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With the advent of the high-throughput data production, recent studies of tissue-specificmetabolic networks have largely advanced
our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays
an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and
characterization of the human kidneymetabolic network based on transcriptome and proteome data. In silico simulations revealed
that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total
of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we
found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue’s functions. Finally, the
phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may
affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study
may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

1. Introduction

Metabolic syndrome (MetS) is a complex disorder character-
ized by extensivemetabolic changes in the patients such as the
levels of glucose, cholesterol, and uric acid, [1]. People with
MetS are at increased risk of various diseases. Observational
studies revealed that MetS has a 55 percent increased risk
of kidney problems, especially significant alterations to the
structure and functions of kidney [2, 3]. Thus, metabolism
has been a field of study inmodernmedicine.With the advent
of the high-throughput data production, reconstruction and
analysis ofmetabolic network could complement experimen-
tal investigations into various aspects of human disease and
provide insight into pathophysiology.

Theglobal humanmetabolic network, termedRecon 1 [5],
has been constructed allowing the comprehensive analysis
of human metabolism and disease. However, this generic
network only provides a global genome-scale description
of human metabolic capabilities without consideration of

tissue-specific information. Unlike Escherichia coli and Sac-
charomyces cerevisiae, human is a multicellular, multiorgans
organism, and different tissues have different metabolic
objectives and functions. Particular tissue’s cells in the human
body do not utilize all the metabolic components encoded by
the whole genome. In order to mimic in vivo environment,
tissue-specific or cell-specific metabolic network will be
essential. Several preliminary tissue-specific or cell-specific
metabolic networks have been reconstructed and proved
to facilitate better understanding of human metabolism in
detail [6–9]. Kidney plays a profound role in regulating
many important body functions, and it is also an important
source of several important hormones. Nowadays, chronic
kidney disease (CKD) is becoming a worldwide public health
problem and proved to be a risk factor for cardiovascular
disease [10]. These issues highlight the importance of con-
structing a kidney-specific metabolic network, which will
provide insight into physiological and pathological processes
in the kidney.

http://dx.doi.org/10.1155/2013/187509
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To elucidate and understand metabolic genotype-pheno-
type relationship in human kidney, here a comprehensive
human kidney-specificmetabolic network was reconstructed
by integrating gene expression data from the Gene Expres-
sion Omnibus (GEO) [11] and proteome data contained in
the Human Protein Atlas (HPA) [12]. We applied model-
building algorithm (MBA) [6, 13] by using Recon 1 as a
template, the algorithm MBA can automatically select only
those genes that are relevant to the target tissue out of the
generic model based on the literature and multiple omics
data. After reconstruction of the human kidney-specific
metabolic network, a series of subsequent analyses were
performed to validate and explore the utility of this model.
Firstly, we analyzed the gene essentiality by classifying all
genes of this model into kidney-specific (KS) and house-
keeping (HK) types. Secondly, we detected new metabolite
biomarkers for various subtypes of kidney disease. Then,
a comparative analysis among the metabolic networks of
kidney and other tissues was performed, which allowed
identification of tissue-specificmetabolic features andmay be
helpful in understanding the discrepancies of tissue-specific
functions. Finally, we used human diabetic kidney disease
(DKD) as a case to demonstrate the utility of the kidney
model by detecting the influence of differentially expressed
genes (DEG) on kidney metabolism. In summary, this model
is a comprehensive description of the metabolism of human
kidney and will allow for tissue-level simulations to achieve a
better understanding of kidney-related disorders.

2. Materials and Methods

2.1. Data Preparation and Filtering. Tissue specificity infor-
mation was primarily based on protein abundance from the
online database. Firstly, we retrieved kidney specific pro-
teome fromHPA [12], which gave an in-depth detailed quan-
titative proteome data in the form of cell types in each tissue.
We adopted two types of cell (including glomeruli and tubules
cell) to represent kidney tissue. Here the genes/proteins with
positive immunohistochemical signals (weak, moderate, or
strong) were considered active in the corresponding cell type.
Furthermore, for each gene, if its protein evidence summary
score was high, medium, or low, we still regarded this protein
as active in this cell type. The protein evidence summary
score was calculated based on three parameters: UniProt
protein existence (UniProt evidence), transcript profiling
categories (RNA evidence), and a Protein Atlas antibody
based score (HPA evidence). Finally, a total of 12,344 genes
were identified in the above two types of cell. These data
were used as the main evidence for assessing the presence or
absence of metabolic genes in the kidney. However, current
proteomic analysis is somewhat limited due to biochemical
and technological challenges, such as protein degradation,
low-abundance, and lack of advanced analytical methods.
Thus, a relatively large number of genes expressed in tissues
cannot be detected in proteome study [14].

