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Increasing evidence shows that, in addition to the classical function of protein
processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one
of the most common forms of cell death. The structure and the function of the GA is
damaged during apoptosis. However, the specific effect of the GA on the apoptosis
process is unclear; it may be involved in initiating or promoting apoptosis, or it may
inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological
diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and
ischemic stroke. This review summarizes the changes and the possible mechanisms
of Golgi structure and function during apoptosis. In addition, we also explore the
possible mechanisms by which the GA regulates apoptosis and summarize the potential
relationship between the Golgi and certain neurological diseases from the perspective of
apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our
understanding of the pathological mechanisms of neurological diseases and provides
new research directions for the treatment of these diseases. Therefore, we propose that
the GA may be a potential therapeutic target for apoptosis-related neurological diseases.

Keywords: Golgi apparatus, apoptosis, caspases, neurological diseases, therapeutic target

THE GOLGI APPARATUS

In plants, invertebrates, and many protists, Golgi stacks are independent of each other
and scattered throughout the cytoplasm. In vertebrates, Golgi mini-stacks are laterally fused
into a twisted continuous ribbon structure that is maintained at the centrosome and
paranuclear position by interaction with microtubules and dynein motors (Makhoul et al., 2018;

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; BI-1, Bax inhibitor 1; BIR, baculovirus-IAP
repeat; Cdk5, cyclin-dependent kinase 5; COPI, coat protein complex I; CTF, C-terminal fragment; ER, endoplasmic
reticulum; FasL, Fas ligand; FH2, formin homology 2; FHDC1, formin homology 2 domain protein 1; GA, Golgi apparatus;
GAAP, Golgi anti-apoptotic protein; HSAN II, hereditary sensory and autonomic neuropathy type II; HSE, Herpes
simplex virus encephalitis; IIGP165, ischemia-induced Golgi protein 165; IP3R, inositol-1,4,5-trisphosphate receptor; NAD+,
nicotinamide adenine dinucleotide; p75NTR, p75 neurotrophin receptor; PD, Parkinson’s disease; PUMA, p53 upregulated
modulator of apoptosis; TNFR, tumor necrosis factor receptor; UBC, ubiquitin-conjugating enzymes; UPR, unfolded protein
response.
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Kulkarni-Gosavi et al., 2019). This difference obviously reveals
that the higher complexity of the Golgi apparatus (GA) structure
is required for more complex functions in vertebrates, especially
mammals. The GA lies at the heart of the secretory pathway;
proteins and lipids are sequentially modified and processed in
the Golgi stacks to ultimately help target transports to their
correct destination (Lowe, 2011). In addition to these classic
functions, the GA is also involved in higher-order functions such
as mitosis (Lowe et al., 2000), DNA repair (Farber-Katz et al.,
2014), stress response (Li T. et al., 2016), autophagy (Chang
et al., 2012), inflammation (Chen and Chen, 2018), and apoptosis
(Chiu et al., 2002). Furthermore, the GA is an important
signaling platform for many cascade signals originating from
the plasma membrane or other organelles, including ubiquitin
ligases, phospholipases, phosphatases, and many types of trimeric
G proteins (Mayinger, 2011).

APOPTOSIS

Apoptosis is an orderly autonomous death process controlled
by genes. In this process, cells that are harmful to the body or
unneeded will be removed (Peter, 2011). If infected cells are
apoptotic before viral progeny are produced, virus replication
will be limited (Nguyen and Blaho, 2006). In ischemic stroke,
apoptosis is a vital pathway that mediates neuron death (Xu
et al., 2019). Three main apoptotic pathways are known: receptor-
mediated apoptotic pathways, mitochondria-mediated apoptotic
pathways, and endoplasmic reticulum (ER)-mediated apoptotic
pathways. These apoptotic pathways will eventually be integrated
into the caspase cascade pathway, where the effector caspases
will cleave proteins that maintain cell structure and metabolism.
Then, the apoptotic cells will be engulfed and degraded by
nearby phagocytes or other surrounding cells. In receptor-
mediated apoptotic pathways, the most common death receptors
on the plasma membrane surface [such as Fas and tumor
necrosis factor receptors (TNFRs)] bind to the corresponding
ligands to transmit apoptotic signals, thereby activating the
caspase cascade pathway. In mitochondria-mediated apoptotic
pathways, the mitochondrial permeability transition pore is
irreversibly over-opened under various proapoptotic signals,
which causes the release of cytochrome C (an active proapoptotic
protein) from mitochondria into the cytosol to initiate the
downstream apoptotic pathway. In ER-mediated apoptotic
pathways, the most common apoptotic pathway (unfolded
protein response, UPR) is primarily triggered by misfolded and
unfolded proteins in the ER. In UPR, CHOP, and caspase 12
play key roles in apoptotic signal transmission (Elmore, 2007;
Savitskaya and Onishchenko, 2015). In fact, according to the
source of the apoptosis-stimulating signal, the mitochondria-
and the ER-mediated apoptosis pathways can be collectively
referred to as intrinsic apoptosis pathways, and the receptor-
mediated apoptosis pathways can be referred to as extrinsic
apoptotic pathways. The above-mentioned apoptotic pathways
are regulated by the Bcl-2 family of proteins, which is divided
into anti-apoptotic proteins (such as Bcl-2 and Bcl-xL) and
proapoptotic proteins (such as Bak and Bax) (Popgeorgiev

et al., 2018). In addition, p53 transcription factor activation
promotes the expression of proapoptotic proteins such as Bax,
Puma, and NoxA. In turn, these factors induce mitochondria-
mediated apoptosis and subsequent caspase cascade activation
(Savitskaya and Onishchenko, 2015).

