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Background-—Hyperglycemia may be associated with worse outcome after intracerebral hemorrhage (ICH). We assessed the
association of early glycemic trajectory on ICH mortality and edema growth.

Methods and Results-—We included patients from the Helsinki ICH study with glucose measurements at least once between both
0 to 24 and 24 to 72 hours from onset. Hyperglycemia was defined as blood glucose ≥8 mmol/L (144 mg/dL) based on the local
threshold for treatment. Glycemic trajectory was defined on maximum values 0 to 24 and 24 to 72 hours after ICH: (1) persistent
normoglycemia in both epochs; (2) late hyperglycemia (only between 24 and 72 hours); (3) early hyperglycemia (only before
24 hours); and (4) persistent hyperglycemia in both epochs. Logistic regression with known predictors of outcome estimated the
association of glycemic trajectory and 6-month mortality. A generalized linear model assessed the association of glycemic
trajectory and interpolated 72-hour edema extension distance. A total of 576 patients met eligibility criteria, of whom 214 (37.2%)
had persistent normoglycemia, 44 (7.6%) late hyperglycemia, 151 (26.2%) early hyperglycemia, and 167 (29.0%) persistent
hyperglycemia. Six-month mortality was higher in the persistent (51.1%) and early (26.3%) hyperglycemia groups than the
normoglycemia (19.0%) and late hyperglycemia (3.6%) groups. Persistent hyperglycemia was associated with 6-month mortality
(odds ratio 3.675, 95% CI 1.989–6.792; P<0.001). Both univariate (P=0.426) and multivariable (P=0.493) generalized linear model
analyses showed no association between glycemic trajectory and 72-hour edema extension distance.

Conclusion-—Early hyperglycemia after ICH is harmful if it is persistent. Strategies to achieve glycemic control after ICH may
influence patient outcome and need to be assessed in clinical trials. ( J Am Heart Assoc. 2017;6:e005760. DOI: 10.1161/JAHA.
117.005760.)
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T he current American Stroke Association guidelines
endorse avoidance of hyperglycemia in patients with

intracerebral hemorrhage (ICH).1 The recommendation was
based on association of hyperglycemia and poor outcome in
observational studies.2–5 The major limitation of these studies
is use of single glucose measurement not accounting for
potential glucose fluctuations after ICH. Six studies (n=60–
295)6–11 have utilized multiple glucose measurements in
analysis of ICH outcome with mixed results. In preclinical
studies, hyperglycemia increases neuronal cell death and

brain edema by enhancing breakdown of the blood–brain
barrier.12,13 It is plausible that hyperglycemia could mediate
secondary injury through similar mechanisms in human ICH.

There is emerging evidence that secondary injury from
perihematomal edema is associated with poor ICH out-
come.14,15 Edema is strongly correlated with hematoma
volume, but other mediators of edema growth including
glucose are uncertain.14 It is possible that glucose and edema
evolution are mechanistically related, making them potential
modifiable therapeutic targets.
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The aims of this study are to evaluate the impact of early
glycemic trajectory on ICH mortality and edema growth. We
hypothesized that persistent hyperglycemia is associated with
increased mortality and edema growth.

Methods

Patients
Patients from the Helsinki ICH study16 (HICHS) were included.
Briefly, HICHS is a retrospective analysis of 1013 consecutive
ICH patients admitted to Helsinki University Hospital between
January 2005 and March 2010. Data collection was per-
formed retrospectively by chart review.16 Patients were
excluded from the current analysis if there was no imaging
data available, had missing 6-month mortality data, or had no
glucose measurement either within 24 hours and/or between
24 and 72 hours of ICH onset. Stroke onset time was
determined from witnessed onset in 363 (63.0%) patients and
from last known well time in 213 (37.0%) patients. Institu-
tional approval for the study was granted by the Helsinki
University Hospital, and patient consent was not required as
there was no patient contact in this observational study
registry.

Planimetric ICH and Edema Volume
Ascertainment
Hematoma and edema volumes were segmented using
semiautomated planimetry.17 Briefly, de-identified computed
tomography images were loaded on Analyze 12.0 (Biomedical
Imaging Resource; Mayo Clinic). Edematous regions were
segmented using a fixed lower Hounsfield Unit (HU) of 5 and a
flexible upper limit with a ceiling of 33 Hounsfield Units,
comparing with the unaffected hemisphere for visual estimate
of edema versus leukoaraiosis. For ICH, Hounsfield Unit range
was kept within 44 to 100 Hounsfield Units. T.Y.W. performed
segmentation on all scans. The segmented regions of interest

were subjected to in-house processing to derive volumes that
take into account gantry tilt and true slice thickness as
reported in detail elsewhere.17

Glycemic Trajectory Determination
Hyperglycemia was defined as blood glucose ≥8 mmol/L
(144 mg/dL) based on the local threshold for treatment. The
Helsinki protocol during the study was to provide sliding scale
insulin when the glucose was ≥8 mmol/L. Glycemic trajectory
was defined on maximum values 0 to 24 and 24 to 72 hours
after ICH. Four categories were determined: (1) persistent
normoglycemia in both epochs; (2) late hyperglycemia (only
between 24 and 72 hours); (3) early hyperglycemia (only
before 24 hours); and (4) persistent hyperglycemia in both
epochs.

Edema Metric and Interpolated 72-Hour Edema
Volume
Edema extension distance (EED), a recently reported edema
metric, was used in assessing the association of glycemic
trends and edema growth.18 We have previously reported
average edema growth trajectory derived from a negative
exponential formula (EED growth=0.1629days�0.927,
R2=0.82) utilizing data from HICHS.19 This growth rate
equates to the average expected EED at any time point from
ictus=2.2109days0.07331�1.478. As the patients were
scanned at different time points in routine clinical practice,
we interpolated the EED from the observed time of an
individual’s EED closest to 72-hour time point, assuming the
same proportional growth to derive the expected 72-hour EED
for the individual patient. In other words, if the patient’s last
scan was at 48 hours and was 70% of the average expected
EED at this time point, we assumed the patients to also have
70% of average expected 72-hour EED.

Statistical Analysis
Standard descriptive statistics were used. Differences in
patient characteristics, stroke severity, and imaging metrics
between the glycemic trajectories were assessed on univari-
ate analysis using v2 or Fisher exact test for categorical
variables and Mann–Whitney test for continuous variables. We
used mortality at 6 months, the common time point of end
point in ICH trials.20,21 Survival differences between the
glycemic trajectories were performed using the log rank test
and plotted on Kaplan–Meier curve. Association with glycemic
trend categories with 6-month mortality was assessed in a
logistic regression model adjusted for log-transformed
hematoma volume, age, male sex, prior warfarin use, baseline
National Institutes of Health Stroke Scale (NIHSS), Glasgow

Clinical Perspective

What Is New?

• Only half of intracerebral hemorrhage patients with baseline
hyperglycemia remain persistently hyperglycemic.

• Association with mortality was only observed in patients
with persistent hyperglycemia.

What Are the Clinical Implications?