Transcriptome data of kidney was used as an extra evi-
dence to provide complementary insights into expression
patterns at the RNA level. We obtained human microar-
ray expression data GSE1133 [15] from the GEO of NCBI.

This microarray dataset was a comprehensive transcriptome
description of human and mouse on a genome-scale and
was also used as the expression resource for BioGPS [16],
which is a free extensible and customizable gene annotation
portal. We retrieved human kidney tissue expression samples
(GSM18955, GSM18956) and applied gcrma normalization
method for expression level process. On a chip, each gene
is represented by one to several probes. The expression level
detected by each probe set was obtained as the signal intensity
(𝑆). We averaged 𝑆 values among replicates to compile an
extensive set of comparable data. And an expression data
matrix was produced, where a row represents expression
levels of a gene while a column is the expression pool in a
sample. Then, we filtered out genes with absolute values less
than 10th percentile (default value) using MATLAB function
genelowvalfilt.m. We considered the remaining genes above
the value as active [17–19]; then 11,518 genes were identified in
human kidney.

The detected genes from HPA and GEO were sepa-
rately mapped to the enzyme-encoding genes in the generic
metabolic model (1794 in total). If gene transcripts and
proteins were both identified or only proteins were identified,
we think they are actually active in human kidney. If only
gene transcripts were identified (419 genes), the expression
activities of these genes were further validated by using
another transcriptome dataset (GSE11560) [20]. The dataset
was used to measure gene expression levels in livers, kidneys,
and hearts from humans, chimpanzees, and rhesus macaques
using a novel multispecies microarray [20]. We treated this
dataset following the same criteria and found that all the 419
genes were also detected in this human kidney. Finally, we
discarded those genes thatwere not identified in both datasets
(proteome data and transcriptome data).

2.2. Model Reconstruction and Simulations. The genome-
scale human metabolic network model (Recon 1) [5], which
contains 1,794 genes, 1,903 metabolites, and 2,942 reactions,
was used as a template for the reconstruction of kidney-
specific metabolic model. Heretofore, several algorithms
aiming to reconstruct a tissue or condition-specificmetabolic
network from a generic model have been developed [21].
Here, we apply the algorithm MBA by integration with
proteome and transcriptome data presented above. This
algorithm is aiming to create context-specific subnetwork in
a random order based on heuristically pruning the generic
human metabolic model. MBA is executed repeatedly for
a number of times (1000) with different, random scanning
orders. The resulting model is as consistent as possible
with the pertaining tissue-specific molecular data sources
[6, 13]. The scripts deleteModelGenes and removeRxns were
applied to remove a gene and its related reactions only if
the removal did not prevent biomass production. We further
analyzed the resulting model by using several methods in the
COBRA toolbox [22], including flux balance analysis (FBA),
minimization of metabolic adjustment analysis (MOMA),
and flux balance analysis (FVA).

2.3. Gene Essentiality Analysis for Kidney-Specific and House-
Keeping Genes. In order to investigate the genetic functions



BioMed Research International 3

and associations between genes and kidney-related diseases,
we categorized genes in the human kidney model into HK
genes and KS genes according to previous work [23] which
identified humanHKgenes and tissue-specific genes by using
microarray meta-analysis. We mapped these HK and KS
genes to our model. Then single gene knockout simulations
were performed by changing their associated reaction bounds
to zero in the model. In addition, in silico flux variability
analysis (FVA) on nonessential gene deletion strains was also
performed to assess the consequence of themodel after delet-
ing a nonessential gene. The absolute flux span is a measure
of the flux range for each reaction. It is calculated as follows:

𝑓
𝑖
= abs (Vmax,𝑖 − Vmin,𝑖) ,

𝑟
𝑖
=
𝑓
𝑖,𝑘

𝑓
𝑖,𝑤

,

(1)

where Vmax,𝑖 and Vmin,𝑖 represent the maximal flux and mini-
mal flux as determined by FVA. And 𝑟 describes the ratio
of knockout strains flux span (𝑓

𝑖,𝑘
) to one of the wild-type

strains (𝑓
𝑖,𝑤
).