APOPTOSIS AFFECTS THE GA

The in-depth study of the apoptosis mechanism has led to an
increasing number of technical means for detecting apoptosis.
However, morphological observations play an important role
in distinguishing apoptosis from other types of cell death. Of
these, transmission electron microscopy is considered to be
the gold standard for confirming apoptosis (White and Cinti,
2004). Apoptotic cell characteristics that can be observed by
transmission electron microscopy include the following: (1) an
electron-dense nucleus (marginalization in the early phase), (2)
nuclear fragmentation, (3) an intact cell membrane even late
in the cell disintegration phase, (4) disorganized cytoplasmic
organelles, (5) large clear vacuoles, and (6) blebs at the cell
surface. Cells will break into apoptotic bodies with intact plasma
membranes that contain cytoplasmic organelles in the later stages
of apoptosis (Elmore, 2007). Obviously, Golgi morphology also
changes drastically during apoptosis. In normal cells viewed by
transmission electron microscopy, the GA pattern is initially
highly ordered, appearing as ribbon-like stacks in a vesicular
structure. In cells treated with apoptosis inducers, the Golgi
stacks become swollen, disordered, and lysed into vesicles and
tubules (Snigirevskaia et al., 2014). Similarly, Golgi marker
immunofluorescence shows that the GA pattern is dispersed
and fragmented throughout the cytoplasm in apoptotic cells,
unlike in normal cells where it accumulates in the perinuclear
area in a typical semilunar shape (Bottone et al., 2013). While
morphological alterations of the GA are common in various
physiological or pathological conditions, the Golgi fragmentation
mechanism in apoptosis is quite distinct (Figure 1).

Activated Caspases Cleave Golgi
Structural Proteins
One of the characteristics of apoptosis is caspase cascade
signaling activation including caspase 3, caspase 8, or caspase 9
(Savitskaya and Onishchenko, 2015). Activated caspases cleave
important structural proteins and cause the destruction of
organelles, such as the Golgi (Chiu et al., 2002), mitochondria (Yu
et al., 2014), and nucleus (Al-Ghorbani et al., 2016). The currently
known Golgi structural proteins that can be cleaved by activated
caspases are described in the following subsections.

GM130
One of the most widely studied Golgi matrix proteins is GM130,
which is anchored to the cis-Golgi. An important step in the
biogenesis of the Golgi ribbon is to dynamically and continuously
incorporate vesicles from the ER into the Golgi stacks (Marra
et al., 2007). GM130 can specifically capture vesicles from
the ER (Wong and Munro, 2014; Lowe, 2019). If GM130 is
knocked out, this capture process will be ablated, resulting in
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FIGURE 1 | The Golgi fragmentation mechanism during apoptosis. The left side of the figure shows the morphological structure of the endoplasmic reticulum and
the Golgi in normal cells. The middle of the figure shows the three mechanisms of Golgi fragmentation in apoptotic cells: À activated caspases cleave Golgi
structural proteins (represented by dots of various colors); Á the cytoskeleton is damaged (represented by blue bands); and Â endoplasmic reticulum stress. The
right side of the figure shows the complete fragmentation of the Golgi apparatus at the end of apoptosis.

the shortening of the Golgi cisternae and the disruption of the
Golgi ribbon (Marra et al., 2007; Liu et al., 2017). Recent studies
have shown that the methylation of the N-terminal arginine of
GM130 plays an important role in maintaining the structure
of the Golgi (Zhou et al., 2010). During Fas-induced apoptosis,
GM130 decreases rapidly, accompanied by GA fragmentation
(Walker et al., 2004). He et al. (2020) found that HSV-1 infection-
induced endothelial cell apoptosis and Golgi fragmentation were
significantly reduced after GM130 cleavage was inhibited by
the pan-caspase inhibitor, Z-VAD. These results reveal that
activated caspases cleave GM130, which might be involved in GA
disruption during apoptosis.

Giantin
Giantin, primarily localized to the Golgi cisternal rims, is the
largest golgin in mammals (Linstedt et al., 1995). Koreishi et al.
(2013) found that giantin plays a role in laterally linking the
Golgi cisternae within the Golgi ribbon. Depletion of giantin
with siRNA causes dispersion of the Golgi stacks. However, the
exogenous expression of giantin in Drosophila S2 cells promotes
Golgi stack clustering, similar to the Golgi ribbon in mammalian

cells (Koreishi et al., 2013). During apoptosis, giantin is cleaved by
caspase 2, caspase 3, and caspase 7, accompanied by the cessation
of vesicular transport between the ER and the GA (Lowe et al.,
2004). We speculate that cleavage of giantin by activated caspases
could promote fragmentation of the Golgi.

P115
P115 consists of an N-terminal globular head, a coiled-coil tail,
and a short C-terminal acidic domain, often forming dimers
which are found in the cis-Golgi (An et al., 2009). It was
initially found that P115 mainly acts on intercisternal transport
in the Golgi stacks (Waters et al., 1992). Both GM130 and
giantin can bind to the C-terminal acidic tail of P115. Further
experiments confirmed that P115, GM130, and giantin form a
tethering complex, tethering coat protein complex I vesicles to
the Golgi membranes (Sönnichsen et al., 1998; Beard et al., 2005).
Mice lacking P115 exhibit destruction of the Golgi structure,
revealing the importance of P115 in maintaining the integrity
of the Golgi (Kim et al., 2012). A recent experiment found that
P115 is cleaved by caspase 3 and caspase 8 during apoptosis
(Chiu et al., 2002). Relative to that, in control cells expressing
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wild-type P115, cells expressing the cleavage-resistant form of
P115 show delayed Golgi fragmentation during apoptosis. These
experimental results revealed that Golgi fragmentation during
apoptosis is partly due to P115 cleavage (Chiu et al., 2002).