• Optimizing glycemic status early after intracerebral hemor-
rhage may improve outcome after intracerebral hemor-
rhage.
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Coma Scale (GCS), presence of intraventricular extension,
male sex, and infratentorial location, which are factors
associated with ICH outcome.16 Baseline ICH volume was
log transformed before logistic regression analysis to avoid
potential confounding by outliers. Collinearity between the
covariates in the logistic regression model was checked. The
model fit was tested using receiver operating characteristic
area under the curve. The impact of glycemic trajectory on
model fit was assessed by using a base model with log-
transformed ICH volume and age as covariates, a second
model with all covariates other than glycemic trajectory, and
finally the full model. In the secondary analyses, we repeated
the primary analysis by replacing glucose trajectory with the
maximum recorded glucose as continuous variable from each
epoch (0–24 and 24–72 hours) adjusting for all predefined
variables. Correlation between the maximum recorded glu-
cose from the 2 epochs was assessed using Pearson
correlation. Further, we assessed the association of absolute
change in maximum glucose from 0 to 24 hours to 24 to
72 hours and mortality adjusted for 0 to 24-hour glucose and
other predefined covariates as listed above. In addition, the
logistic regression analysis was also performed adjusting for
hematoma growth (defined as 6-mL growth or 33% relative
growth on follow-up computed tomography) in the subset of
patients with follow-up imaging available. Finally, we per-
formed a propensity-score matching analysis by estimating
the propensity score for the covariates included in the primary
logistic regression model. Matching was performed to the
nearest neighbor with caliper set at 0.1 SD of the logit of the
propensity scores. The primary analysis was then repeated in
the propensity-score-matched population. Association
between glycemic trajectory categories and interpolated
EED was analyzed using generalized linear model adjusted
for factors associated (P<0.1) with increased edema on
univariate analysis. A P<0.05 in the multivariable models was
considered significant. Propensity-score matching was per-
formed using R 3.1.0 MatchIt package while all other
statistics were performed using SPSS 23 (IBM, Armonk, NY).

Results
Of 1013HICHS patients, 576 (57%) were eligible for the present
analysis. Reasons for excluding 437 patients were the follow-
ing: no planimetric data (n=19), missing 6-month mortality
(n=10), or missing glucose data (n=408) in either or both time
windows mostly because of late presentation or early death/
palliation, as illustrated in Figure 1. Excluded patients were
older (70 versus 65), more likely to have a history of ischemic
heart disease (15.8% versus 10.4%) or previous ICH (7.3%
versus 3.8%), at baseline had lower GCS (14 versus 15), higher
NIHSS (13 versus 10), larger ICH volume (18.0 mL versus
13.4 mL), absolute edema volume (14.4 mL versus 10.1 mL),

and EED (0.37 cm versus 0.32 cm), more often irregular
hematoma shape (55.4% versus 44.3%), infratentorial location
(16.7% versus 12.0%), ventricular extension (45.1% versus
38.0%), and had higher 6-monthmortality (39.2% versus 23.8%).
In the excluded patients because of early death or palliation
(n=167), the highest recorded glucose in the 0 to 24-hour epoch
was higher than the included patients (9.40 mmol/L versus
8.30 mmol/L, P<0.001) and they were more likely to be
hyperglycemic at 0 to 24 hours (123/167 [73.7%] versus 318/
576 [55.2%], P<0.001). Excluded patients were thus either mild
and late, or with characteristics making them prone to early
palliation and death (Table S1).

Baseline Patient Characteristics and Glycemic
Trajectory
Of the 576 patients in the analysis, 214 (37.2%) had
persistent normoglycemia, 44 (7.6%) late only hyperglycemia,
151 (26.2%) early only hyperglycemia, and 167 (29.0%)
persistent hyperglycemia. In 318 (55%) patients with hyper-
glycemia within 24 hours of ictus, 167 (53%) remained
persistently hyperglycemic (Figure 1). The glycemic trajectory
groups differed by presence of hypertension, diabetes melli-
tus, insulin, antiplatelet, anti-hypertensive medication and
statin use, rate of infection, neurosurgery, baseline NIHSS,
GCS, ICH and absolute edema volumes, hematoma shape,
infratentorial location, and ventricular extension (Table 1). The
6-month mortality rate also differed between different
glycemic trajectory groups, with the highest mortality
observed in patients with early and persistent hyperglycemia
on univariate analysis (Table 1, Figure 2).

Factors Associated With 6-Month Mortality
There were 137 (23.8%) deaths by 6 months and factors
associated with 6-month mortality on univariate analysis were
older age, prior use of warfarin or antihypertensive medica-
tion, evidence of infection, lower GCS, higher NIHSS, higher
baseline ICH and absolute edema volumes, irregular hema-
toma shape, ventricular extension, and 72-hour EED (Table 2).

In the multivariable logistic regression model, persistent
hyperglycemia was associated with 6-month mortality (odds
ratio [OR] 3.675, 95% CI 1.989–6.792; P<0.001) adjusted for
log-transformed baseline ICH volume, baseline absolute
edema volume, male sex, age, ventricular extension, infraten-
torial location, NIHSS, and GCS (Table 3). Based on the Wald
statistic, glycemic trajectory had the strongest association
with outcome of all the covariates. The variance inflation
factor was <3.0 between the covariates in the model
indicating no significant multicollinearity. The logistic regres-
sion model was of good fit (area under the curve 0.877, 95%
CI 0.846–0.908) and the addition of glycemic trajectory into
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base models containing known predictors of outcome
provided the best fit (Table S2).

Neither surgery (OR 0.560, 95% CI 0.247–1.270, P=0.165)
nor presence of infection (OR 0.911, 95% CI 0.546–1.540,
P=0.744) was associatedwith 6-monthmortality when included
in the model or influenced the association of persistent
hyperglycemia and mortality (with surgery—OR 3.676, 95% CI
1.985–6.807, P<0.001; with infection—OR 3.693, 95% CI
1.997–6.828, P<0.001.) There was also no interaction of
surgery (P=0.965) or presence of infection (P=0.594) on the
association between glycemic trajectory and mortality. The
association with 6-month mortality in the persistent hyper-
glycemia group remained significant after excluding the 89
patients with diabetes mellitus (OR 5.139, 95% CI 2.545–
10.376, P<0.001).

In the secondary analyses, glucose as a continuous
variable was associated with 6-month mortality in both the

0 to 24-hour (OR 1.075 per mmol/L increase, 95% CI
1.018–1.135, P=0.009) and 24 to 72-hour (OR 1.140 per
mmol/L increase, 95% CI 1.050–1.238, P=0.002) epochs.
There was a significant correlation between the maximum
glucose measurements in each epoch (Pearson correlation
0.541, P<0.001). Absolute glucose change between the
maximum readings from the 2 epochs was also associated
with 6-month mortality (OR 1.101 per mmol/L increase,
95% CI 1.002–1.210, P=0.046) in the logistic regression
analysis adjusting for the predefined covariates and max-
imum glucose from 0 to 24-hour epoch. In the 184 (31.9%)
patients with baseline (<12 hours from ictus) and follow-up
computed tomography (12–72 hours from ictus) available,
introducing hematoma growth into the logistic regression
model did not influence the association of persistent
hyperglycemia on mortality (OR 3.674, 95% CI 1.307–
10.332, P=0.014).