2.4. Prediction ofMetabolic Biomarkers. The identification of
new biomarkers has proven to be useful in early diagnosis of
inborn errors. The potential clinical utility of the metabolic
model was previously demonstrated by its ability to predict
metabolic biomarkers, and marked correlation was observed
between genomic mutations and the altered concentration
of metabolites [24, 25]. Here, we applied constraint-based
modeling method, a novel computational approach devel-
oped by Shlomi et al. [24], to predict metabolic biomarkers
for kidney-related diseases in this kidney stoichiometric
metabolic model. Firstly, the genes set associated with
renal development and function were downloaded from the
public resource database, European Bioinformatics Institute
(EBI) (http://www.ebi.ac.uk/GOA/kidney) [26]. Then, we
performed gene functional annotation for these genes by
using DAVID bioinformatics enrichment tools [27, 28] to
identify kidney-related disease genes, following the classifica-
tion criteria ofOnlineMendelian Inheritance inMan (OMIM
database). Finally, constraint-based modeling method was
applied to predict novel potential metabolite biomarkers
using the list of kidney-related disease genes identified above.
Small widespread metabolites, such as hydrogen, ion, and
water, were not applied in the further analysis because
they are unsuitable for biomarkers. To further validate our
prediction, we compared predicted biomarkers alterations
with the biomarker data fromHumanMetabolome Database
(HMDB) [29] in several metabolic disorders.

2.5. Comparison of Tissue-Specific Models. To systematically
analysis tissue-specificmetabolic behavior, we compared kid-
ney metabolic network with several other tissue-specific net-
works from previous work, including heart-specific network
and live-specific network [6, 9]. Then different subnetworks
were detected corresponding to different tissues by usingNet-
workAnalyzer [30].The GO annotation for the genes of these
subnetworks was further performed by using BINGO [31], a

biological network gene ontology tool, which is implemented
as a plugin for Cytoscape [32]. Only categories with a low 𝑃
value (<0.01) were considered as enriched in the network as
determined by Hypergeometric statistical test employing the
Benjamini and Hochberg false discovery rate correction.

2.6. Simulations on Differentially Expressed Genes of Human
Diabetic Kidney Disease. This kidney metabolic model pro-
vides a useful resource for studying the metabolic basis
and molecular mechanism for a variety of human kidney-
related diseases. As a demonstration of the utility of mod-
els of kidney disease, we used DKD as a case, which is
considered a nonimmune-mediated degenerative disease of
the glomerulus and recently becoming the primary end-
stage renal disease (ESRD) worldwide. We retrieved the
330 overlapping DEG in both glomeruli and tubuli from a
recent study [4] which performed a comprehensive gene-
expression analysis between DKD samples and the normal
counterpart. Significance of DEG was determined using the
Fisher’s exact test (𝑃-value < 0.05) with the Benjamini-
Hochberg multiple testing correction and fold change >1.5.
We mapped these genes to our constructed metabolic model
and identified the upregulated or downregulated genes.Then,
we performed FVA to assess the consequence of the model
after perturbation. Subsequently, we analyzed the altered
metabolic pathway in detail.

3. Results

3.1. Generation of Kidney-Specific Metabolic Network. After
applying the MBA method, the resulting kidney model
consists of 2904 reactions, 1898 metabolites, and 1776
genes which are mainly enzymes and transporter genes.
The kidney model of partially compartmentalization pat-
terns, in SBML format, was generated (Supplementary File:
kidney model par.xml in Supplementary Material available
online at http://dx.doi.org/10.1155/2013/187509).The network
visualization can be explored interactively using the freely
available Cytoscape software. Figure 1(a) illustrates gene-
reaction associations in the kidney metabolic network; it
demonstrates that the genes are close to each other and
each metabolic reaction is associated with one or more
enzymes. The metabolic processes are largely involved in
energy metabolism, extracellular transport, glycerophospho-
lipid metabolism, heme synthesis, and nitrogen and lipid
metabolism. The subcellular localization was ignored as the
same metabolite could be localized in different cellular com-
partments being linked by transport reactions. By analyzing
the network, we found that the degrees of this network
follow the power-law distribution (Figure 1(b)), suggesting
that most genes are involved only a few reactions while only a
small number of genes participate in the generation of a large
number of products.