GRASP65
GRASP65 is mainly targeted to the cis-Golgi and is a member
of the Golgi reassembly and stacking protein (GRASP) family
(Zhang and Wang, 2015). However, whether GRASP65 acts
as a stacking factor is still controversial. This is because, in
mammalian cells, there are contradictory reports on the integrity
of the Golgi stack after the depletion of GRASP65 (Xiang and
Wang, 2010; Rabouille and Linstedt, 2016). A less controversial
role of GRASP65 is that it can promote formation of the
Golgi ribbons in mammals. Jarvela et al. (2014) found that the
inactivation of GRASP65 specifically causes the cis-side of the
Golgi ribbons to be disconnected. In addition, Cheng et al. (2010)
demonstrated that Golgi fragmentation is dependent on caspases
and identified GRASP65 as a new substrate for caspase 3. The
expression of the caspase-resistant form of GRASP65 partially
inhibits Golgi fragmentation in apoptotic cells (Lane et al., 2002).

Golgin160
Golgin160 (also known as GOLGA3) is a coiled-coil protein
enriched in the cis-Golgi cisternae (Hicks et al., 2006). Yadav
et al. (2009, 2012) have proved that golgin160 can recruit the
dynein microtubule motor protein to the GA, which is important
for maintaining the positioning of the GA and the integrity of
the Golgi ribbons. The loss of golgin160 in cultured cells results
in Golgi positioning defect and generates dispersed ministacks
(Yadav et al., 2009, 2012). During apoptosis, golgin160 is cleaved
by caspase 2, caspase 3, and caspase 7 (Mancini et al., 2000). The
inhibition of caspase-mediated golgin160 cleavage can prevent
GA fragmentation and even apoptosis. The exogenous expression
of a caspase-resistant mutant of golgin160 attenuates the kinetics
of GA fragmentation, revealing that caspase-mediated cleavage
of golgin160 is involved in inducing apoptotic changes in Golgi
morphology (Mancini et al., 2000; Maag et al., 2005).

Golgin84
Golgin84 is a member of the golgin family, which is mainly
presented on the Golgi cisternal rims (Gillingham and Munro,
2016). Satoh et al. (2003) found that golgin84 can stimulate Golgi
stacking and increase the length of the Golgi stacks. In addition,
it is generally believed that golgin84 plays an important role in
tethering the intra-Golgi transport vesicles (Sohda et al., 2010;
Lowe, 2019). In golgin84-knockdown cells, the Golgi ribbon
breaks into ministacks, accompanied by the accumulation of
some intra-Golgi transport vesicles (Sohda et al., 2010). During
apoptosis triggered by Chlamydia trachomatis infection, activated
caspases cleave golgin84, accompanied by GA fragmentation.
However, inhibiting golgin84 proteolytic cleavage can prevent
Golgi fragmentation (Heuer et al., 2009).

Syntaxin 5
Syntaxin 5, located in the cis-Golgi cisternae and ER, is a member
of the SNARE family (Hui et al., 1997; Linders et al., 2019). It
specifically pairs with other homologous SNAREs to form the

“SNARE complex,” driving the fusion of the vesicle membrane
with the target membrane. It has been found that syntaxin
5 is involved in the vesicle fusion events of ER–Golgi, intra-
Golgi, and early/recycling endosome to the trans-Golgi network
trafficking (Dascher et al., 1994; Tai et al., 2004; Volchuk et al.,
2004). RNA interference-mediated silencing of syntaxin 5 leads
to fragmentation of the GA, revealing that syntaxin 5 is necessary
for maintenance of the Golgi structure (Suga et al., 2005). During
apoptosis, syntaxin 5 is cleaved by caspase 3 and caspase 7, which
is accompanied by disorders in vesicular trafficking (Lowe et al.,
2004). We speculate that cleavage of syntaxin 5 by activated
caspases is involved in Golgi fragmentation during apoptosis.

Taken together, the aforementioned Golgi proteins are either
related to vesicle tethering and fusion or to Golgi stacking
and ribbon formation, which are involved in maintaining the
structural integrity of the Golgi. Moreover, these proteins have
been confirmed to be cleaved by activated caspases during
apoptosis (Table 1). Therefore, we propose that, under different
apoptotic stimuli, activated caspases cleave one or several Golgi
structural proteins, resulting in fragmentation of the GA.

Cytoskeleton Damage May Contribute to
GA Fragmentation
The cytoskeleton mainly consists of microtubules and actin
filaments that are essential for maintaining GA structure.
It is generally believed that microtubules play a key role in
generating and positioning the Golgi ribbon and that actin finely
and synergistically regulates the Golgi architecture (Makhoul
et al., 2018). Golgi-derived microtubules work in a search-and-
capture manner to contact other nearby Golgi stacks. These
Golgi stacks move along the microtubules toward the minus
end and eventually gather near the perinuclear centrosome
(Lowe, 2011). Tang et al. (2016) found that Mena interacts
with GRASP65 to promote local actin polymerization, thereby
promoting the interconnection between Golgi stacks to form
the Golgi ribbon. In motor neurons, the overexpression of
microtubule-destabilizing proteins stathmin 1 and stathmin 2 led
to the defective polymerization of Golgi-derived microtubules
and severe Golgi fragmentation; however, stathmin 1/2
knockdown or treatment with the microtubule-stabilizing drug
taxol completely reverses this effect (Bellouze et al., 2016).
Perforation/fragmentation and severe swelling of Golgi cisternae
have been observed by transmission electron microscopy using
actin-depolymerizing toxins (cytochalasin D, latrunculin B,
mycalolide B, and Clostridium botulinum C2 toxin) (Lazaro-
Dieguez et al., 2006). In addition, recent studies found that the
formin homology 2 (FH2) domain protein 1 (FHDC1) enriched
on cis-Golgi binds microtubules through a unique C-terminal
domain and actin through its FH2 domain. Knockdown or
overexpression of FHDC1 can cause the dispersal of the Golgi
ribbon into mini-stacks, indicating the potential role of actin
and microtubule Golgi networks in maintaining the Golgi
ribbon structure (Copeland et al., 2016). Microtubules are
reportedly depolymerized at apoptosis execution phase onset
(Moss and Lane, 2006; Ndozangue-Touriguine et al., 2008).
However, recent results indicate that the microtubule network

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 830

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00830 August 29, 2020 Time: 10:35 # 5

He et al. Golgi Apparatus and Neurological Diseases

TABLE 1 | Caspase cleavage of Golgi structural proteins associated with Golgi fragmentation during apoptosis.

Golgi structural
proteins

Golgi location Role in maintaining the Golgi apparatus (GA)
structure

Caspase-mediated cleavage

GM130 cis-Golgi Capture the ER-to-Golgi vesicles None identified

Giantin Golgi cisternal rims Laterally link Golgi cisternae Caspase 2, 3, and 7 (Lowe et al., 2004)

P115 cis-Golgi Tether coat protein complex I vesicles to the Golgi
membranes

Caspase 3 and 8 (Chiu et al., 2002;
Kim et al., 2012)

GRASP65 cis-Golgi Promote the formation of the Golgi ribbons Caspase 3 (Lane et al., 2002)

Golgin160 cis-Golgi Maintain the positioning of GA and the integrity of
the Golgi ribbons

Caspase 2, 3, and 7 (Mancini et al.,
2000; Maag et al., 2005)

Golgin84 Golgi cisternal rims Stimulate Golgi stacking, increase the length of the
Golgi stacks, and tether the intra-Golgi transport
vesicles

None identified

Syntaxin 5 cis-Golgi Drive the fusion of vesicle membranes with the
Golgi membranes

Caspase 3 and 7 (Lowe et al., 2004)

reforms during the later stages of apoptosis and contributes
to nuclear and cell fragmentation (Moss and Lane, 2006).
Actin is similarly degraded during apoptosis (Coleman and
Olson, 2002). Moreover, mounting evidence proves that the
actin cytoskeleton is a sensor and mediator of apoptosis
(Desouza et al., 2012). In addition, both tubulin and actin are
cleaved by caspases (Fischer et al., 2003; Moss and Lane, 2006).
Therefore, given the importance of the cytoskeleton to the GA,
we speculate that cytoskeleton damage may contribute to GA
fragmentation in apoptosis.

ER Stress-Mediated GA Fragmentation
Endoplasmic reticulum and GA are closely related in morphology
and function. The stability of the Golgi dynamic structure
depends on efficient bidirectional vesicle transport with the ER
(Kokubun et al., 2019). In a stacked Golgi, new cisternae would
form at the cis face, pass through the stack, and then peel off
from the trans face, carrying secretory cargo proteins forward.
The vesicles of the ER would shuttle to the Golgi to form new
cisternae to maintain stack integrity (Mollenhauer and Morré,
1991; Emr et al., 2009). The ER is an important organelle in
eukaryotic cells that is mainly responsible for the synthesis,
processing, and modification of intracellular proteins. However,
unfolded and misfolded proteins can accumulate in the ER and
lead to ER stress when cells are subjected to a variety of strong
stimulating factors such as apoptosis inducers, toxin stimulation,
or Ca2+ metabolic imbalance. When the stimulus persists or
is too strong, ER stress activates the apoptotic pathway and
disrupts the ER-to-GA transport (Short et al., 2007; Qi and
Chen, 2019). The GA becomes disordered and diffused under
treatment with the ER stress inducer thapsigargin (Nakagomi
et al., 2008). In addition, mutant SOD1 inhibits the ER-to-GA
transport of secreted proteins in neurons, thereby causing GA
fragmentation (Atkin et al., 2014). Protein-disulfide isomerase
Bax inhibitor 1 (BI-1), located on the ER, inhibits ER stress.
Nakagomi et al. (2008) found that BI-1 overexpression in cortical
neurons can partially inhibit the Golgi fragmentation induced
by various insults, further revealing that ER stress plays an
important role in regulating Golgi morphology. Based on these
data, we propose that ER stress causes GA fragmentation to

varying degrees by disrupting the ER-to-GA transport during ER
stress-triggered apoptosis.

THE GA AFFECTS APOPTOSIS

The GA is damaged by various pathways during apoptosis.
However, increasing evidence shows that the subcellular
organelle is involved in apoptosis signaling pathway regulation
and that the GA is also involved (Hicks and Machamer,
2005; Sasaki and Yoshida, 2019). Studies have identified many
components located in the GA that are related to apoptosis
regulation, such as P115, GRASP65, and Bruce (Cheng et al.,
2010; How and Shields, 2011; Tassi et al., 2012). A highly
conserved Golgi anti-apoptotic protein (GAAP) located only in
the GA has also been found (Carrara et al., 2017). The following
sections focus on the related molecules and mechanisms of Golgi
that promote or inhibit apoptosis signals (Figures 2, 3).

