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Summary
Objectives: This survey analyses the latest literature contribu-
tions to clinical decision support systems (DSSs) on a two-year 
period (2017-2018), focusing on the approaches that adopt 
Artificial Intelligence (AI) techniques in a broad sense. The goal 
is to analyse the distribution of data-driven AI approaches with 
respect to “classical” knowledge-based ones, and to consider the 
issues raised and their possible solutions. 
Methods: We included PubMed and Web of ScienceTM publi-
cations, focusing on contributions describing clinical DSSs that 
adopted one or more AI methodologies. 
Results: We selected 75 papers, 49 of which describe approaches 
in the data-driven AI area, 20 present purely knowledge-based 
DSSs, and 6 adopt hybrid approaches relying on both formalized 
knowledge and data. 
Conclusions: Recent studies in the clinical DSS area demonstrate 
a prevalence of data-driven AI, which can be adopted auton-
omously in purely data-driven systems, or in cooperation with 
domain knowledge in hybrid systems. Such hybrid approaches, 
able to conjugate all available knowledge sources through proper 
knowledge integration steps, represent an interesting example 
of synergy between the two AI categories. This synergy can lead 
to the resolution of some existing issues, such as the need for 
transparency and explainability, nowadays recognized as central 
themes to be addressed by both AI and medical informatics 
research.
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1   Introduction
Clinical decision-support systems (DSSs) 
aim to enhance healthcare decision-making, 
with the final objective to improve the quality 
of care provided by healthcare organizations 
[1, 2]. Since earlier years, clinical DSSs 
have been often conceived as applications of 
Artificial Intelligence (AI) methodologies to 
medical domains [3]. Examples range from 
the so-called “expert systems” based on 
rules [4], to approaches relying on models 
of deeper and more principled human rea-
soning, like, e.g., causal reasoning [5], to 
more recent proposals exploiting fuzzy logic, 
Bayesian networks, case-based reasoning 
(CBR), and other techniques (see, e.g., [6, 
7]). AI-based DSSs have been used as aids 
across a wide range of medical tasks among 
various medical specialties.

According to the Barcelona Declaration 
for the Proper Development and Usage of 
Artificial Intelligence in Europe [3], AI 
methodologies can be divided into two 
fundamentally different categories: knowl-
edge-based AI and data-driven AI. Knowl-
edge-based AI consists in “an attempt to 
model human knowledge in computational 
terms, starting in a top-down fashion from 
human self-reporting of what concepts and 
knowledge individuals use to solve problems 
or answer queries in a domain of expertise, 
including common sense knowledge”, 
and “formalizes and operationalizes this 
knowledge in terms of software. It rests 
primarily on highly sophisticated but now 
quite standard symbolic computing tech-
nologies and has already had a huge impact” 
[3]. Data-driven AI, on the other hand, is 
characterized by “starting in a bottom-up 
fashion from large amounts of data of human 

activity, which are processed with statistical 
machine learning methods […] in order to 
abstract patterns that can then be used to 
make predictions, complete partial data, or 
emulate human behaviour in similar condi-
tions in the past. Data-driven AI requires big 
data and very substantial computing power 
to reach adequate performance levels” [3]. 
Knowledge-based methodologies are well 
established, but less able to exploit large 
volumes of data, and to automatically 
build a knowledge model by generalizing 
from data themselves. In fact, knowledge 
models often remain human-developed. 
Knowledge acquisition and formalization 
is thus a “bottleneck”, which consumes 
development time and requires a significant 
initial effort. On the other hand, data-driven 
methodologies are currently receiving a 
lot of attention, thanks to the large amount 
of data available in electronic form, to the 
availability of powerful computing archi-
tectures, and to the significant advancement 
of machine learning techniques that are 
able to extract characteristic features and 
to identify patterns from data with a high 
level of accuracy. 

Interestingly enough, Chen et al. [8] 
have recently analysed this AI category 
distinction, referring to the field of clinical 
DSSs. They have observed that the knowl-
edge-based approach to clinical decision 
support is limited in scale, due to the lack 
of evidence in some domains as well as to 
the cost of human knowledge authoring 
processes. On the contrary, taking advantage 
of the accumulated clinical data, stored, e.g., 
in electronic patient records, powerful data-
driven clinical decision support systems can 
be implemented, possibly leading to more 
effective outcomes in practice.
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Data-driven approaches, however, might 
lack in transparency and explainability, 
while, as highlighted by Shortliffe et al. 
[9], a clinical DSS should enable users to 
“understand the basis for any advice or rec-
ommendations that are offered”.

In this survey, we analyse the latest liter-
ature contributions to clinical DSSs (years 
2017-2018), focusing on approaches that 
adopt AI techniques. Our main goal is to 
understand if “classical” knowledge-based 
DSSs are still being proposed, or if, as in 
other domains, earlier AI principles and 
methods are less represented, in favour of 
big data analytics and machine learning 
approaches. The challenges of the surveyed 
methodological choices are analysed, with 
a particular focus on the transparency and 
explainability issues, nowadays recognized 
as central themes to be addressed by AI and 
medical informatics research, as mentioned 
above. Promises deriving from synergies 
between the two AI categories are also 
discussed. 

2   Methods 
We have considered two bibliographic 
repositories, namely PubMed and Web of 
ScienceTM (WoS), restricting searches to 
years 2017 and 2018 (up to November). 

Given the focus of our survey, PubMed 
was queried specifying (in AND) the 
MeSH terms “Decision Support System, 
Clinical” and “Artif icial Intelligence”. 
Considering that some contributions may 
not adopt MeSH terms, we have also 
searched PubMed by specifying some 
related keywords to be searched for (one 
at a time) in the title, namely “machine 
learning”, “expert system”, “information 
retrieval”, “cognitive aid”. The search with 
the keyword “machine learning” actually 
proved to be too generic (as commented in 
the Results section below), so we repeated 
a more focused query that searched for the 
keywords “machine learning” and “deci-
sion” (in AND) in the title. We admitted 
only papers in English, where the abstract 
was available. We first assessed the appro-
priateness of the retrieved papers by reading 
their abstracts. Those papers that were not 

excluded in this phase were read in full, by 
dividing the effort equally between the two 
co-authors.

WoS does not provide MeSH term fil-
tering; therefore, we indicated “Decision 
Support” (“Clinical Decision Support” 
was considered less inclusive) and “Artifi-
cial Intelligence” (in AND) as topics, and 
limited our areas of interest to “Medical 
Informatics”, “Computer Science Artificial 
Intelligence”, “Computer Science Infor-
mation Systems”, and “Computer Science 
Interdisciplinary Applications”. By reading 
the title and the abstract, we could focus 
on the papers of interest. In this case also, 
papers that were not excluded were read in 
full, by dividing the effort equally between 
the two co-authors.

As a general policy, we excluded works 
that did not describe a DSS, but we kept 
the papers that (1) were reviews or existing 
tools comparisons, or (2) coped with related 
issues, such as the need for data interopera-
bility, or (3) were limited to the presentation 
of a preliminary design work. 

Papers were categorized on the basis of 
the adopted methodology and task.

3   Results
As regards to PubMed, through the MeSH 
term search we retrieved 68 papers, 29 of 
which were excluded after the abstract/full 
paper reading assessment.

The “cognitive aid” keyword search 
returned 6 papers, but none of them was 
devoted to the description of a DSS. 

The “machine learning” keyword search 
returned 1,778 papers; however, this list was 
too general, since it included aids of very 
different complexity, typically much simpler 
than a DSS. We then restricted the search 
by adding the “decision” keyword in AND. 
This solution returned 15 papers. After the 
abstract/full paper reading assessment that 
led us to identify 8 papers not meeting the 
study criteria, and after having excluded 3 
additional papers already retrieved by the 
MeSH term search, we kept 4 works.

The “expert system” keyword search pro-
vided us with 36 papers, but 19 of them were 
out of scope (e.g., focused on chemistry/

pharmacology), or did not describe a DSS. 
After having excluded 2 additional papers 
already retrieved by the MeSH term search, 
we kept 15 works. 

The “information retrieval” keyword 
search produced 31 papers. Only 2 of them 
met the selection criteria.

The WoS search returned 113 papers, 17 
of which were pertinent and fulfilled our 
selection criteria. Two of these 17 papers had 
been retrieved by the PubMed search as well, 
so we kept 15 works. 

In summary, 75 papers were considered 
in our analysis.

Figure 1 illustrates the overall review flow.
When reading the papers, we distin-

guished the retrieved works on the basis of 
the adopted methodology, considering the 
two main categories (i.e., data-driven vs. 
knowledge-based DSSs), and refining the 
distinction by identifying appropriate sub-
groups. The presence of hybrid approaches 
was identified as well. We also highlighted 
the main supported task.

Our results are reported in the following 
subsections. 

3.1   Data-driven Decision Support
Out of the 75 retrieved papers, 49 can be 
categorized as data-driven decision sup-
port approaches [10-58]. As regards to the 
addressed task, a large part of these contri-
butions deals with prediction, intended as 
classification or regression [10-15, 17-19, 
21-36, 38-42, 44-46, 48, 49, 52-54, 57]. 
One work is focused on association rule 
mining [20], and one adopts statistics for 
risk analysis [55]. A set of papers deal with 
information extraction from natural language 
texts [16, 33, 43], or more specifically from 
electronic patient record data [32, 37, 44 ,50 
,56]. The extracted information can then be 
exploited for classification purposes [33], 
for statistical correlation and knowledge 
integration [32, 43], or for outlier detection 
[37]. Retrieval and interpretation of similar 
complex data, such as time series, images, 
voice recordings, or radiotherapy plans are 
addressed in [17, 30, 31, 34, 38, 47, 53, 58]. 

As regards to the adopted methodologies, 
interestingly, a large part of the classification 
approaches adopts more than one machine 
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learning techniques [10-14, 16, 21, 22, 24-27, 
33, 39, 42, 45, 48-51, 54, 57], such as Support 
Vector Machines (SVM), Neural Networks 
(NN), Decision Trees, and Bayesian models, 
in synergy or in competition. The work in 
[14], for instance, adopts machine learning 
to find out relevant Single Nucleotide Poly-
morphisms (SNPs) related to Type 2 diabetes, 
and to predict patient risk. The authors use 
the Random Forest technique to search for 
the most important attributes related to dia-
betes. SVM and Logistic Regression (LR) are 
also adopted. Their performances have been 
compared to that achieved by Random For-
est. Moreover, the relevance of the attributes 
obtained through Random Forest has then 
been used to perform predictions with the 
k-Nearest Neighbour method, weighting the 
attributes in the similarity measure according 
to the relevance provided by Random Forest 
itself. Working on 677 subjects, Random 
Forest has outperformed all the other tested 

machine learning techniques in terms of pre-
diction accuracy (0.853 with respect to 0.835 
with LR and 0.825 with SVM on raw data), 
and in terms of the stability of the estimated 
relevance of the attributes. 

NN deserve a special consideration, since 
they are the key technique adopted in many 
of the retrieved papers [15, 17-19, 28–30, 35, 
40, 41, 52, 58]. Indeed, image interpretation 
and classification are fields where NN/deep 
learning approaches work well [59]. As an 
example, the paper in [30] exploits a convo-
lutional NN for detecting haemorrhage, mass 
effect, or hydrocephalus at non-contrast-en-
hanced head computed tomographic exam-
inations, and for identifying suspected acute 
infarct. In a retrospective study analysing 
2,583 representative images, the approach 
has provided promising results in detecting 
critical findings at non-contrast-enhanced 
head computed tomography. Suspected acute 
infarct detection has shown lower sensitivity 

(62%) with respect to hydrocephalus detec-
tion (80%), but higher specificity (96% with 
respect to 90%). The authors plan to conduct 
further investigation in a controlled and 
prospective clinical setting.

The use of NN requires the choice of 
proper methods to train the network itself. 
The work in [17], for instance, proposes 
a novel algorithm based on predator-prey 
particle swarm optimization, to train the 
weights of a rather simple NN architecture 
(a single-hidden layer NN). The approach, 
applied in the field of magnetic resonance 
image interpretation, has outperformed six 
state-of-the-art methods. 

Papers dealing with information extraction 
from text, images, time series, or voice record-
ings, adopt proper methodologies, such as 
natural language processing techniques (e.g., 
[32]), NN (e.g., [58]), or voice analysis [53]. 
Table 1 shows the distribution of the surveyed 
data-driven works by task and by methodology. 

Records identified through 
additional queries in PubMed 

(n = 88)

Records identified in WoS 
(n = 113)

Records identified through MeSH 
term searching in PubMed

(n =  68)

Abstract/Full-text articles assessed for
eligibility (n =   269)

Articles included
in duplicate screening 

(n =   82)

Articles excluded for not
meeting the study criteria

(n = 187)

Articles included in the study
(n =  75)

Fig. 1   Flow of the review process.
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Table 1   Distribution of the surveyed data-driven works by task and by methodology.

Task 
 

 
Methodology 

As
so

ci
at

io
n 

ru
le

s 

D
ec

is
io

n 
tre

es
 

H
id

de
n 

M
ar

ko
v 

M
od

el
s 

(H
M

M
) 

N
eu

ra
l n

et
w

or
ks

 

N
LP

 

R
et

rie
va

l 
te

ch
ni

qu
es

 

St
at

is
tic

s 

SV
M

 

Vo
ic

e 
an

al
ys

is
 

M
ul

tip
le

 m
et

ho
ds

  

To
ta

l 

Image interpretation  47  17, 30, 58  34, 38     6 
Prediction  23 31 15, 17-19, 

28-30, 35, 
40, 41, 52 
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39 

Risk analysis       55    1 
Rule mining 20          1 
Time series 
interpretation 

  31        1 

Voice interpretation         53  1 
Text interpretation 
and prediction   

    16, 43, 
44, 50, 

56 

 32, 37, 
43 

  16, 33, 50 8 

Total 1 2 1 12 6 2 4 2 1 22 – 
 

3.2   Knowledge-based Decision 
Support
Out of the 75 papers we analysed, 26 reported 
the adoption of knowledge-based AI methods 
[60-85], possibly in combination with data-
driven methods [61, 63, 70, 71, 74, 76]. This 
later group of 6 hybrid approaches will be 
specifically detailed in the next subsection.

The knowledge-based methods explicitly 
represent knowledge as symbols in the form 
of rules, ontologies, past cases, or other types 
of knowledge structures. Specifically, the 
surveyed approaches ranged from the use 
of ontologies [61, 62, 67-69], to rule-based 
reasoning (including the adoption of fuzzy 
rules) [64, 66-68, 72-75, 78-80, 82-85], to 
the definition of semantic or associative net-
works [76, 77], to temporal reasoning [65], 
to probabilistic models such as Bayesian 
Networks [60, 63, 70, 81], and to case base 
reasoning CBR [61, 71]. 

As regards to the addressed task, most 
works deal with diagnosis [60, 62, 64, 70, 73, 

74, 77-80, 82, 84, 85] or therapy/treatment 
support [61-63, 66, 75, 81], while some 
works address classification [83], patient’s 
behaviour tracking or activity scheduling 
[65], and training [68]. A set of papers deals 
with computer-interpretable guidelines 
(CIGs) [67, 69, 71, 72].

As an example, the paper in [67] affords 
the issue of reconciling multiple clinical 
guidelines for decision support in comor-
bid patients. The developed tool exploits 
semantic web technologies to achieve 
knowledge modelling and knowledge 
integration, by aligning multiple ontologi-
cally-modelled clinical pathways to develop 
a unif ied comorbid patient knowledge 
model. Guideline execution using reason-
ing engines to derive guideline-mediated 
recommendations is also supported. The 
tool has been analysed in the domain of 
Atrial Fibrillation and Chronic Heart Fail-
ure. Table 2 shows the distribution of the 
surveyed knowledge-based works by task 
and by methodology. 

3.3   Hybrid Approaches
Rather interestingly, among the 26 knowl-
edge-based approaches we analysed in sec-
tion 3.2, 6 papers report on more properly 
hybrid approaches, since they are able to take 
advantage of both formalized knowledge and 
available data [61, 63, 70, 71, 74, 76]. This is 
a quite natural situation when adopting prob-
abilistic graphical models such as Bayesian 
Networks, where domain knowledge is typi-
cally exploited to build the network structure 
and/or to identify the key variables (i.e., the 
qualitative network information), but condi-
tional probability tables (i.e., the quantitative 
network information) are then learned/
refined from the available data [63, 70, 76]. 
CBR is also intrinsically “hybrid”, since it 
conjugates the use of formalized knowledge, 
e.g., the case structure definition, with the 
exploitation of past operative examples, i.e., 
of data [61, 71]. However, we found also 
other less typical proposals, such as the work 
in [74]. This specific paper presents a DSS 
to be used in the domain of Anti-Phospho-
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we reviewed in this survey can be categorized 
in the data-driven methodological area. This 
finding demonstrates that knowledge-based 
methods are less represented than statistical 
and machine learning approaches in the very 
recent literature. Indeed, machine learning 
methodologies are particularly appropriate 
when dealing with high dimensional data, 
such as time series or medical images. As 
regards to medical image classification, in 
particular, deep learning tools are proving 
particularly suitable. More generally, taking 
advantage of the data accumulated across 
the entire care continuum in multiple data 
sources, medical professionals can use 
data-driven DSSs to improve patient care 
more successfully than knowledge-based 
techniques. 

As a matter of fact, the exploitation of all 
the available patient data is a key element to 
be considered in a DSS. In fact, in addition to 
the papers analysed in this survey, using the 
MeSH keywords described in the “Methods” 
section, we retrieved from PubMed other 
works (e.g., [86, 87]) that dealt with interop-
erability, knowledge integration and knowl-
edge management, as pre-requisites towards 

the development of a clinical DSS. While 
technically speaking these works could not 
be included in the survey, as they do not 
describe a DSS, they show the centrality of 
these themes. In particular, they suggest that 
the use of standard terminologies, such as 
SNOMED-CT, can help to actually imple-
ment interoperability. Moreover, developing 
user-friendly knowledge authoring tools and 
automatic knowledge acquisition facilities, 
implementing dimensionality reduction and 
missing value imputation as data preparation 
steps, can support the creation of sharable 
and interoperable knowledge as well. 

The paper in [87] also highlights another 
topic: data-driven AI can be cost-effective, 
but also potentially beyond human abilities. 
Building and adopting machine learning 
techniques can be relatively easy, but under-
standing the provided outcome is sometimes 
difficult and obscure, due to the typical 
black-box nature of machine learning. 

The need for transparency and explain-
ability is nowadays being recognized as a 
central theme to be addressed by AI research. 
As an example, the DARPA research fund-
ing agency in the US highlights this issue 

lipid Syndrome diagnosis, which relies on a 
logic programming approach for knowledge 
representation and reasoning, complemented 
with a NN, where neuron connections are 
learned and tuned from the data, and do 
not mirror any explicit or easily explainable 
domain knowledge. 

Combinations of several machine learn-
ing methods are also frequent, as already 
mentioned in the “Data-driven decision 
support” section and can be provided in order 
to compare classification results obtained 
through different techniques (see e.g., [11]), 
to realize ensemble learning (see e.g., [27]), 
or more generally to implement a more com-
plex strategy able to overcome the results of 
simpler approaches (see e.g., [10]).

4   Discussion
The main goal of this survey was to iden-
tify a possible prevalence of data-driven AI 
methodologies in the development of clinical 
DSSs, with respect to knowledge-based 
approaches. In fact, 65% of the papers that 

Table 2   Distribution of the surveyed knowledge-based works by task and by methodology.
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through its “Explainable Artificial Intelli-
gence” initiative [88]. Focusing on the field 
of clinical DSSs, the paper in [9] also clearly 
states that “black boxes are unacceptable”, 
since a clinical DSS must enable end users 
to understand all the generated suggestions. 

Very interestingly, DARPA [88] proposes 
the combination of knowledge-based and 
data-driven methods as a solution to meet 
future challenges of AI, beginning with 
explainability. Even though every system 
should implement its own explanation 
module, which may vary on the basis of 
the application domain and of the adopted 
methodologies and algorithms, we believe 
that, in general, the synergy between differ-
ent knowledge types and AI methodologies 
can in fact represent a promising strategy to 
deal with transparency and explainability 
issues. Indeed, various examples of hybrid 
systems, combining formalized knowledge 
and learnt knowledge have been retrieved 
in this survey. This could be a direction to 
follow, in order to improve DSS competence, 
flexibility, and, of course, explainability. 
Therefore, it is also our opinion that the 
already mentioned theme of knowledge inte-
gration will remain a key research direction 
for the future.

As a f inal consideration, it is worth 
mentioning that this survey has some lim-
itations. In particular, it has a rather narrow 
focus, namely AI for DSSs. This choice was 
motivated by the special topic of the current 
edition of the IMIA Yearbook (2019). As a 
consequence, the number of examined works 
is rather limited, and interesting contribu-
tions to the field of DSSs may have been 
left out. Similarly, some works may have 
been ignored, if not indexed by PubMed or 
WoS, or not accessible through our queries. 
Indeed, we are aware of some interesting 
contributions that were left out, such as, 
e.g., the work in [89] in the area of deep 
learning for medical image interpretation, 
and the work in [90] in the area of CIGs. 
CIGs, in particular, represent a very active 
research field [91], testified in our survey 
by the works in [67, 69, 71, 72], where AI 
is typically adopted for domain knowledge 
representation, and for automated reasoning 
as well. In order to avoid the exclusion of 
further papers, we did not concentrate only 
on journal publications, as it was done in 

[92], and we did not limit our search to 
papers focusing on a specific study design, 
as in [93], or to papers strictly selected 
on the basis of the quality of the reported 
study, as in [94]. Finally, it is worth noting 
that this study covers a much more limited 
time frame (two years), with respect to more 
comprehensive and elaborated surveys, such 
as the ones in [95, 2].

5   Conclusion 
Recent works in the clinical DSS area 
demonstrate a prevalence of data-driven AI, 
with respect to knowledge-based classical 
approaches. Despite their success, however, 
data-driven methods may lack transparency 
in how a conclusion is reached, while the 
capability of explaining and justifying their 
outcome to the end user is central in the 
medical domain [9]. The synergy between 
different knowledge types and between the 
two categories of AI methodologies could 
represent a promising strategy to deal with 
transparency issues. As the Barcelona Dec-
laration for the Proper Development and 
Usage of Artificial Intelligence in Europe 
[3] states, in fact, “the full potential of AI 
will only be realized with a combination of 
these two approaches”. An effort towards the 
definition of hybrid systems, able to integrate 
knowledge-based and data-driven methods, 
is already witnessed in the recent literature. 
Such a strategy also entails data interoper-
ability and knowledge integration issues, to 
allow the exploitation of different knowledge 
sources; recent works are approaching this 
theme as well. We believe that the use of 
hybrid approaches for DSSs will be a key 
direction for the future. Indeed, the powerful 
and promising data-driven DSSs can strongly 
benefit of methods based on knowledge 
formalization, and of their generalization 
and abstraction capabilities, which can be 
proven particularly helpful to provide a really 
explainable decision support. 
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