3.2. Functional Characteristics of Kidney-Specific Genes and
House-Keeping Genes. We performed gene essentiality anal-
ysis by categorizing genes in the human kidney metabolic
model intoHKgenes andKS genes.We totally retrieved 55KS
genes and 2064 HK genes from previous study [33], then we

http://www.ebi.ac.uk/GOA/kidney
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Figure 1: Reconstruction of human kidney-specific metabolic network. (a) illustrates the associations of genes with the linked reactions in
the kidney metabolic network. The red circles represent genes (genes with the degree >10 are labeled with Entrez Gene ID), while the blue
circles represent the linking reactions, and the lines represent the relationships between genes and reactions. (b) shows the node degrees
distribution of the kidney metabolic network.

mapped these genes to the kidney model. Finally, only 24 KS
and 233 HK genes are present in our kidney model, the other
31 genes were discarded for they are not the component genes
in kidney metabolism. If we take the information of cellular
compartments into consideration, then the numbers of above
genes turned out to be 34 (KS genes) and (297 HK genes).
Single gene deletion experiments were performed with these
genes by using both FBA and linear MOMA methods to
characterize the gene deletion phenotypes. The distribution
of predicted relative growth rates of knockout strains to wild-
type strains for all the mapped gene deletions in the kidney
model was shown in Figure 2(a). All the 34 KS genes are
nonlethal, while out of 297 HK genes, 10 were considered
lethal and one resulted in reduced maximal growth rate. It
suggests that HK genes are mainly involved in fundamental
cellular functions and knockingout these genes may cause
metabolism alterations, thus result in lower growth rate or
lethality. In contrast, the functions of KS genes can be com-
plemented by other members in the same gene family, such
as ATPase alpha/beta chains family and solute carrier family.
The latter is a large family and transport succinate and other
Krebs cycle intermediates and play an important role in the
handling of citrate in kidney. Consequently, their single gene
mutations do not lead to lethality in human. Furthermore,
these KS genes may play a role in kidney’s particular function
(such as sodium ion and inorganic anion transport) other
than the fundamental cell activity (Figure S1). Through the
analysis of metabolic networks, we found that these KS
genes mainly belong to transport subsystem or amino acid
metabolism subsystem. We listed the detailed information
about these genes and the involved reactions in Table S2.

Additionally, we further detected the alteration of the
metabolic network flexibility after knockingout of the

nonessential KS genes. The 24 KS genes were included
in this analysis. FVA was performed on these KS genes
knockout strains. Figure S2 demonstrates that flux spans of
the metabolic reactions less likely to fluctuate for all the 24
KS genes. Flux spans of metabolic reactions were detected
to fluctuate only for eight KS genes, just take solute carrier
family 7 member 9 (SLC7A9) mutant strains as an example
(Figure 2(b)). The result shows that the majority (99.51%) of
the metabolic reactions flux span do not change compared
to wild-type strains, while 12 reactions have much higher
(𝑟 > 2) flux span. These reactions are relevant to various cat-
alytic activities, like dehydrodolichol phosphate phosphatase,
dimethylallyl transtransferase, diphosphomevalonate decar-
boxylase and so on.The other 16 KS gene mutant strains have
no effect on the network flexibility.