The P115 Caspase Cleavage Fragment
Promotes Apoptosis Through the
ERK/p53/PUMA Pathway
P115 is a 961-kDa Golgi peripheral membrane protein. It is
mainly involved in vesicle transport between Golgi cisternae
(Sapperstein et al., 1995). In Chiu et al. (2002) found that P115
was cleaved by caspase 3 and caspase 8 at residue TEKD757,
resulting in a C-terminal fragment (CTF) containing 205 residues
during apoptosis. CTF enters the nucleus through sumoylation
(Mukherjee and Shields, 2009). The CTF in the nucleus serves
as a scaffold to tether ERK and p53, thereby promoting p53
phosphorylation and activation by ERK (How and Shields, 2011).
ERK is a mitogen-activated protein kinase, and its signaling
cascade plays an important role in apoptosis (Li et al., 2014;
da Cunha Jaeger et al., 2020). p53 is an important tumor
suppressor gene, and it is often involved in the transcriptional
regulation of key pro-apoptotic genes, such as p53 upregulated
modulator of apoptosis (PUMA) and hdm2 (Khan et al., 2020).
PUMA is a member of the Bcl-2 family that interacts with anti-
apoptotic Bcl-2 family members (Bcl-xl and Bcl-2) and relieves
the Bcl-2/Bcl-xl inhibition of Bax/Bak. When the Bax/Bak
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FIGURE 2 | Effect of P115 and Bruce on apoptosis. The p115 caspase cleavage fragment promotes apoptosis mediated by the ERK/p53/p53 upregulated
modulator of apoptosis (PUMA) pathways. The p115 caspase cleavage fragment enters the nucleus after being sumoylation and then acts as a scaffold to promote
ERF-mediated p53 phosphorylation. The phosphorylated p53 upregulates PUMA. PUMA then relieves the Bcl-2/Bcl-xl inhibition of Bax/Bak, leading to mitochondrial
cytochrome c release. Cytochrome c activates APAF1 and caspase 9 in succession to promote apoptosis. Bruce degrades caspase 9/SMAC through ubiquitination
and downregulates p53 to inhibit apoptosis.

inhibition is lifted, they will translocate to the mitochondria and
trigger the release of cytochrome C; this ultimately activates the
caspase cascade signaling pathway and thereby induces apoptosis
(Nakano and Vousden, 2001). How and Shields (2011) further
proved that P115 CTF expression can promote p53 activation,
thereby increasing PUMA expression. The above-mentioned
literature indicates that, in the early stage of apoptosis, P115
located on the Golgi is partly cleaved to produce CTF. P115
CTF promotes the mitochondria-mediated apoptosis pathway
through the ERK/p53/PUMA pathway, thereby amplifying the
apoptotic signal and leading to the full activation of caspases and
apoptosis (Hilton et al., 2014; Stokholm et al., 2016; Figure 2).

Bruce Degrades Caspase 9/SMAC
Through Ubiquitination and
Downregulates p53 to Inhibit Apoptosis
Bruce (also known as apollon) is a conserved peripheral
membrane protein located on the trans-Golgi. Its amino and
carboxyl termini contain the baculovirus-IAP repeat (BIR) and

the ubiquitin-conjugating enzymes (UBC) domain, respectively
(Hauser et al., 1998). Bruce is a member of the IAP family, so
named for their ability to bind and inhibit caspases and other pro-
apoptotic factors (Pohl and Jentsch, 2008; Vasudevan and Ryoo,
2015). In 293T and HeLa cells, overexpressed Bruce can inhibit
apoptosis induced by various stimuli, including staurosporine
and ultraviolet light (Bartke et al., 2004). Bruce can inhibit
apoptosis in multiple ways, and its inhibitory effect mainly plays
a role in the mitochondria-mediated apoptosis pathway. On the
one hand, the BIR motif on Bruce binds to activated caspase
9 and SMAC, and then the UBC domain is used to induce
the ubiquitination of the two, thereby inhibiting apoptosis.
Because the mitochondria release pro-apoptotic proteins SMAC
and cytochrome c after mitochondria-mediated apoptosis is
triggered, cytochrome c combines with Apaf-1 and dATP to
form the apoptosome (a multi-protein platform with a catalytic
effect). It can recruit and activate caspase 9, leading to caspase
cascade signaling pathway activation (Zhang, 2019; Li et al.,
2020). Therefore, the Golgi can degrade caspase 9 and SMAC
through Bruce to inhibit apoptosis. Interestingly, Bruce can
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FIGURE 3 | The effect of Golgi reassembly and stacking protein 65 (GRASP65) and Golgi anti-apoptotic protein (GAAP) on apoptosis. GRASP65 caspase cleavage
promotes Fas-mediated apoptosis. After GRASP65 is cleaved by caspases, Golgi-tethered Fas and procaspase 8 are transported to the cell membrane, thereby
further promoting apoptosis. In addition, the caspase cleavage fragment of GRASP65 will translocate to the mitochondria, thereby promoting the release of
cytochrome c and promoting apoptosis. GAAP inhibits Ca2+ release into the cytoplasm by interacting with IP3R. The decreased Ca2+ in the cytoplasm inhibits
apoptosis to a certain extent.