Helsinki ICH study
n=1013

n=984 patients

Excluded
Missing planimetric data n=19 
Missing mortality data n=10 

107 excluded due to missing 0-24 hour glucose data 
96 presenting >24 hours from onset 
11 not measured for other reason 

234 excluded due to missing 24-72 hour glucose data
110 due to early death
57 due to early palliation

31 due to early hospital discharge
36 not measured for other reason 

67 excluded from missing glucose data in both epochs
37 presenting >72 hours from onset 
30 not measured for other reason 

Included in analysis
n=576 patients

0-24 hour Glucose <8 mMol/L
n=258

0-24 hour glucose 8 mMol/L
n=318

Persistent normogylcemia 
n=214

24-72 hour glucose <8 mMol/L
n=365

24-72 hour glucose 8 mMol/L
n= 211

Late hyperglycemia
n=44

Early hyperglycemia 
n=151

Persistent hyperglycemia 
n=167

Figure 1. Study flow chart. ICH indicates intracerebral hemorrhage.
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Propensity-Score Matching Analysis
Propensity-score matching resulted in a reduced number of
patients in each glycemic trajectory group (total n=266;
glycemic trajectory groups: persistent normoglycemia n=81,
early only hyperglycemia n=71, late only hyperglycemia n=44,
and persistent hyperglycemia n=70) with matched baseline
characteristics (Table S3). In the multivariable logistic
regression analysis, the association between persistent
hyperglycemia and mortality remained (OR 3.653, 95% CI
1.357–9.836, P=0.010) (Table S4).

Association Between Glycemic Trajectory and
Interpolated 72-Hour EED
In the generalized linear model analyses, there was no
association between glycemic trajectory groups and
interpolated 72-hour EED in either univariate (P=0.426)
or multivariable analyses (P=0.493, Table S5, adjusted
for log baseline ICH volume, diabetes mellitus, history of
hypertension, irregular hematoma shape, baseline
NIHSS, ventricular extension, and infratentorial loca-
tion).

Table 1. Baseline Patient Characteristics and Glycemic Trajectory

Total,
n=576

Persistent
Normoglycemia,
n=214

Late
Hyperglycemia,
n=44

Early
Hyperglycemia,
n=151

Persistent
Hyperglycemia,
n=167 P Value

Age 66 (57–84) 69 (58–86) 66 (57–84) 62 (57–85) 66 (58–84) 0.537

Male sex 342 (59.4%) 128 (59.8%) 24 (54.5%) 85 (56.3%) 105 (62.9%) 0.597

Hypertension 357 (62.0%) 109 (50.9%) 29 (65.9%) 89 (58.9%) 130 (77.8%) <0.001

Diabetes mellitus 89 (15.5%) 5 (2.3%) 2 (4.5%) 14 (9.3%) 68 (40.7%) <0.001

Atrial fibrillation 75 (13.0%) 27 (12.6%) 7 (15.9%) 20 (13.2%) 21 (12.6%) 0.942

Ischemic heart disease 60 (10.4%) 14 (6.5%) 6 (13.6%) 16 (10.6%) 24 (14.4%) 0.081

Cardiac failure* 30 (5.3%) 7 (3.3%) 2 (4.5) 12 (7.9%) 9 (5.5%) 0.268

Dyslipidemia* 121 (21.2%) 42 (19.7%) 12 (27.3%) 22 (14.8%) 45 (27.4%) 0.033

Previous ICH 22 (3.8%) 8 (3.7%) 3 (6.8%) 7 (4.6%) 4 (2.4%) 0.517

Antiplatelet use 138 (24.0%) 48 (22.4%) 6 (13.6%) 22 (14.6%) 62 (37.1%) <0.001

Warfarin use 71 (12.3%) 25 (11.7%) 5 (11.4%) 22 (14.6%) 19 (11.4% 0.810

Anti-hypertensive medication 267 (46.4%) 80 (37.4%) 19 (43.2%) 66 (43.7%) 102 (61.1%) <0.001

Insulin use* 35 (6.3%) 1 (0.5%) 1 (2.3%) 2 (1.3%) 32 (19.3%) <0.001

Statin use* 110 (19.3%) 37 (17.3%) 9 (20.5%) 16 (11.0%) 48 (28.9%) 0.001

Neurosurgery 64 (11.1%) 14 (6.5) 5 (11.4%) 28 (18.5%) 17 (10.2%) 0.004

Any infection† 305 (53.0%) 95 (44.4%) 24 (54.5%) 87 (57.6%) 99 (59.3%) 0.016

Baseline GCS 15 (12–15) 15 (14–15) 15 (13–15) 14 (10–15) 13 (10–15) <0.001

Baseline NIHSS 10 (5–34) 7 (3–22) 8 (5–25) 13 (6–35) 13 (7–35) <0.001

Time to baseline CT scan 2.7 (1.5–8.1) 3.0 (1.5–11.4) 4.4 (1.8–12.7) 2.3 (1.4–5.4) 2.5 (1.4–6.1) 0.006

Baseline ICH volume, mL 13.4 (5.6–79.2) 10.3 (3.9–57.3) 9.0 (4.3–73.2) 16.1 (7.2–85.3) 17.8 (7.8–96.0) <0.001

Baseline edema volume, mL 10.1 (3.9–61.2) 9.0 (3.5–43.6) 10.6 (3.5–51.4) 10.9 (4.1–51.6) 10.3 (5.1–80.2) 0.047

Baseline EED, cm 0.32 (0.19–0.44) 0.33 (0.19–0.44) 0.33 (0.18–0.50) 0.30 (0.20–0.41) 0.31 (0.18–0.47) 0.733

72-h EED, cm 0.87 (0.62–1.20) 0.60 (0.42–0.78) 0.60 (0.46–0.82) 0.65 (0.42–0.91) 0.63 (0.43–0.91) 0.429

Peak available EED, cm 0.51 (0.32–0.78) 0.51 (0.33–0.75) 0.51 (0.35–0.60) 0.51 (0.30–0.88) 0.54 (0.33–0.80) 0.496

Irregular hematoma shape‡ 255 (44.3%) 77 (36.0%) 15 (34.1%) 73 (48.7%) 90 (53.9%) 0.002

Infratentorial location 69 (12.0%) 18 (8.4%) 2 (4.5%) 28 (18.5%) 21 (12.6%) 0.011

Ventricular extension 219 (38.0%) 65 (30.4%) 11 (25.0%) 65 (43.0%) 78 (46.7%) 0.001

6-mo mortality 137 (23.8%) 26 (12.1%) 5 (11.4%) 36 (23.8%) 70 (41.9%) <0.001

Data are median (interquartile range) or n (%). CT indicates computed tomography; EED, edema extension distance; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; NIHSS,
National Institutes of Health Stroke Scale.
*Missing data for prior statin (6) and insulin (3) use, history of cardiac failure (9), and dyslipidemia (6).
†Infection was defined as pneumonia, urinary tract infection, sepsis, or other infection treated with antibiotics.
‡Hematoma shape not classified for 1 patient with pure IVH.
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Discussion
We have shown in a large sample of ICH patients that early
hyperglycemia is only associated with ICH mortality if the
hyperglycemia is persistent. The association of persistent
hyperglycemia with mortality remained robust even after
excluding patients known to have diabetes mellitus and
following propensity-score-matching analysis.

A large number of observational studies (21 studies, total
number of patients=12 145, Table S6)2–11,22–32 have exam-
ined the association between glucose with ICH outcome with
the majority (15 studies, total n=11 161) defining hyper-
glycemia on the basis of single glucose measurement. One
notable study was the post hoc analysis of the Intensive Blood
Pressure Reduction in Acute Cerebral Hemorrhage Trial
(INTERACT) II study (n=2653).30 The authors assessed the
prognostic significance of admission glucose level on 90-day
outcome. This study reported that admission glucose both as
a continuous variable and also the highest quartile
(>7.9 mmol/L) was associated with combined outcome of
death or disability (adjusted OR per mmol/L glucose 1.35,
95% CI 1.01–1.33, P=0.043; adjusted OR for fourth quartile of
glucose level 1.34, 95% CI 1.01–1.80, P for trend 0.015).