3.3. Prediction of Specific Metabolic Biomarkers for Kidney-
Related Diseases. Biomarkers have a significant impact on
the care of patients and are urgently needed for advancing
diagnostics, prognostics, and treatment of disease. Recently,
the generic model was successfully used to predict changes
in metabolite concentrations caused by genomic mutations
[24]. Advances in omic profiling technologies, especially
biofluid metabolomics, offer the possibility of detecting early
diagnostic biomarkers and pathways activated in disease or
associated with disease conditions [33]. Previous study has
performed a series of comparative statistical analysis between
liver-specific metabolic model and generic model in the
ability of prediction performance [6]; it suggests that tissue-
specific model serves as a much better basis for predicting
tissue alterations and can better predict biomarker changes
in geneticmetabolic disorders than the generic humanmodel
accurately. To provide the fundament for the kidney-related
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Figure 2: The functional characteristics of KS and HK genes in the kidney-specific metabolic model. (a) shows the distribution of predicted
relative growth rates of HK and KS genes using both FBA (blue star) and linear MOMA (red circle) methods. The 𝑦 axis represents growth
rate ratio between deletion strain to knockout strain, and the 𝑥 axis represents the 297 HK genes and 34 KS genes. (b) shows a typical example
of effects of KS genemutant strains on the network flexibility. In themutant strain of Solute carrier family 7member 9 (SLC7A9), themajority
(99.51%) of the metabolic reactions do not change flux span compared to wild-type strain while 12 reactions have much higher (𝑟 > 2) flux
span.

diseases prevention and diagnosis, we performed the analysis
here focusing on metabolic disorders that arise from muta-
tions in renal metabolic genes. According to procedure of
material (see Section 2), a total of 552 kidney-related disease
genes were retrieved, and 122 kidney genes were mapped
onto the kidneymodel.These genes have been experimentally
or clinically proved to be disease genes. After applying
the constraint-based modeling method to our model, we
detected a set of 267 metabolites whose concentrations
are predicted to be either elevated or reduced due to 50
possible dysfunctional genes (see Table S1) [34]. Small and
widespread metabolites (such as H

2
O, O
2
) were excluded for

these molecules which are not suitable for biomarkers.
In order to prove the specificity of our biomarker pre-

diction, the relationships between disease types and the
predicted biomarkers were further studied. Figure 3(a) shows
that the majority of disorders (78%) are predicted to have
very few biomarkers (≤6), whereas up to 90% of the disor-
ders have ≤10 biomarkers. Meanwhile, the various disorders
tend to have different sets of biomarkers, for example,
only in a few cases, the same set of biomarkers corre-
spond to more than five diseases (Figure 3(b)). The results
suggest that these biomarkers can be effectively used for
the early diagnosis of kidney metabolic disorders. Further-
more, to consolidate our prediction, we compared predicted
biomarkers alterations with biomarker data from Human
Metabolome Database (HMDB) [29] for several metabolic
disorders. Beyond all doubt, our predictions are shown
to significantly correlate with known disease biomarkers
from HMDB. Moreover, we discovered many novel poten-
tial biomarkers. Here we take one disorder Hawkinsinuria
as an example to support our prediction. Hawkinsinuria
is also called 4-Alpha-hydroxyphenylpyruvate hydroxylase

deficiency, which is an autosomal dominant metabolic dis-
order affecting the metabolism of the sulfur amino acid-
hawkinsin [35]. One smallmoleculemetabolites phpyr [c] (4-
Hydroxyphenylpyruvic acid) identified in our study has been
deposited in the HMDB database for applications in clinical
metabolomics (HMDB00707). However, several other novel
potential metabolite biomarkers we predicted are not present
in HMDB for this disease type. These biomarkers can be
used as complement for the HMDB database for this disease.
Overall, our predictions are credible and reliable. These
biomarkers would be useful to augment the information
obtained from traditional indicators and illuminate disease
mechanisms. Notably, before these biomarkers are incorpo-
rated into clinical practice, rigorous experimental validation
and clinical evaluation will be needed.

3.4. Kidney Metabolic Genes Are Largely Involved in Amine
Metabolic Process. Tissues execute their functions via dif-
ferent gene sets and metabolic pathways, so tissues may
show characteristic metabolic features that make them dif-
ferent from other tissues. Thus, comparing the components
of their metabolic models is essential for understanding
the tissue-specific metabolic behavior. We compared our
constructed kidney metabolic model with two other tissue-
specificmodels obtained frompreviouswork [6, 9], including
heart specific model and liver specific model. Then four
different small subnetworks, consisting of genes, reactions
and metabolites, were generated corresponding to different
tissues. We extracted the above genes (named Pair-Different-
Genes, PDG) and performed GO enrichment analysis,
respectively. We found that different metabolic processes
were detected corresponding to different tissues. Here we
only elaborated the comparison of kidney and heart in detail.
The cellular processes overrepresented by PDG of kidney
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Figure 3: The statistical relationships between the predicted biomarkers and disorders. (a) shows the distribution of predicted metabolic
biomarker alteration patterns that are jointly shared by a number of disorders.Themajority of disorders (78%) are predicted to have very few
biomarkers (≤6). (b) shows the distribution of the number of the predicted alterations among the disorders recorded in OMIM database.

comparing with those of heart are shown in Figure 4(a). The
kidney-PDG were largely involved in several processes, like,
indolalkylamine biosynthetic process, hormone biosynthetic
process and amine metabolic process, which is important for
kidney to filter and eliminate the byproducts of metabolism
and regulate many important body functions, especially
the urea excretion functions during nitrogen metabolism
process. Beyond these processes, other metabolic processes
were also found to be significantly enriched in kidney,
including oxidation reduction, cellular aromatic compound
metabolic processes, cellular ketone metabolic process and
the generation of precursor metabolites and energy. The top
fifteen overrepresented metabolic processes in kidney with
𝑃 value < 0.01 are listed in Table 1. Consistent with the
above finding, for heart metabolicmodel, its heart-PDGwere
involved in other cellular processes (Figure 4(b)), including
cofactor metabolic process, coenzyme metabolic process,
and glutathione biosynthetic process. These processes were
corresponding to heart’s function of working like a pumping
machine to provide the power needed for life. Similar results
for comparison betweenmetabolic modes of kidney and liver
are also shown in Figure S3. The detailed information about
gene clusters and the corresponding significantly enriched
GO categories can be found in Table S3.

3.5. Flux Variability Analysis of Differentially Expressed Genes
for Human Diabetic Kidney Disease. To further investigate
how metabolic genes affect the disease process in human,
we illustrated DKD as one case to illuminate this question.
We obtained the DEG from a recent DKD study between
the disease samples and the normal counterpart. The expres-
sion levels of these genes demonstrate remarkable change,
revealing that they play a key role in DKD by affecting the
involved pathways [4]. Totally 24 of 330 DEG genes mapped
to our constructed kidney model. FVA were performed to
characterize the gene deletion phenotypes. For most of the
genes, the flux spans of their reactions were demonstrated
fluctuated distinctly. We listed several genes and their related
information in Table 2, and the corresponding FVA analysis
results were demonstrated in Figure 5.

Table 1: Top fifteen overrepresented metabolic processes of kidney-
PDG compared with heart.

GO-ID 𝑃 value Gene-num Description
55114 1.78𝐸 − 15 20 Oxidation reduction

44281 2.92𝐸 − 12 23 Small molecule metabolic
process

6725 2.33𝐸 − 11 10 Cellular aromatic compound
metabolic process

6082 1.37𝐸 − 10 15 Organic acid metabolic process
8152 2.37𝐸 − 10 40 Metabolic process
44237 2.95𝐸 − 10 37 Cellular metabolic process

46219 4.67𝐸 − 10 4 Indolalkylamine biosynthetic
process

42435 4.67𝐸 − 10 4 Indole derivative biosynthetic
process

19752 1.37𝐸 − 09 14 Carboxylic acid metabolic
process

43436 1.37𝐸 − 09 14 Oxoacid metabolic process

42180 1.88𝐸 − 09 14 Cellular ketone metabolic
process

44106 2.72𝐸 − 09 11 Cellular amine metabolic process
9308 4.10𝐸 − 09 12 Amine metabolic process
46483 6.73𝐸 − 09 11 Heterocycle metabolic process
9309 9.80𝐸 − 09 7 Amine biosynthetic process
Note. This table lists the top fifteen overrepresented metabolic processes (𝑃
value < 0.01) in the kidney when compared with heart. This analysis was
obtained from BINGO. GO categories were considered as enriched in the
network as determined using Hypergeometric statistical test employing the
Benjamini and Hochberg false discovery rate correction. The first column is
the GO-ID. The second column is the 𝑃 value. The third column gives the
number of the gene cluster, and the fourth column shows the description of
the corresponding GO-ID.