also be cleaved by activated caspase 9 or degraded by SMAC
through the ubiquitination pathway (Hao et al., 2004; Qiu and
Goldberg, 2005). Therefore, the degree of apoptosis depends on
the relative activities of Bruce, caspase 9, and SMAC. On the
other hand, the Golgi can inhibit apoptosis by downregulating
p53 through Bruce. Ren et al. (2005) found that the deletion
of the C-terminal half of Bruce activates p53 in mice, which
in turn upregulates bax and bak and leads to mitochondria-
mediated apoptosis. Therefore, we speculate that, under normal
physiological conditions, complete Bruce should inhibit p53
expression, thereby down-regulating bax and bak and inhibiting
mitochondria-mediated apoptosis. In conclusion, the Golgi can
degrade caspase 9/SMAC and downregulate p53 through Bruce
to inhibit apoptosis (Figure 2).

GRASP65 Caspase Cleavage Promotes
Fas-Mediated Apoptosis
Fas (also known as CD95) is a member of the TNFR superfamily,
which transmits apoptotic signals by binding to Fas ligand (FasL)
expressed in the cell membranes of other cells (Andera, 2009;
Xie et al., 2019). The Fas–FasL system is a major signaling
pathway for apoptosis induction. After binding to FasL, the Fas
receptor interacts with the signal adapter, FADD, through its
death domain (Thomas et al., 2004). FADD then recruits inactive

procaspase 8 through a homologous motif. Fas, FADD, and
procaspase 8 form a death-inducing signaling complex (Gomez-
Angelats and Cidlowski, 2001). After the complex is formed,
procaspase 8 drives its activation through self-cleavage. The
activated caspase 8 directly activates the caspase cascade signaling
pathway or cleaves BID to trigger the mitochondria-mediated
apoptosis pathway to indirectly activate the caspase cascade
signaling pathway, thereby leading to apoptosis (El Mchichi et al.,
2007; Logue and Martin, 2008).

GRASP65 is a cis-Golgi protein that plays a role in Golgi
structure, membrane trafficking, and cell signaling (Ahat et al.,
2019a,b). In the early stage of apoptosis, cleavage of GRASP65
by caspase 3 may promote Fas-mediated apoptosis in one
of two ways (Lane et al., 2002). In one method, the Golgi
promote the translocation of Fas and procaspase 8 to the
cell membrane by GRASP65 cleavage, thereby promoting Fas-
mediated apoptosis. GRASP65 can regulate the transport of
proteins containing C-terminal hydrophobic motifs on the GA
through its tandem PDZ-type “GRASP” domains. The Fas
C-terminus terminates with a hydrophobic leucine–valine motif
(Ivanov et al., 2003). The interaction of GRASP65 with Fas and
procaspase 8 has been detected in isolated Golgi components
during hypoxia/reoxygenation-induced apoptosis (Wang et al.,
2004). Therefore, we speculate that, in the early stage of apoptosis,
GRASP65 tethers Fas and procaspase 8 to the GA through
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its PDZ domain. When GRASP65 is cleaved by caspase 3,
Fas and procaspase 8 are transported to the cell membrane
to promote apoptosis. In the other method, the GA releases
the GRASP65 caspase fragment to the mitochondria, thereby
promoting Fas-mediated apoptosis. Cheng et al. (2010) found
that the C-terminus obtained by cleaving GRASP65 targets the
mitochondria during Fas-mediated apoptosis. In addition, the
GRASP65 caspase cleavage C-terminus fragment can make cells
more sensitive to apoptosis induced by mitochondrial toxicants
such as CCCP, antimycin A, and FasL (Cheng et al., 2010). These
results reveal that, following the mitochondrial targeting of the
caspase cleavage fragment released by GRASP65, mitochondrion
permeability increases and thereby promotes cytochrome c
release and apoptosis. Based on the above-mentioned data, we
speculate that the Golgi may further promote Fas-mediated
apoptosis through GRASP65 caspase cleavage (Figure 3).

GAAP Inhibits Apoptosis by Reducing
Cytosolic Ca2+ Flux
A new anti-apoptotic protein has been isolated and identified in
camel pox virus. It was named GAAP based on its intracellular
localization and its first described function. GAAP has significant
amino acid conservation with orthologs throughout eukaryotes,
prokaryotes, and some orthopoxviruses, indicating a high degree
of conserved functions (Gubser et al., 2007). In addition to its
anti-apoptotic functions, GAAP also regulates the Ca2+ flux of
the GA and ER and forms cation-selective channels. GAAP is
widely expressed in various tissues of the human body (Gubser
et al., 2007; de Mattia et al., 2009; Carrara et al., 2017).

Ca2+ is a ubiquitous intracellular messenger involved in both
intrinsic and extrinsic apoptosis signaling pathways (Tiwari et al.,
2017; Zhou et al., 2019). Under physiological conditions, Ca2+

in the cytoplasm is maintained at a low level, while subcellular
organelles such as ER and GA store higher concentrations of
Ca2+. Ca2+-induced signals are triggered by its transmembrane
entry and/or release from the cell reservoir (mainly the ER and
the GA) (Chung et al., 2017; Smaardijk et al., 2017). Ca2+ in the
ER and the GA is mainly released through the IP3R (inositol-
1,4,5-trisphosphate receptor) channel (Lin et al., 1999; Parys
and Vervliet, 2020). The Ca2+ signals between Ca2+ storage
organelles and mitochondria play an important role in promoting
apoptosis (Marchi et al., 2018). Molecular and pharmacological
methods that reduce cytoplasmic Ca2+ levels can protect cells
from apoptosis, while conditions that increase cytoplasmic Ca2+

levels have the opposite effect (Ma et al., 1999; Nakamura et al.,
2000; Pinton and Rizzuto, 2006). GAAP inhibits extracellular
Ca2+ influx and reduces Ca2+ release from organelle reservoirs
by interacting with IP3R, thereby reducing the increase in
cytosolic Ca2+ flux induced by apoptotic stimuli (de Mattia
et al., 2009). Therefore, we speculate that the Golgi may reduce
the cytosolic Ca2+ flux and inhibit apoptosis through GAAP.
In addition, Guo et al. (2018) found that GAAP in Arabidopsis
interacts with IRE1, which initiates ER stress and thereby inhibits
ER stress-induced apoptosis. The association between GAAP and
ER stress in Arabidopsis provides a direction for future research
on the human GAAP anti-apoptosis mechanism (Figure 3).

GOLGI-RELATED APOPTOSIS IN
NEUROLOGICAL DISEASES

Apoptosis is an important pathological mechanism in many
neurological diseases (Su et al., 2019), and the GA can perceive
and transmit apoptotic signals through its own unique molecular
mechanism (Machamer, 2015). More than 40% of GA-related
genes known to be associated with disease affect the central
or the peripheral nervous system, highlighting the importance
of the GA in neurological diseases (Zappa et al., 2018).
The following discussion explores the potential link between
Golgi and certain neurological diseases from the perspective of
apoptosis (Figure 4).

Glioma
Neuroepithelial-derived tumors are collectively called gliomas;
they account for 30% of all brain and central nervous system
tumors and 80% of all malignant brain tumors (Goodenberger
and Jenkins, 2012). GOLPH3, a member of the trans-Golgi
network protein family, is the first example of an oncogene
that functions in secretory trafficking at the GA (Buschman
et al., 2015). GOLPH3 is highly expressed in glioma tissues,
and its expression level is directly proportional to tumor
malignancy. However, there is a negative correlation between
tumor suppressor gene NDRG1 expression and GOLPH3
expression in glioma samples. GOLPH3 knockdown increases
NDRG1 and triggers apoptosis in glioma cells. These results
reveal that GOLPH3 causes glioma cells to escape apoptosis
monitoring by downregulating NDRG1, which may promote
glioma occurrence and development (Li X. et al., 2016).
The poor prognosis of glioma patients is largely due to
acquired chemotherapy resistance. Peng et al. (2018) found
that GOLPH3 regulation sensitizes glioma cells to apoptotic
stimuli induced by the chemotherapy drug temozolomide.
The p75 neurotrophin receptor (p75NTR) is a glycoprotein
belonging to the TNFR/nerve growth factor receptor family
that is traditionally detected at the cell membrane (Wang
et al., 2020). Recently, Giraud et al. (2011) found, using
immunofluorescence microscopy, that a part of p75NTR is
located in the GA of glioma cells. p75NTR retention in
the GA prevents p75NTR expression on the cell surface.
p75NTR can be sequestered in the GA; this sequestration is
responsible for cell resistance to apoptosis and glioma formation
(Giraud et al., 2011).

Alzheimer’s Disease
Alzheimer’s disease (AD) patients show a progressive decline
in memory and cognitive function because AD leads to the
gradual loss of neuronal function (Bondi et al., 2017). One
of the main pathological features of AD is the abnormal
production and deposition of amyloid beta peptide (Aβ). Aβ is
mainly produced in the cis-Golgi (Choy et al., 2012). However,
too much Aβ can cause GA fragmentation before cell death.
Experiments revealed that Golgi fragmentation in AD is caused
by GRASP65 phosphorylation, which is induced by Aβ-triggered
cyclin-dependent kinase 5 (Cdk5) activation (Joshi et al., 2014).
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FIGURE 4 | The link between the Golgi apparatus and neurological diseases from the perspective of apoptosis.

GM130 is also phosphorylated by Aβ-activated Cdk5, causing GA
fragmentation (Sun et al., 2008). Golgi fragmentation, in turn,
promotes Aβ production (Joshi et al., 2014). The aggregated Aβ

neurotoxicity manifests as neuronal apoptosis, in which caspase
8, caspase 9, and caspase 3 are activated (Takada et al., 2020).
These results reveal the importance of the Golgi in AD (Joshi
et al., 2014). In addition, Stoffel et al. (2018) found that neutral
sphingomyelinase, smpd3, expression in the central nervous
system is restricted to the GA of neurons. In the brains of
smpd3−/− mice, Golgi vesicular protein transport in neurons
is inhibited, which leads to Aβ deposition, UPR, and apoptosis.
Finally, smpd3−/− mice show a progressive cognitive decline
similar to the clinical manifestations of familial and sporadic
AD, indicating that smpd3 may be a susceptible gene for AD
(Stoffel et al., 2018).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a deadly
neurodegenerative disease characterized by the progressive
degeneration of motor neurons (Zhang et al., 2019).
Nicotinamide adenine dinucleotide (NAD+) is an important
cofactor for cell metabolism maintenance. By increasing NAD+
expression, survival time is moderately prolonged in ALS mice
(Harlan et al., 2020). NMNAT2, a key enzyme responsible for
NAD+ production, is mainly located in the GA (Milde et al.,
2013). Harlan et al. (2020) found that the NMNAT2 expression is
reduced in the spinal cord of ALS patients. The loss of NMNAT2
in neurons can cause GA fragmentation, further leading to
neuronal apoptosis (Pottorf et al., 2018). These results suggest
that NMNAT2 may be a potential target for the treatment of ALS.

Parkinson’s Disease
Parkinson’s disease (PD) is a degenerative neurological disease
commonly found in middle-aged and elderly people that it is
characterized by a progressive loss of dopaminergic neurons
(Surmeier, 2018). The main toxic effector of PD is α-synuclein,
which destroys intracellular Ca2+ homeostasis and causes
neuronal death. Buttner et al. (2013) demonstrated that the
Ca2+/Mn2+ ATPase, PMR1, residing on the GA is a conserved
mediator that can regulate α-synuclein-induced Ca2+ imbalance
and cell apoptosis. In addition, parkin (the pathogenic gene
for autosomal recessive juvenile PD) is partially located in
the trans-Golgi network (Kubo et al., 2001). An increased
expression of S-nitrosylated-parkin and p53 is simultaneously
found in brain tissues of patients with PD. Sunico et al. (2013)
further found that, in a mouse model of pesticide-induced PD,
S-nitrosylation of parkin reduced its activity as a repressor of
p53 gene expression, resulting in p53 upregulation, and p53
upregulation triggers neuronal apoptosis. These results suggest
that p53-mediated neuronal apoptosis caused by S-nitrosylation
of parkin is involved in the pathophysiology of PD.

Hereditary Sensory and Autonomic
Neuropathy Type II
Hereditary sensory and autonomic neuropathy type II (HSAN II)
is a hereditary, degenerative, peripheral nervous system disease
characterized by the progressive loss of peripheral sensory nerve
function (Rotthier et al., 2012). Patients with HSAN II usually
have progressive sensory and autonomic dysfunction that results
in reduced sensitivity to pain, temperature, and touch (Arain and
Chand, 2015). FAM134B is a newly identified cis-Golgi protein.
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The mutation of FAM134B directly causes HSAN II (Kurth et al.,
2009; Falcao de Campos et al., 2019). Kurth et al. (2009) further
found that FAM134B knockdown led to cis-Golgi compartment
shrinkage that triggered the apoptosis of primary dorsal root
ganglion neurons; this may be related to the neurotrophic
factor transport disorder induced by FAM134B mutation. These
results reveal that Golgi dysfunction is an important cause of
neurogenetic diseases.

Herpes Simplex Virus Encephalitis
Herpes simplex virus encephalitis (HSE) caused by HSV-1
infection is the most common sporadic encephalitis worldwide
(Piret and Boivin, 2020). DeBiasi et al. (2002) found apoptotic
neurons and glial cells in the brain tissue sections of patients
with acute HSE. The GA exhibit a disordered and diffused
cytoplasmic distribution in HSV-1-infected primary neurons
(Martin et al., 2017). In addition, blood–brain barrier disruption
is an important pathological mechanism for HSE development
(Liu et al., 2019). Recently, He et al. (2020) found that HSV-1-
induced blood–brain barrier damage involves apoptosis that is
associated with GM130-mediated Golgi stress. The expression of
GM130 is downregulated and accompanied by GA fragmentation
in brain microvascular endothelial cells infected with HSV-
1. The downregulation of GM130 promotes caspase cascade
pathway activation. Eventually, activated caspases downregulate
the tight junction proteins occludin and claudin 5, which implies
the disrupted barrier function of endothelial cells. Interestingly,
GM130 downregulation is partially caspase dependent (He et al.,
2020). Moreover, apoptosis can inhibit HSV-1 proliferation in
cells to a certain extent (Nguyen and Blaho, 2006), which has
a certain positive significance for HSE. In short, the interaction
between GA and apoptosis is closely related to the pathological
mechanism of HSE.

Ischemic Stroke
Stroke is the second most common cause of death worldwide,
and ischemic stroke is the most common type of stroke (Wang
et al., 2016). Cerebral ischemia–reperfusion injury is one of
the important pathological mechanisms of ischemic stroke.
P115 cleavage, Golgi fragmentation, and apoptosis have been
observed in vitro in a cerebral ischemia–reperfusion model
(Zhong et al., 2015). GOLPH3 is upregulated in a rat model
of ischemic stroke (You et al., 2014). Li et al. further found

that GOLPH3 not only acts as a Golgi stress sensor, owing to
its rapid upregulation during oxidative stress, but also triggers
Golgi stress and transmits a specific Golgi stress signal to
downstream effectors. Stress-induced GOLPH3 upregulation
leads to Golgi fragmentation and apoptosis (Li T. et al., 2016).
Recently, Ran et al. (2007) discovered a 165-kDa protein induced
by cerebral ischemia that was named ischemia-induced Golgi
protein 165 (IIGP165) because of its localization in the GA. The
Akt phosphorylation of IIGP165 prevents apoptotic cell death
(Ran et al., 2007).

DISCUSSION

Multiple studies provide ample evidence that the structure and
the function of the GA are damaged by various mechanisms
during apoptosis. However, in the face of different apoptotic
situations, the Golgi can inhibit or promote apoptosis through
different Golgi-related proteins. Golgi-related apoptosis is
involved in the pathological mechanisms of various neurological
diseases. In the future, the Golgi may be a potential therapeutic
target for apoptosis-related neurological diseases. However,
the exact mechanisms and specific relationships between GA
and apoptosis in numerous interactions must still be studied.
Whether the Golgi is upstream or downstream of apoptosis in
specific diseases should be studied. In addition, the crosstalk
of apoptotic signals between the GA and the other subcellular
organelles also requires investigation.
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