Six studies (n=984)6–11 reported results for more than
single glucose measurement. Although studies by Tapia-Perez
et al10 and Koga et al11 reported an association between
glucose and outcome (Table S6), these studies (n=298)
derived the outcome association from a single glucose
measurement, even though multiple time points were
reported. Our secondary analyses using glucose as

continuous variable at both the 0 to 24 and 24 to 72-hour
epochs are in agreement with these findings. However, we
can only report the true natural history of glucose below the
cutoff for glucose-lowering treatment and our results do not
provide insight into the natural peak of glucose reached in
hyperglycemic patients. The results of the secondary analyses
therefore need to be interpreted within this context.

Four studies (Table S6) evaluated glycemic trajectory on
ICH outcome. In the post hoc analysis of the Antihypertensive
Treatment of Acute Cerebral Hemorrhage I (ATACH I, n=60)8

study, increasing glycemic trend in the first 72 hours was
associated with 2.5-fold increase in risk of 90-day death or
disability on univariate analysis, but this was not significant
when adjusted for GCS, ICH volume, and ventricular extension
(relative risk 1.19, 95% CI 0.92–1.54, P value not reported).
Feng et al assessed the impact of hyperglycemia (mean
glucose over 72 hours of ≥150 mg/dL) in 135 ICH patients9

and found no association between hyperglycemia and 90-day
death or disability (OR 1.06, 95% CI 0.42–2.66, P value not
reported). Godoy et al reported in 295 patients that those
with persistent hyperglycemia in the 72 hours after ICH
(n=78) had higher 30-day mortality (80%) compared with
other glycemic trajectory groups on univariate analysis
(P<0.001), but no multivariable analysis was reported.7

Schwarz et al analyzed the impact of persistent hyperthermia
at 72 hours on poor outcome (OR for hyperthermia >48-hour
duration 13.52, 95% CI 2.22–82.23, P=0.005) in 196 ICH
patients.6 In the multivariable analysis, persistent hyper-
glycemia (defined as >11.0 mmol/L for more than 24-hour
duration, n=32) was associated with poor discharge outcome
(OR 13.54, 95% CI 2.24–81.78, P=0.005). There was no
association between hyperglycemia of <24-hour duration with
outcome (Table S6). Our results, derived from a significantly
larger sample size (n=576), are in concordance with that
reported by Schwarz,6 and suggests that hyperglycemia is
only harmful after ICH if it persists.

We did not find a significant association with ICH mortality
in the subgroup of patients (n=44, 7.7% of cohort) classified
with late-only hyperglycemia (OR 0.965, 95% CI 0.298–3.129,
P=0.952). These results were derived from a small sample
size with a point estimate that approached 1 and a wide
confidence interval. The negative association needs to be
considered in this context and late hyperglycemia should still
be managed as per current best practice guidelines.1

Although our secondary analyses showed increasing glucose
levels in both epochs to be associated with mortality, it is
likely the outcome association is driven by patients with
persistent rather than transient hyperglycemia as demon-
strated in the primary analysis.

The mechanism through which hyperglycemia mediates
ICH outcome is uncertain. It is plausible that hyperglycemia
reflects more severe brain injury resulting from larger baseline
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Figure 2. Kaplan–Meier survival curve according to glycemic
trajectory.
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hematoma volume (Table 1). However, our logistic regression
analyses indicate the robust association of persistent hyper-
glycemia and mortality even after adjusting for surgery,
evidence of infection, and hematoma growth, which are
factors that also influence outcome. It is possible that
hyperglycemia exacerbates secondary injury. In rat ICH
models, hyperglycemia was associated with increased neu-
ronal death and brain edema caused by worsened blood–brain

barrier disruption.12,13 However, data from INTERACT II
showed no association between baseline hyperglycemia and
24-hour absolute edema growth (glucose ≥6.5 mmol/L
versus <6.5 mmol/L, 2.6 mL versus 3.0 mL edema growth,
respectively, P=0.293).30 We were also unable to demon-
strate an association between hyperglycemia and 72-hour
EED. In humans, hyperglycemia induces inflammatory cytoki-
nes and the effect persists until return to normoglycemic

Table 2. Baseline Patient Characteristics Associated With 6-Month Mortality

Total, n=576
Dead at 180 Days,
n=137

Alive at 180 Days,
n=439 P Value

Age, per y 66 (57–76) 72 (60–80) 65 (57–75) <0.001

Male sex 342 (59.4%) 90 (65.7%) 252 (57.4%) 0.085

Hypertension 357 (62.0%) 93 (67.9%) 264 (60.1%) 0.103

Diabetes mellitus 89 (15.5%) 26 (19.0%) 63 (14.4%) 0.191

Atrial fibrillation 75 (13.0%) 22 (16.1%) 53 (12.1%) 0.226

Ischemic heart disease 60 (10.4%) 20 (14.6%) 40 (9.1%) 0.066

Cardiac failure* 30 (5.3%) 8 (6.0%) 22 (5.1%) 0.670

Dyslipidemia* 121 (21.2%) 24 (17.5%) 97 (22.2%) 0.305

Previous ICH 22 (3.8%) 6 (4.4%) 16 (3.6%) 0.695

Antiplatelet use 138 (24.0%) 34 (24.8%) 104 (23.7%) 0.787

Warfarin use 71 (12.3%) 24 (17.5%) 47 (10.7%) 0.034

Antihypertensive medication 267 (46.4%) 76 (55.5%) 191 (43.5%) 0.014

Insulin use* 36 (6.3%) 10 (7.5%) 26 (5.9%) 0.520

Statin use* 110 (19.3%) 26 (19.7%) 84 (19.2%) 0.895

Neurosurgery 64 (11.1%) 15 (10.9%) 49 (11.2%) 0.945

Any infection 305 (53.0%) 88 (64.2%) 217 (49.4%) 0.002

Baseline GCS 15 (12–15) 12 (7–14) 15 (13–15) <0.001

Baseline NIHSS 10 (5–17) 18 (13–24) 8 (4–13) <0.001

Time to baseline CT scan, h 2.7 (1.5–8.1) 2.4 (1.3–6.2) 2.9 (1.5–8.5) 0.087

Baseline ICH volume, mL 13.4 (5.6–34.2) 33.2 (13.5–62.0) 10.4 (4.3) <0.001

Baseline edema volume, mL 10.1 (3.9–21.8) 18.3 (7.4–40.1) 9.0 (3.5–17.6) <0.001

Baseline EED, cm 0.32 (0.19–0.44) 0.35 (0.20–0.48) 0.31 (0.18–0.44) 0.134

72-h EED, cm 0.62 (0.43–0.86) 0.67 (0.49–0.92) 0.60 (0.41–0.85) 0.029

Irregular hematoma shape† 255 (44.3%) 93 (67.9%) 162 (37.0%) <0.001

Infratentorial location 69 (12.0%) 18 (13.1%) 51 (11.6%) 0.632

Ventricular extension 219 (38.0%) 83 (60.6%) 136 (31.0%) <0.001

Glycemic trajectory groups <0.001

Persistent normoglycemia 214 (37.2%) 26 (19.0%) 188 (42.8%) <0.001

Late hyperglycemia 44 (7.6%) 5 (3.6%) 39 (8.9%) 0.044

Early hyperglycemia 151 (26.2%) 36 (26.3%) 115 (26.2%) 0.985

Persistent hyperglycemia 167 (29.0%) 70 (51.1%) 97 (22.1%) <0.001

Data are median (interquartile range) or n (%). CT indicates computed tomography; EED, edema extension distance; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; NIHSS,
National Institutes of Health Stroke Scale.
*Missing data for prior statin (6) and insulin (3) use, history of cardiac failure (9), and dyslipidemia (6).
†Hematoma shape not classified for 1 patient with pure intraventricular hemorrhage.
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state.33 Further, there is evidence of progressive increase in
perihematomal glucose metabolism in human ICH peaking at
day 3, likely in response to increased perihematomal inflam-
matory cell infiltrate.34 It is therefore likely that hyperglycemia
contributes to secondary neuronal injury by exacerbating the
cerebral inflammatory milieu and oxidative stress,35 resulting
in cellular injury in a process that is difficult to quantify
clinically. The effects of hyperglycemia on brain injury are
additive to primary injury resulting from the hematoma.
Finally, hyperglycemia is also associated with increased risk of
cardiac and infectious complications.2

Two large randomized controlled trials have examined
glycemic control on stroke outcome. The UK Glucose Insulin
in Stroke Trial (GIST-UK) enrolled 933 (134 [14.4%] were ICH)
stroke patients with admission glucose between 6.0 and
17.0 mmol/L to targeted glycemic control (4.0–7.0 mmol/L)
or no intervention.36 There was no reduction in 90-daymortality
in the intervention group (OR 1.14, 95% CI 0.86–1.51, P=0.37).
The Quality in Acute Stroke Care (QASC) study randomized
1126 (51 [4.5%] were ICH) acute stroke patients in stroke units
to a set of protocolized interventions for managing glucose,
fever, and swallowing dysfunction or guideline management.
The intervention group had reduced likelihood of 90-day death
or disability (42% versus 58%, P=0.002).37 Interpreting these
findings in ICH is difficult because of the small number of
patients. In QASC it is unclear which of the 3 interventions
contributed to mortality reduction.37 In GIST-UK >50% of
patients had baseline glucose of <8.0 mmol/L, below the
threshold for insulin treatment used in the present study.

Therefore, our results cannot be interpreted in the light of
intervention because only the persistent normoglycemia group
(n=214, 37%) received no insulin treatment and in the remaining
362 (63%) patients the glucose was spontaneously elevated
before treatment. Although our results are based on a
retrospective cohort, the consistent association between
hyperglycemia in this study and previous observational data
indicate an urgent need to assess glycemicmanagement on ICH
outcome in randomized controlled trials.

We acknowledge the study limitations including firstly the
potential for bias and chance associations in retrospective
studies. We tried to minimize bias by predefining our study
population and analysis a priori. Secondly, we had to exclude
43% of the patients in the HICHS predominately because of
early death, early palliation, or late presentation (Figure 1). The
excluded patients had worse neurological injury and higher
mortality (Table S1), thus the clinical relevance of hyper-
glycemia in these patients is less clear. Thirdly, we do not have
hemoglobin A1C measurements in most patients, and some
patients with persistent hyperglycemia may have undiagnosed
diabetes mellitus. Although diabetic patients had more persis-
tent hyperglycemia, diabetes mellitus was not associated with
mortality in the present cohort. Furthermore, the association of
persistent hyperglycemia with mortality remained after exclud-
ing patients with known diabetes mellitus and also after
propensity-score-matching analysis. Fourthly, the lack of
association between glycemic trajectory and 72-hour edema
was based on EED derived from interpolating EED volume
obtained at a median time of 24 hours from ictus. The EEDmay

Table 3. Multivariable Logistic Regression Model on Factors Associated With 6-Month Mortality

All Patients, n=576 Excluding Diabetic Patients, n=487

OR P Value Wald OR P Value Wald

Glycemic trajectories ��� <0.001 22.288 ��� <0.001 24.882

Late hyperglycemia* 0.965 (0.298–3.129) 0.952 0.004 1.046 (0.324–3.380) 0.940 0.006

Early hyperglycemia* 1.290 (0.657–2.535) 0.459 0.547 1.350 (0.669–2.724) 0.402 0.702

Persistent hyperglycemia* 3.675 (1.989–6.792) <0.001 17.252 5.139 (2.545–10.376) <0.001 20.843

Log of baseline ICH volume, per 1† 3.515 (1.493–8.276) 0.004 8.274 3.724 (1.437–9.651) 0.007 7.326

Baseline edema volume, mL 0.997 (0.982–1.012) 0.727 0.122 0.994 (0.977–1.011) 0.462 0.542

Age, per y 1.054 (1.030–1.078) <0.001 20.664 1.058 (1.032–1.085) <0.001 19.834

Male sex 1.719 (1.033–2.861) 0.037 4.349 1.700 (0.971–2.975) 0.063 3.448

Warfarin use 1.981 (0.997–3.935) 0.051 3.807 2.761 (1.249–6.104) 0.012 6.298

Baseline NIHSS, per point 1.097 (1.051–1.145) <0.001 18.175 1.096 (1.043–1.151) <0.001 13.204

Baseline GCS, per point 0.954 (0.863–1.055) 0.362 0.831 0.964 (0.857–1.084) 0.540 0.376

Infratentorial location 1.208 (0.533–2.739) 0.651 0.205 1.242 (0.518–2.977) 0.627 0.236

Ventricular extension 1.746 (1.060–2.877) 0.029 4.783 1.628 (0.929–2.852) 0.088 2.902

GCS indicates Glasgow Coma Scale; ICH, intracerebral hemorrhage; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio.
*Compared with persistent normoglycemia.
†All baseline ICH volume had addition of 1.0 before log transformation to allow inclusion of 3 patients with 0 baseline volume because of pure ventricular hemorrhage.
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not accurately represent the natural evolution in these patients,
and our negative association needs to be interpreted in the
context of this limitation. Fifth, we do not have information on
functional outcome ormedical causes of death andwere unable
to provide insight into potential associations with hyper-
glycemia. Finally, the results are derived from a single-center
study, which may limit generalizability.

Conclusion
Over half of ICH patients experienced early hyperglycemia,
which is only associated with higher mortality when it
persists. Strategies to achieve glycemic control after ICH
may influence patient outcome and need to be assessed in
randomized controlled trials.
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SUPPLEMENTAL MATERIAL 
 



Table S1. Baseline characteristics between included and excluded patients. 

 Total 

n=1013 

Included 

n=576 

Excluded 

n=437 

p 

Age 68 (58-78) 66 (57-76) 70 (59-79) <0.001 

Male sex 582 (57.5%) 342 (59.4%) 240 (54.9%) 0.159 

Hypertension 637 (62.9%) 357 (62%) 280 (64.1%) 0.512 

Diabetes mellitus 148 (14.6%) 89 (15.5%) 59 (13.5%) 0.419 

Atrial fibrillation 146 (14.4%) 75 (13.0%) 71 (16.2%) 0.150 

Ischemic heart disease 129 (12.7%) 60 (10.4%) 69 (15.8%) 0.013 

Cardiac failure 49 (4.9%) 30 (5.3%) 19 (4.4%) 0.558 

Dyslipidemia 197 (19.7%) 121 (21.2%) 76 (17.7%) 0.173 

Previous ICH 54 (5.3%) 22 (3.8%) 32 (7.3%) 0.016 

Antiplatelet use 265 (26.2%) 138 (24.0%) 127 (29.1%) 0.071 

Warfarin use 133 (13.1%) 71 (12.3%) 62 (14.2%) 0.399 

Anti-hypertensive medication 489 (48.3%) 267 (46.4%) 222 (50.8%) 0.163 

Insulin use 54 (5.4%) 36 (6.3%) 18 (4.2%) 0.160 

Statin use 191 (19.2%) 110 (19.3%) 81 (19.0%) 0.935 

Baseline GCS 14 (10-15) 15 (12-15) 14 (8-15) <0.001 

Baseline NIHSS 11 (4-20) 10 (5-17) 13 (4-25) 0.008 

Time to baseline CT scan, hours 3.8 (1.6-16.0) 2.7 (1.5-8.1) 9.8 (2.0-43.0) <0.001 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are median (interquartile range) or n (%). 

Abbreviations: EED, edema extension distance; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; NIHSS, National Institutes of 

Health Stroke Scale

Baseline ICH volume 14.25 (5.7-40.1) 13.4 (5.6-34.2) 18.0 (6.1-52.2) 0.002 

Baseline edema volume 11.35 (4.1-27.7) 10.1 (3.9-21.8) 14.4 (4.6-37.5) <0.001 

Baseline EED, per cm 0.34 (0.19-0.48) 0.32 (0.19-0.44) 0.37 (0.21-0.52) <0.001 

Peak EED, per cm 0.48 (0.28-0.71) 0.51 (0.32-0.78) 0.42 (0.22-0.64) <0.001 

72 hour EED, per cm 0.60 (0.29-0.86) 0.62 (0.43-0.86) 0.56 (0.36-0.86) 0.021 

Irregular hematoma shape 484 (49.0%) 255 (44.3%) 229 (55.4%) 0.001 

Infratentorial location 142 (14.0%) 69 (12.0%) 73 (16.7%) 0.036 

Ventricular extension 416 (41.1%) 219 (38.0%) 197 (45.1%) 0.024 

6-month mortality 347 (34.6%) 137 (23.8%) 210 (39.2%) <0.001 



Table S2. Model fit with different logistic regression models. 

 

Variables in model  AUC 

Log baseline ICH volume and age 0.761 (0.717-0.808) 

All predefined variables 

excluding glycemic trajectory 

0.863 (0.829-0.897) 

Full model* 0.877 (0.846-0.908) 

 

Abbreviations: AUC, area under curve; ICH, intracerebral hemorrhage. 
*Covariates in the full model are log baseline ICH volume, baseline National Institutes of Health Stroke Scale, baseline Glasgow Coma 
Scale score, baseline edema volume, age, previous warfarin use, infratentorial location and presence of ventricular extension.



Table S3. Baseline characteristics in the propensity score matched population. 

 

Data are median (interquartile range) or n (%).  

GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; NIHSS, National Institutes of Health Stroke Scale. 

 Total 

n=266 

Persistent 

normoglycemia 

n=81 

Late 

hyperglycemia 

n=44 

Early 

hyperglycemia 

n=71 

Persistent 

hyperglycemia 

n=70 

p 

Age 66 (57-76) 69 (57-76) 66 (57-77) 62 (57-77) 65 (58-76) 0.800 

Male sex 144 (54.1%) 40 (49.4%) 24 (54.5%) 40 (56.3%) 40 (57.1%) 0.769 

Warfarin use 31 (11.7%) 8 (9.9%) 5 (11.4%) 9 (12.7%) 9 (12.9%) 0.936 

Baseline GCS 15 (13-15) 15 (14-15) 14 (13-15) 15 (12-15) 15 (13-15) 0.574 

Baseline NIHSS 9 (4-15) 6 (3-14) 8 (5-13) 10 (6-16) 12 (6-16) 0.066 

ICH volume 12.6 (5.7-27.8) 11.8 (5.8-26.3) 9.0 (4.3-24.4) 15.7 (5.9-33.8) 13.1 (6.2-26.9) 0.363 

Baseline edema volume, mL 10.8 (4.1-21.3) 11.9 (5.2-21.0) 10.6 (3.5-15.2) 12.2 (4.1-24.2) 7.6 (3.9-20.5) 0.318 

Infratentorial location 11 (4.1%) 2 (2.5%) 2 (4.5%) 3 (4.2%) 4 (5.7%) 0.795 

Ventricular extension 75 (28.2%) 25 (30.9%) 11 (25.0%) 20 (28.2%) 19 (27.1%) 0.909 

6-month mortality 45 (16.9%) 10 (12.3%) 5 (11.4%) 8 (11.3%) 22 (31.4%) 0.003 



Table S4. Multivariable logistic regression model in propensity score matched population on 

factors associated with 6-month mortality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Compared with persistent normoglycemia; GCS indicates Glasgow Coma Scale; ICH, 

intracerebral hemorrhage; NIHSS, National Institutes of Health Stroke Scale.  †All baseline 

ICH volume had addition of 1.0 prior to log transformation to allow inclusion of 3 patients 

with 0 baseline volume due to pure ventricular hemorrhage. ‡ No deaths occurred in patients 

with infratentorial hemorrhage in the propensity score matched population. 

 

 

 

 

 All patients, n=266 

 OR p 

Glycemic trajectories - 0.004 

Late hyperglycemia* 0.928 (0.250-3.448) 0.911 

Early hyperglycemia* 0.608 (0.190-1.944) 0.402 

Persistent hyperglycemia* 3.653 (1.357-9.836) 0.010 

Log of baseline ICH volume, per 1† 4.000 (0.889-17.991) 0.071 

Baseline edema volume, mL 0.997 (0.972-1.022) 0.809 

Age, per year 1.057 (1.019-1.095) 0.003 

Male sex 2.029 (0.887-4.643) 0.094 

Warfarin use 2.955 (1.045-8.350) 0.041 

Baseline NIHSS, per point 1.126 (1.041-1.218) 0.003 

Baseline GCS, per point 1.025 (0.849-2.243) 0.796 

Ventricular extension 0.933 (0.388-2.243) 0.877 

Infratentorial location ‡     -   - 



Table S5. Generalized linear model on association of glycemic status on extrapolated 72-hour edema extension distance (EED) in centimeters. 

 
 

beta SE Wald p 

Glycemic trajectory - - 2.401 0.493 

Normoglycemia (reference) - - - - 

Late hyperglycemia -0.004 0.092 0.002 0.965 

Early hyperglycemia 0.091 0.062 2.203 0.138 

Persistent hyperlycemia 0.050 0.067 0.561 0.454 

Log ICH vol, per 1 0.334 0.066 25.781 <0.001 

Irregular hematoma shape 0.055 -0.057 0.938 0.333 

Ventricular extension -0.184 0.051 13.243 <0.001 

Infratentorial location -0.474 0.074 41.101 <0.001 

NIHSS, per point 0.005 0.003 2.893 0.089 

Hypertension -0.033 0.502 0.435 0.510 

Diabetes mellitus -0.205 0.074 7.787 0.005 

ICH indicates intracerebral hemorrhage; NIHSS, National Institutes of Health Stroke Scale; SE, standard error



Table S6. Studies investigating the association of glucose and outcome after intracerebral hemorrhage. 

 
Studies that used baseline blood glucose only (15 studies, n=11,161) 

Author, year Country Study 

size 

Proportion 

diabetic 

Timing of glucose 

measurement 

Outcome measures Main findings Other adjusted covariates in multivariable 

analysis 

Franke1 1992 Netherlands 157 NR On admission, 

96% presented 

within 24 hours of 

onset 

2 day and 1 year 

mortality 

Hyperglycemia (≥8 mMol/L) was associated with 

mortality (OR 5.5, P<0.001) at 2 days but not at 1 year 

Age, hypertension, eye and motor scores 

on GCS, ICH volume, pineal gland 

displacement, modified Rankin score 5 

Passero2 2003 Italy 739 

 

127 (17%) On admission, all 

patients presented 

within 24 hours of 

onset 

30 and 90 day 

mortality 

Hyperglycemia (≥130mg/dL / 7.22 mMol/L) in non-

diabetic, non-comatose patients (n=415) was associated 

with mortality at 

30 days (OR 1.290 95% CI 1.054-1.578, p=0.013) and 

at 90 days (1.269 (1.051-1.532, p=0.013) 

Age, ICH volume, IVH, GCS, mean 

arterial pressure, surgical evacuation. 

Fogelholm3 

2005 

Finland 329 

 

39 (11.9%) On admission, 

89% presented 

within 24 hours of 

onset 

28 day mortality Increasing admission glucose (OR 1.22 per mMol/L 

95% CI 1.07-1.40, p=0.004) was independently 

associated with 28-day mortality 

Coma, midline shift, anticoagulant use, 

mean arterial pressure  

Kimura4 2007 Japan 100 

 

NR On admission 

prior to CT scan. 

Mean time from 

onset to scan was 

4.6 +/- 5.0 hours  

14 day mortality Hyperglycemia (>150mg/dL / 8.4 mMol/L) was 

associated with 14 day mortality (OR 35.34, 95% CI 

1.40-992.73, p=0.031) 

Age >70, systolic blood pressure, 

leucocytes >8.5, erythrocytes <0.37, 

potassium <3.5 mMol/L, albumin 

<4.0g/dL, Sodium <140 mMol/L, ICH 

volume >20 mL. 

Tetri5 2009 Finland 379 68 (17.9%) On admission, 

94.2% presented 

within 48 hours of 

onset  

2 and 90 day 

mortality 

Admission glucose was not associated with 2 day (RR 

1.04 (95% CI 0.95-1.13, p value not reported) or 90 day 

mortality (RR 1.04 95% CI 0.99-1.10, p value not 

reported) 

Mean arterial pressure, sex, ICH volume, 

IVH, age, GCS, basal ganglia location, 

thalamus location, infratentorial location, 

cardiac disease, warfarin use. 

Lee6 2010 South Korea 1387 161 (11.6%) Fasting morning 

glucose the day 

after admission.  

All patients 

presented within 

48 hours of onset 

30 day and mortality 

on last follow up 

Increasing glucose (HR 1.10 per mMol/L 95% CI 1.01-

1.19, p=0.03) was associate with 30 day mortality but 

not long term mortality (HR 1.05 (0.98-1.11, p=0.15) 

Highest quartile (>9.30 mMol/L, HR 3.34 95% CI 

1.15-0.73*, p=0.03) was associated with 30 day 

mortality but not long term mortality (HR 1.45 95% CI 

0.83-2.53, p=0.19) 

Age, diabetes, systolic and diastolic blood 

pressure, pontine location, ICH volume, 

IVH, GCS 

Stead7 2010 USA 237 47 (19.8%) On admission. 

Time of 

presentation in 

relation to 

symptom onset 

was not reported  

7 day mortality Hyperglycemia (>140mg/dL / 7.7mmol/L) was 

associated with 7-day mortality in non-diabetic patients 

(estimate 2.796 SE 1.174, p=0.0172) but not in diabetic 

patients (estimate 2.590 SE 2.197, p=0.2384) 

Yes 

Age, ICH volume, IVH, NIHSS. 

Samiullah8 2010 Pakistan 399 NR On admission and 

at 72 hours. All 

In-hospital mortality Hyperglycemia (fasting > 126 mg/dL / 7 mMol/L on 

admission or fasting glucose, or random glucose 

Age, ICH volume, GCS 



patients presented 

within 24 hours of 

onset 

>200mg/dL/11.1 mMol/L on 2 occasions) was 

associated with in-hospital mortality (OR 10.9 95% CI 

4.72-25.32, p<0.001). However, the proportion of 

hyperglycemia and duration determined by random 

glucose testing was not reported.  

Di Napoli9 2011 Italy 210 58 (27.6%) On admission. All 

patients presented 

within 24 hours of 

onset 

30 day mortality No association of highest quartile of glucose (>10.8 

mMol/L / 194mg/dL) and mortality 

Model 1: OR 7.16 95% CI 0.65-78.35, p=0.1067 

Model 2: OR 10.39 95% CI 0.74-146.76, p=0.0832 

Model 3: OR 9.38 95% CI 0.75-117.28, p=0.0824 

Model 1: ICH volume, IVH, infratentorial 

location, age, time to blood test 

Model 2: variables in model 1 plus mid 

line shift, hydrocephalus. 

Model 3: variables in model 2 and 

surgery 

Appelboom10 

2011 

USA 104 26 (23.6%) On admission. 

Time of 

presentation in 

relation to 

symptom onset 

was not reported 

Mortality on 

discharge and at 90 

days 

Critical hyperglycemia (>10mMol/L) was 

independently associated with mortality on discharge 

(OR 4.381 95% CI 1.186-16.174, p=0.009) and at 90 

day (OR 10.85 95% CI 1.886-62.41, p=0.011) 

Age, female sex, diabetes mellitus, GCS, 

AVM, ICH volume, IVH score, midline 

shift, infratentorial location, ventricular 

drain, intrathecal tPA, 

ventriculoperitoneal shunt, early DNR 

status, length of hospital stay. 

Wang11 2011 China 189 31 (16.4%) Within 24 hours 

of hospitalization. 

Time of 

presentation in 

relation to 

symptom onset 

not reported 

30 day Barthel’s 

Index 

Hyperglycemia (>6.8 mMol/L) in non-diabetic patients 

(OR 0.081 95% CI 0.039-0.167, p<0.0001) and diabetic 

patients (OR 0.056 95% CI 0.022-0.142, p<0.0001) 

was associated with poor functional recovery. 

ICH location, ICH volume and 

complications. 

Bejot12 2012 France 419 

 

68 (14.8%) On admission. 

Time of 

presentation in 

relation to 

symptom onset 

not reported 

1 month mortality Hyperglycemia (≥8.6 mMol/L) was associated with 1 

month mortality. (HR 1.76 95% CI 1.23-2.53, p=0.002) 

Age, sex, ICH location, IVH, smoking 

status, aphasia, motor deficit, 

anticoagulant use, altered consciousness 

Saxena13 2016 INTERACT II 2653 292 (11.0%) On admission, all 

patients presented 

within 6 hours of 

onset. 

90 day death, death or 

major disability 

(modified Rankin 

Score 3-6) 

Glucose (per mMol/L) was associated with death (OR 

1.16 95% CI 1.01-1.33, p=0.043), death or major 

disability (OR 1.11 95% CI 1.00-1.24, p<0.0001). 

 

Highest quartile of glucose (7.9-25mMol/L) was 

associated with death or major disability (OR 1.35 95% 

CI 1.01-1.80, p trend 0.015). 

  

Age, geographic region, sex, heart 

disease, hypertension, diabetes mellitus, 

use of aspirin or warfarin, ICH volume, 

ICH location, IVH, systolic blood 

pressure, randomized treatment, NIHSS 

≥15, age x NIHSS ≥15 interaction, China 

x IVH interaction, ICH volume deep ICH 

location interaction and deep ICH x IVH 

interaction. 

Liu14 2016 China 908 58 (6.8%) On admission. 

Time of 

presentation in 

relation to 

Death or disability 

(modified Rankin 

Score 3-6) at 3 and 12 

months 

Baseline glucose (per mMol/L) was associated with 

reduced odds of good outcome at 3 months (OR 0.914 

95% CI 0.857-0.974, p=0.006) but not 12 months 

(point estimate not reported). 

NIHSS, GCS, hematocrit, blood urea 

nitrogen, previous stroke, stroke 

complications 



symptom onset 

was not reported 

Sun15 2016 China 2951 267 (9.0%) On admission. All 

patients presented 

within 24 hours of 

onset 

Death or disability 

(modified Rankin 

Scale score 3-6) at 3 

months 

Glucose per mMol/L was associated with death or 

disability at 3 months (aOR 1.09 95% CI 1.04-1.15, 

p<0.001).  

 

Highest quartile of glucose (7.53 mMol/L) was 

associated with poor 3-month outcome (aOR 1.54 95% 

CI 1.17-2.03, p=0.002). 

Age, sex, hypertension, cardiovascular 

disease, atrial fibrillation, smoking, 

baseline ICH volume, ICH location, IVH, 

premorbid modified Rankin Scale score, 

NIHSS, GCS, admitted department, in-

hospital treatment with dehydration 

agent, craniotomy and withdrawal of 

support. 

 

 

 

 

       

 

Table S6 (continued) 

 

Studies that used serial glucose measurements (2 studies, n=298) 

Author, year Country Study 

size 

Proportion 

diabetic 

Timing of glucose 

measurement 

Outcome measures Main findings Other adjusted covariates in multivariable 

analysis 

Tapia-Perez16 

2014 

Germany 122 

 

37 (30.3%) On admission, 

day 1 and 3. All 

patients presented 

within 24 hours of 

symptoms onset 

Mortality at day 7 and 

30 

Hyperglycemia (>140mg/dL / 7.78 mMol/L) on day 1 

was associated with 30-day mortality (HR 2.65 95% CI 

1.15-6.12, p=0.02). No association with 7 day mortality 

was observed (point estimate not reported) 

IVH, hydrocephalus, ICH volume, WCC, 

ventricular drain, age and GCS 

Koga17 2015 Japan 176 22 (12.5%) On admission, 24 

and 72 hour. All 

patients presented 

within 3 hours of 

symptom onset 

3 month outcomes – 

none to minimal 

disability, 

bedridden/death 

Admission glucose (per 10mg/dL) was not associated 

with either none/minimal disability (OR 0.90 95% CI 

0.77-1.02 p=0.099) or bedridden/death (OR 1.01 95% 

CI 0.84-1.19 p=0.892).   

24 hour glucose (per 10mg/dL) was associated with 

none/minimal disability (OR 0.85 95% CI 0.69-0.98 

p=0.021) and with bedridden/death (OR 1.14 95% CI 

1.00-1.30 p=0.049)  

72 hour glucose was associated with none/minimal 

disability (0.75 95% CI 0.59-0.92 p=0.003) but not 

with bedridden/death (OR 1.11 95% CI 0.98-1.27 

p=0.101) 

Sex, age, antithrombotic medication use, 

systolic blood pressure, initial heart rate, 

NIHSS, time to initial scan, ICH volume 

        



Table S6 (continued) 

 
Studies that used glucose trajectory (4 studies, n=686) 

Author, year Country Study 

size 

Proportion 

diabetic 

Timing of glucose 

measurement 

Outcome measures Main findings Other adjusted covariates in multivariable 

analysis 

Schwarz18 2000 Germany 196 NR Admission to 72 

hours. All patients 

presented within 

24 hours of 

symptom onset 

Discharge Glasgow 

Outcome Scale 

Persistent hyperglycemia (>11.mMol/L) of >24 hour 

duration was associated with discharge outcome (OR 

13.54 95% CI 2.24-81.78, p=0.005). Hyperglycemia 

less than 24 hours duration was not associated with 

discharge outcome (OR 1.72 95% CI 0.42-6.96, 

p=0.45) 

IVH, GCS, ICH volume, ICH growth or 

new ICH, persistent hypertensive, 

persistent hyperthermia. 

Godoy19 2008 Argentina, 

Italy 

295 148 (50.2%) Daily blood 

glucose for 72 

hours. All patients 

presented within 

24 hours of 

symptom onset. 

30 day mortality On univariate analysis mortality was highest in patients 

with persistent hyperglycemia (80%) compared to those 

with increasing  glucose  pattern (40%), decreasing 

glucose pattern (36%) and persistently normal (9%), 

p<0.001. 

Glucose level (per mMol/L) between 0-12 hours (OR 

1.33 95% CI 1.19-1.50, p<0.0001) and 49-72 hours 

(OR 1.38 95% CI 1.16-1.65 p<0.0001) was 

independently associated with 30 day mortality. 

Glucose level between 13-24 hours (OR 1.12 OR 0.98-

1.28 p=0.0861) and 25-48 hours (OR 1.09 95% CI 

0.95-1.26 p=0.2299) was not associated with 30 day 

mortality 

Demographic factors, radiological factors 

and the ICH score. 

Qureshi20 2011 ATACH I 

study 

60 10 (16.7%) Glucose trend 

over first 72 

hours. All patients 

presented within 6 

hours of symptom 

onset 

90 day modified 

Rankin Score 4-6 

Baseline glucose below median (115mg/dL) was not 

associated with outcome on both univariate (RR 1.44 

95% CI 0.75-2.78, p not reported) or multivariable (RR 

1.07 95% CI 0.78-1.48 p not reported) analyses 

Declining glucose concentration over 72 hours was 

associated with poor outcome on univariate (RR 2.59 

95% CI 1.27-5.30, p not reported) analysis but not 

statistically significant on multivariable analysis (RR 

1.19 95% CI 0.92-1.54, p not reported) 

Glucose reduction over 24 hours was not associated 

with outcome on both univariate (RR 1.56 95% CI 

0.82-2.98 p not reported) and multivariable (RR 1.04 

95% CI 0.53-2.05 p not reported) analyses. 

GCS, ICH volume, IVH 

Feng21 2012 USA 135 26 (19.3%) Mean glucose 

within 72 hours. 

All patients 

presented within 

90 day modified 

Rankin Score 3-6 

Hyperglycemia (≥150mg/dL / 8.33 mMol/L) was not 

associated with poor outcome (OR 1.06 95% CI 0.4-

2.66 p not reported) 

Sex, mean arterial pressure, ICH score 



24 hours of 

symptom onset 

Current study Finland 576 89 (15.5%) Within 24 hours 

and between 24-

72 hours. All 

patients presented 

within 24 hours of 

symptoms onset 

6 month mortality Persistent hyperglycemia (two measurement of 

>8mMol/L) was associated with 6 month mortality (OR 

3.464 95% CI 1.868-6.424 p<0.001) 

ICH volume, edema volume, NIHSS, 

GCS, IVH, warfarin use, age, anti-

hypertensive use. 

 

*Likely error in reporting 95% Confidence Interval in the published manuscript. 

AVM indicates arteriovenous malformation; DNR, do not resuscitate; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; IVH, 

intraventricular hemorrhage; NIHSS, National Institutes of Health Stroke Scale; NR, not reported. 
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