In the case of one gene, LPL (lipoprotein lipase; Entrez
ID: 4023), which functions as a homodimer, has the dual
functions of triglyceride hydrolase and bridging factor for
receptor-mediated lipoprotein uptake. The LPL deficiency
often leads to in type I hyperlipoproteinemia [36]. In LPL
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Figure 4: Biological processes enrichment analysis for PDG in comparison of kidney-specific metabolic network to heart-specific metabolic
network. (a) shows the cellular metabolic processes overrepresented by kidney-PDG compared to the model of heart; it indicates that the
kidney metabolic genes are largely involved in various processes, like amine metabolic process, indolalkylamine biosynthetic process, and
hormone biosynthetic process. (b) shows the cellular metabolic processes overrepresented by heart-PDG compared to the model of kidney, it
indicates that the heart metabolic genes are largely involved in other cellular process, such as cofactor metabolic process, coenzymemetabolic
process, and glutathione biosynthetic process. GO annotation was performed by using BINGO. The yellow to orange color of the circles
represents enriched GO categories, and the darkness of color is proportional to the significance level; the size of circle is proportional to the
number of gene cluster annotated to that node. Only categories with a low 𝑃 value (<0.01) were considered as enriched in the network. 𝑃
value is determined by Hypergeometric statistical test employing the Benjamini and Hochberg false discovery rate correction.
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Figure 5: The flux variability analysis of DEG in DKD. The mutation effects of six DEG on the metabolic network flexibility are shown. It
indicates that the flux spans of the metabolic reactions evidently fluctuate for the six genes, especially LPL (Entrez gene ID: 4023). The 𝑦 axis
represents reaction count, and the 𝑥 axis represents the flux span ratio of knockout strains to wild-type strains. The genes are represented by
Entrez gene ID as shown in Table 2.

gene deletion strain, we found that dozens of reactions
change their flux span compared to wild-type strain, these
reactions can be classified into three groups. Type I reactions
have much higher flux span, such as EX crn (𝑟 > 5),
which is involved in Carnitine shuttle subsystem. In contrast,
type II reactions have lower flux span, such as GLYCt,
PEROXx and FAOXC11 (0 < 𝑟 < 0.5). The flux span of
type III reactions reach to zero, including ARTCOAL3 and
DEDOLR U. These reactions are known to be associated
with glycerol transport, Fatty acid oxidation, peroxisome, N-
Glycan Biosynthesis, R Group Synthesis and Triacylglycerol
Synthesis. Consistently, we found that the expression of LPL
gene showed severed decreased sharply (9-fold) between
healthy and DKD glomeruli. Our results suggest that LPL
may play an important role in the DKD development process
owing to metabolic deficiencies. These metabolic DEG genes
are involved various catalytic processes, and mutations of

them will result in serious diseases or lethality. The results
presented here coupled with previous gene-expression stud-
ies further prove the importance of these genes and provide
important insight into the underlying DKD mechanism.

As we know,many diseases are characterized by extensive
metabolic changes in the body. In the case of DKD, specific
metabolically driven and glucose dependent pathways were
reported activated in diabetic renal tissues [37]. Recently,
metabolic analysis technologies, such as FVA, could offer
excellent insights into the development and progression
mechanism of complex diseases.

4. Discussion

Among the different types of biological networks, the
metabolic network is of special interest. First of all, it is
the most complete and reliable network due to decades of
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Table 2: Selected DEG in DKD for FVA analysis.

Gene
symbol Entrez gene ID FC (glomeruli) FC (tubuli) Reaction Gene name

LPL 4023 −9.18501 −4.38411 LPS; LPS2 Lipoprotein lipase
GCNT3 9245 2.12739 1.847147 CORE4GTg Glucosaminyl (N-acetyl) transferase 3
NNMT 4837 4.353618 7.890573 NNMT Nicotinamide N-methyltransferase

RRM2 6241 2.526649 3.055954
RNDR1;
RNDR2;
RNDR3;
RNDR4

Ribonucleotidereductase M2 polypeptide

B3GNT1 10678 −2.28274 −1.53357 B3GNT11g UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1

ASNS 440 −1.53775 2.724576
DEDOLP1 U;
EX asn L(e);

FT
Asparagine synthetase

Note:These DEGwere selected from a previous study [4], and their flux spans of metabolic reactions were detected to fluctuate markedly (Figure 5). It suggests
the essential role of these genes in DKD process. