based on immobilized 3,5-dimethylphenylcarbamate derivatives of amylose or cellulose at an analytical level using $250 \times 4.6 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{ID)}$ columns, namely Chiralpak ${ }^{(®)}$ IA and Chiralpak ${ }^{\circledR}$ IB. The capacity $\left(k^{\prime}\right)$, selectivity (α), and resolution $\left(R_{s}\right)$ factors for each column in the enantioseparation of all compounds using different eluents were determined (Table 1).

SCHEME 1 Synthesis of axially chiral 1,2-amino alcohol rac-4

A selectivity value of about 1.15 , which allows resolution values higher than 1.5 , is required for an easy separation at analytical scale. From results using binary mixtures of n-hexane/ethanol as mobile phase, it was concluded that both rac-3 and rac-4 are suitable analytes for enantioseparation with these chiral stationary phases. In both cases, Chiralpak ${ }^{\circledR}$ IA column is the only one that provides selectivity. Nevertheless, the low solubility of both racemates in the binary mixture of solvents, that causes the precipitation of the compounds into the column, hampered its use on a semipreparative scale.

In order to enhance the solubility of racemates and then be able to move from analytical conditions to the semipreparative scale, the addition of acetone or chloroform as a third component to the eluting mixture was evaluated for compounds rac-3 and rac-4. In all cases, the presence of acetone or chloroform in the eluent led to a decrease in selectivity and resolution, but chloroform mixtures led to better values, some times in the same range as binary mixtures. Unfortunately, even in this ternary mixture, solubility of compound rac-4 remained too low to allow a good loading capacity in semipreparative assays. Analyte rac-3 was then selected for further optimization to extend the study to the semipreparative-scale enantioseparation. Taking into account selectivity, resolution and solubility (improved with increasing percentage of chloroform in the mixture), ternary mixture n-hexane/ethanol/chloroform 88/6/6 was chosen

Compound	Column	Eluent	\boldsymbol{k}^{\prime}	$\boldsymbol{\alpha}$	$\mathbf{R}_{\text {s }}$
rac-2	IA	n-Hex/EtOH (90/10)	1.54	1.00	-
rac-2	IB	n-Hex/EtOH (90/10)	3.32	1.05	0.5
rac-3	IA	n-Hex/EtOH (90/10)	1.74	1.21	2.65
rac-3	IB	n-Hex/EtOH (90/10)	2.08	1.00	-
rac-4	IA	n-Hex/EtOH (90/10)	0.97	1.55	1.90
rac-4	IA	n-Hex/EtOH (95/5)	2.07	1.33	2.12
rac-4	IB	n-Hex/EtOH (95/5)	2.60	1.00	-
rac-3	IA	n-Hex/EtOH/Acetone (92/5/3)	2.57	1.12	1.24
rac-3	IA	n-Hex/EtOH/CHCl ${ }_{3}$ (90/8/2)	2.08	1.19	1.80
rac-4	IA	n-Hex/EtOH/Acetone (95/3/2)	2.10	1.18	1.28
rac-4	IA	n-Hex/EtOH/CHCl ${ }_{3}(90 / 8 / 2)$	1.17	1.27	1.30
rac-4	IA	n-Hex/EtOH/CHCl ${ }_{3}(92 / 6 / 2)$	1.78	1.28	1.95
rac-3	IA	n - $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3}(90 / 4 / 6)$	3.11	1.12	1.80
rac-3	IA	n - $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3}(90 / 6 / 4)$	2.16	1.13	1.94
rac-3	IA	n - $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3}(85 / 10 / 5)$	1.22	1.15	1.17
rac-3	IA	n-Hex/EtOH/ $\mathrm{CHCl}_{3}(88 / 6 / 6)$	2.12	1.12	1.86

Note: Chromatographic conditions: Room temperature, $250 \times 4.6 \mathrm{~mm}(\mathrm{~L} \times \mathrm{ID})$ columns, injection volume: 5μ l, flow rate $1 \mathrm{ml} / \mathrm{min}$; UV detection 250 nm .

TABLE 1 Chromatographic data for the analytical HPLC resolution of rac-2, rac-3, and rac-4 on Chiralpak ${ }^{\left({ }^{(}\right)}$ IA and Chiralpak ${ }^{\circledR}$ IB using different mobile phases
to perform the semipreparative resolution. Figure 1 shows the chromatographic resolution of rac-3, analytical HPLC with the optimized ternary mixture.

At this point, the column saturation capacity (defined as the maximum sample mass that the column

FIGURE 1 HPLC analytical resolution of rac-3 at room temperature on a $250 \times 4.6 \mathrm{~mm}(\mathrm{~L} \times \mathrm{ID})$ Chiralpak ${ }^{\circledR}$ IA column. Mobile phase composition: n - $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3} 88 / 6 / 6(\mathrm{v} / \mathrm{v} / \mathrm{v})$; flow rate: $1 \mathrm{ml} / \mathrm{min}$; UV detection: 250 nm

TABLE 2 Chromatographic data for the resolution of amino acid derivatives rac-3 on Chiralpak ${ }^{\circledR}$ IA data working in an overload mode in the analytical column at room temperature

$\mathbf{V}(\boldsymbol{\mu l})$	\boldsymbol{k}^{\prime}	$\boldsymbol{\alpha}$	$\boldsymbol{R}_{\boldsymbol{s}}$
5	1.90	1.12	1.16
10	1.90	1.14	0.90
15	1.86	1.13	0.80
20	1.86	1.14	0.70

Note: Overload mode, eluent n-Hex/EtOH/CHCl ${ }_{3}(88 / 6 / 6), c=200 \mathrm{mg} / \mathrm{ml}$, flow rate $0.8 \mathrm{ml} / \mathrm{min}$; UV detection 270 nm .
can hold in mg) and the optimum sample volume of the column were determined in an experimental approach. Starting from the previously selected elution conditions on the analytical column and using a solution of $200 \mathrm{mg} / \mathrm{ml}$ of compound 3 in chloroform (the most concentrated solution that can be obtained), gradually increased volumes of the sample were injected. The chromatographic data obtained on working in the overload mode on the analytical column are shown in Table 2.

Increasing the injected volume, selectivity remained in the same range and resolution was worse even with an injected volume of 5μ l. With this analyte, a significant peak tailing was observed working in overload mode, probably due to the strong interaction of the benzamido group with the carbamate moiety on the selector of the chiral stationary phase. This behavior points out the difficulty in obtaining fractions containing the second eluted enantiomer as single component. That being the case, we decided to work with a large injected volume in a first round to obtain mixtures enriched in either the first or the second eluted enantiomer and perform an additional purification later. We opted to inject $10 \mu \mathrm{l}$ of a $200 \mathrm{mg} / \mathrm{ml}$ solution to work in an overloaded mode on the analytical column ($250 \times 4.6 \mathrm{~mm}(\mathrm{~L} \times \mathrm{ID})$). That means working with $200-\mu \mathrm{l}$ injections of the same concentrated solution (40 mg of analyte per injection) on a $250 \times 20 \mathrm{~mm}$ $(\mathrm{L} \times \mathrm{ID})$ column and a flow rate of $16 \mathrm{ml} / \mathrm{min}$ to keep the same chromatographic parameters (Figure 2).

The semipreparative resolution of compound rac-3 on a $250 \times 20 \mathrm{~mm}\left(\mathrm{~L} \times\right.$ ID) Chiralpak ${ }^{\circledR}$ IA column was achieved by successive injections of a solution of the sample in chloroform (Figure 3). In order to enhance throughput, injections were partially overlapped. For each run, four separate fractions were collected and combined with equivalent fractions. The four combined fractions were concentrated and reinjected onto the analytical chiral column to determine their enantiomeric purity; 15 injections

FIGURE 2 Chromatogram for the enantioseparation of rac-3 operating in an overload mode at room temperature on a $250 \times 20 \mathrm{~mm}(\mathrm{~L} \times \mathrm{ID})$ Chiralpak ${ }^{\circledR}$ IA column. Injection volume: $200 \mu \mathrm{l}, c=200 \mathrm{mg} / \mathrm{ml}$. Mobile phase composition: n - $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3} 88 / 6 / 6$ ($v / v / v$); flow rate: $16 \mathrm{ml} / \mathrm{min}$; UV detection: 270 nm

FIGURE 3 Semipreparative chromatogram for the enantioseparation of rac-3 at room temperature on a $250 \times 20 \mathrm{~mm}(\mathrm{~L} \times \mathrm{ID})$
Chiralpak ${ }^{\circledR}$ IA column. Injection volume: $200 \mu \mathrm{l}, c=200 \mathrm{mg} / \mathrm{ml}$. Mobile phase composition: n-Hex/EtOH/CHCl $88 / 6 / 6(v / v / v)$; flow rate: $16 \mathrm{ml} / \mathrm{min}$; UV detection: 270 nm . Repetitive injection every 8 min

FIGURE 4 Analytical check of fractions collected in the enantioseparation of $\boldsymbol{r a c}-\mathbf{3}$ at room temperature on a $250 \times 4.6 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{ID} \mathrm{)}$ Chiralpak ${ }^{(8)}$ IA column. Mobile phase composition: n - $\mathrm{Hex} / \mathrm{EtOH} / \mathrm{CHCl}_{3} 88 / 6 / 6(v / v / v)$; flow rate: $1 \mathrm{ml} / \mathrm{min}$; UV detection: 250 nm . (A) First eluted enantiomer in enantiomerically pure form. (B) Second eluted enantiomer in enantiomerically pure form. (C) 99.5/0.5 mixture enriched in the second eluted enantiomer. (D) 87/13 mixture enriched in the second eluted enantiomer
of $200 \mu \mathrm{l}$ of a $200 \mathrm{mg} / \mathrm{ml}$ solution (40 mg of rac-3 per injection) provided the following: First fraction, 235 mg of the first eluted enantiomer in enantiomerically pure form; second fraction, 80 mg of a $75 / 25$ mixture enriched in the first eluted enantiomer; third fraction, 135 mg of a $97 / 3$ mixture enriched in the second eluted enantiomer; and fourth fraction, 150 mg of a 99.5/0.5 mixture enriched in the second eluted enantiomer.

Recrystallization of the last fraction from ethanol/ diethyl ether provided 45 mg of the second eluted enantiomer in enantiomerically pure form. A 99/1 mixture of enantiomers was recovered from mother liquor and combined with the third fraction containing a 97/3 mixture enriched in the second eluted enantiomer. To these
combined fractions, a similar protocol of semipreparative resolution was applied, and in this case, three separate fractions were collected. In this way, six injections of $200 \mu \mathrm{l}$ of a $200 \mathrm{mg} / \mathrm{ml}$ solution (40 mg of analyte per injection) provided the following: First fraction, 29 mg of an $87 / 13$ mixture enriched in the second eluted enantiomer; second fraction, 180 mg of $99.5 / 0.5$ mixture enriched in the second eluted enantiomer; and third fraction, 30 mg of the second eluted enantiomer in enantiomerically pure form.

In summary, from 600 mg of amido alcohol rac-3, 235 mg of the enantiomerically pure first eluted enantiomer, 180 mg the second eluted enantiomer with a 99% enantiomeric purity, and 75 mg of the second eluted

FIG URE $5 \quad$ Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of β-amino alcohol $\mathbf{4}^{\mathbf{2}} \mathbf{n d}$ after the addition of 1 equiv. of (R)-BPG (bottom line) and (S)BPG (top line) in CDCl_{3}. The upfield and downfield shifts are highlighted

FIGURE 6 Association of (R)-BPG and (S)-BPG with the S_{a} enantiomer of β-amino alcohol 4 and sign distribution of $\Delta \delta^{R S}$

(R)-BPG-4 ${ }^{\text {2nd }}$

(S)-BPG-4 ${ }^{2 n d}$

SCHEME 2 Synthesis of $\operatorname{bis}($ oxazoline $)\left(\boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{R}_{\boldsymbol{a}}\right)-5$

(R_{a}) -4

$\left(R_{\mathrm{a}}, R_{\mathrm{a}}\right)-6$

SCHEME 3 Synthesis of pyridine $\operatorname{bis}($ oxazoline $)\left(\boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{R}_{\boldsymbol{a}}\right)$-6
enantiomer in enantiomerically pure form, enough to characterization purposes, were obtained. The corresponding analytical check of the several collected fractions in the resolution of rac-3 is shown in Figure 4.

After resolution by semipreparative HPLC, each enantiomer of compound $\mathbf{3}$ was hydrolyzed as described above and the assignment of the absolute configuration of β-amino alcohol $\mathbf{4}^{2} \mathbf{n d}$ derived from the of second eluted enantiomer of $\mathbf{3}$ was determined. Absolute configuration determination was performed by ${ }^{1} \mathrm{H}$ using both enantiomers of Boc- β-phenylglycine (BPG) as chiral solvating agent (CSA), as described by Pazos et al. ${ }^{24}$ for others β-amino alcohols. Previously, the unambiguous assignment of each signal to the corresponding hydrogens of the cyclohexyl moiety of amino alcohol $\mathbf{4}$ was performed using bidimensional NMR experiments (COSY and ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC).

The ${ }^{1} \mathrm{H}$ NMR spectrum of an equimolecular mixture of the enantiopure amino alcohol 4^{2} nd and (R)-BPG performed in CDCl_{3} was compared with that obtained in a parallel way with a mixture of $\mathbf{4}^{\mathbf{2}} \mathbf{n d}$ and (S)-BPG. Comparison of (R)-BPG/4 $\mathbf{4}^{2}$ nd and (S)-BPG $/ 4^{2} \mathbf{n d}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra showed that the signals due to the $\mathrm{C}(\gamma)$ protons were shifted downfield in the spectrum of (S)-BPG $/ \mathbf{4}^{2}$ nd $\left[\Delta \delta^{R S}<0\right]$. On the other hand, signals due to the $C\left(\gamma^{\prime}\right)$ protons were shifted upfield in (S)-BPG $/ 4^{2}$ nd $\left[\Delta \delta^{R S}>0\right]$ (Figure 5).

This different behavior of the shifts of $\mathrm{C}(\gamma)$ and $\mathrm{C}\left(\gamma^{\prime}\right)$ protons in both complexes and the resulting signs of $\Delta \delta^{R S}$ are fully consistent with an association between the enantiopure amino alcohol $\mathbf{4}^{\mathbf{2}}$ nd and the chiral solvating
agent according to the model previously proposed by Pazos et al. ${ }^{24}$ Noncovalent interactions between the CSA and the β-amino alcohol led to an arrangement where a side of the amino alcohol is located under the shielding cone of the BPG phenyl group. This side is different depending on the configuration of BPG (Figure 6). In such way, for the enantiomer studied, $\mathrm{C}(\gamma)$ hydrogens resonate at a higher field in the presence of (R)-BPG than in the presence of (S)-BPG $\left[\Delta \delta^{R S}<0\right]$, and the opposite occurs for $\mathrm{C}\left(\gamma^{\prime}\right)$ hydrogens. According to this model, the absolute configuration of 1,2 -amino alcohol $\mathbf{4}^{2}$ nd derived from basic hydrolysis of second eluted enantiomer of 3 should be S_{a}.

One prominent use of chiral amino alcohols is the synthesis of compounds containing a chiral oxazoline ring, which have become one of the most successful, versatile, and commonly used classes of ligands for asymmetric catalysis. As a consequence of their ready accessibility, modular nature, and applicability in metalcatalyzed transformations these ligands have been used with great success in a wide range of asymmetric reactions. ${ }^{25-29}$ With both enantiomers of axially chiral amino alcohol 4 in enantiomerically pure form in hand, a new class of bis(oxazoline) and pyridine bis(oxazoline) ligands with a chiral axis at the C_{4} position have been prepared from ($\left.\boldsymbol{R}_{\boldsymbol{a}}\right) \mathbf{- 4}$ according to Cornejo et al. ${ }^{30}$ one-pot procedure. Condensation of the chiral β-amino alcohol ($\left.\boldsymbol{R}_{a}\right)-\mathbf{4}$ (2 mmol) with 2,2-dimethylmalononitrile (1 mmol) using stoichiometric amounts of zinc triflate (1 mmol) under refluxing toluene gave bis(oxazoline) ($\boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{R}_{\boldsymbol{a}}$)-5 in $\mathbf{5 5 \%}$ yield after 48 h (Scheme 2).

The same reaction using pyridine-2,6-dicarbonitrile required only 24 h to give pyridine bis(oxazoline) $\left(\boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{R}_{\boldsymbol{a}}\right)$-6 in 70% yield. (Scheme 3). In this reaction, only catalytic amounts of $\mathrm{Zn}(\mathrm{OTf})_{2}$ were needed.

4 | CONCLUSION

In summary, we have described here an easy and efficient protocol for the synthesis and semipreparative HPLC resolution of new axially chiral β-amino alcohols. Box and pybox ligands with new structural features have been obtained in just one step using Zn (OTf)2 to promote condensation of the β-amino alcohol with the corresponding dicarbonitrile.

ACKNOWLEDGMENTS

Financial support from the Government of Aragón (E45_20R) is acknowledged. Authors wish to thank A. I. Pallarés Pallarés, and M. Nuño Tutor for some HPLC experiments and J. Alegre Fernández de Heredia for taking part in pybox synthesis, as part of their Project-
oriented Studies during the course of their studies of Chemistry Degree (University of Zaragoza).

DATA AVAILABILITY STATEMENT

Additional supporting information may be found online in the Supporting Information section at the end of this article.

ORCID

María D. Díaz-de-Villegas (D) https://orcid.org/0000-0001-9033-8459

REFERENCES

1. Bergmeier SC. The synthesis of vicinal amino alcohols. Tetrahedron. 2000;56:2561-2576. doi:10.1016/S0040-4020(00)00149-6
2. Gupta P, Mahajanb N. Biocatalytic approaches towards the stereoselective synthesis of vicinal amino alcohols. New J Chem. 2018;42:12296-12327. doi:10.1039/c8nj00485d
3. Heravi MM, Lashaki TB, Fattahi B, Zadsirjan V. Application of asymmetric sharpless aminohydroxylation in total synthesis of natural products and some synthetic complex bio-active molecules. RSC Adv. 2018;8(12):6634-6659. doi:10.1039/c7ra12625e
4. Ager DJ, Prakash I, Schaad DR. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev. 1996;96(2):835-875. doi:10.1021/cr9500038
5. Fache F, Schulz E, Tommasino ML, Lemaire M. Nitrogencontaining ligands for asymmetric homogeneous and heterogeneous catalysis. Chem Rev. 2000;100(6):2159-2232. doi:10.1021/ cr9902897
6. Reddy UVS, Chennapuram M, Seki C, Kwon E, Okuyama Y, Nakano H. Catalytic efficiency of primary β-amino alcohols and their derivatives in organocatalysis. Eur J Org Chem. 2016; 2016(24):4124-4143. doi:10.1002/ejoc.201600164
7. Mancinelli M, Bencivenni G, Pecorari D, Mazzanti A. Stereochemistry and recent applications of axially chiral organic molecules. Eur J Org Chem. 2020;2020(27):4070-4086. doi:10.1002/ ejoc. 201901918
8. Tajuddeen N, Bringmann G. N,C-coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat Prod Rep. 2021;38:2154-2186. doi:10. 1039/d1np00020a
9. Zask A, Murphy J, Ellestad GA. Biological stereoselectivity of atropisomeric natural products and drugs. Chirality. 2013;25: 265-274. doi:10.1002/chir. 22145
10. Hoffmann-Röder A, Krause N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew Chem Int Ed. 2004;43:1196-1216. doi:10.1002/anie. 200300628
11. Kitagawa O. Chiral Pd-catalyzed enantioselective syntheses of various N-C axially chiral compounds and their synthetic applications. Acc Chem Res. 2021;54:719-730. doi:10.1021/acs. accounts.0c00767
12. Yu S, Ma S. Allenes in catalytic asymmetric synthesis and natural product syntheses. AngewChemInt Ed. 2012;51:3074-3112. doi:10.1002/anie. 201101460
13. Bringmann G, Tasler S, Pfeifer RM, Breuning M. The directed synthesis of axially chiral ligands, reagents, catalysts, and natural products through the 'lactone methodology'.

J Organometallic Chem. 2002;661:49-65. doi:10.1016/S0022-328X(02)01819-3
14. Cativiela C, Díaz-de-Villegas MD, Gálvez JA. Synthesis and chemical resolution of unique α, β-didehydroamino acids with a chiral axis. Tetrahedron Lett. 1999;40:1027-1030. doi:10.1016/ S0040-4039(98)02517-9
15. Cativiela C, Díaz-de-Villegas MD, Gálvez JA, Su G. Synthesis and conformational properties of model dipeptides containing novel axially chiral α, β-didehydroamino acids at the $(i+1)$ position of a β-turn conformation. Tetrahedron. 2004;60: 11923-11932. doi:10.1016/j.tet.2004.09.066
16. Cativiela C, Díaz-de-Villegas MD, Gálvez JA, Sub G. Horner-Wadsworth-Emmons reaction for the synthesis of unusual α, β-didehydroamino acids with a chiral axis. Arkivoc. 2004;iv: 59-66. doi:10.3998/ark.5550190.0005.408
17. López-Ram-de-Víu P, Gálvez JA, Díaz-de-Villegas MD. Highperformance liquid chromatographic enantioseparation of unusual amino acid derivatives with axial chirality on polysaccharide-based chiral stationary phases. J Chromatogr a. 2005;1390:78-85. doi:10.1016/j.chroma.2015.02.055
18. Cox GB. Preparative Enantioselective Chromatography. Blackwell Publishing Ltd; 2005.
19. Sardella R, Ianni F, Marinozzi M, Macchiarulo A, Natalini B. Laboratory-scale preparativeenantioseparations of pharmaceutically relevant compounds on commercially available chiral stationary phases for HPLC. Curr. Med. Chem. 2017;24:796-817. doi:10.2174/0929867323666160907111107
20. Pinto MMM, Fernandes C, Tiritan ME. Chiral separations in preparative scale: a medicinal chemistry point of view. Molecules. 2020;25:1931 doi:10.3390/molecules25081931
21. Avenoza A, Cativiela C, Busto JH, Fernández-Recio MA, Peregrina JM, Rodríguez F. New synthesis of 7-azabicyclo [2.2.1]heptane-1-carboxylic Acid. Tetrahedron. 2001;57(3):545548. doi:10.1016/S0040-4020(00)01023-1
22. Residual solvent signals were set according toFulmer GR, Miller AJM, Sherden NH, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29(9):2176-2179. doi:10.1021/ om100106e
23. It is very important to use dry zinc triflate to ensure that the reaction takes place until completion. Otherwise, reaction does not progress properly from mono (oxazoline) to bis(oxazoline), and, furthermore, the presence of that intermediate makes it difficult to isolate the desired bis(oxazoline). Thus, commercial zinc triflate is kept dry in a desiccator and, before use, it is dried under vacuum at 125 for 2 h according toCorey EJ, Shimoji K. Magnesium and zinc-catalyzed thioketalization. Tetrahedron Lett. 1983;24:169-172. doi:10.1016/S0040-4039(00) 81357-X
24. Pazos Y, Leiro V, Seco JM, Quiñoa E, Riguera R. Bocphenylglycine: a chiral solvating agent for the assignment of the absolute configuration of amino alcohols and their ethers by NMR. Tetrahedron: Asymmetry. 2004;15(12):1825-1829. doi: 10.1016/j.tetasy.2004.04.032
25. Connon R, Roche B, Rokade BV, Guiry PJ. Further developments and applications of oxazoline-containing ligands in asymmetric catalysis. Chem Rev. 2021;121:6373-6521. doi:10. 1021/acs.chemrev.0c00844
26. Yang G, Zhang W. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis. ChemSoc Rev. 2018;47: 1783-1810. doi:10.1039/c7cs00615b
27. Babu SA, Krishnan KK, Ujwaldev SM, Anilkumar G. Applications of pybox complexes in asymmetric catalysis. Asian J Org Chem. 2018;7:1033-1053. doi:10.1002/ajoc. 201800094
28. Liao A, Sun XL, Tang Y. Side arm strategy for catalyst design: modifying bisoxazolines for remote control of enantioselection and related. Acc Chem Res. 2014;47:2260-2272. doi:10.1021/ ar800104y
29. Desimoni G, Faita G, Jørgensen KA. Update 1 of: C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem Rev. 2011;11:PR284-PR437. doi:10.1021/ cr100339a
30. Cornejo A, Fraile JM, García JI, et al. An efficient and general one-pot method for the synthesis of chiral bis(oxazoline) and pyridine bis(oxazoline) ligands. Synlett. 2005;(15):2321-2324. doi:10.1055/s-2005-872672

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: López-Ram-de-Víu P, Gálvez JA, Díaz-de-Villegas MD. Synthesis, resolution, and absolute configuration determination of a vicinal amino alcohol with axial chirality. Application to the synthesis of new box and pybox ligands. Chirality. 2022;34(8):1140-1150. doi:10.1002/chir. 23475

[^0]: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
 © 2022 The Authors. Chirality published by Wiley Periodicals LLC.

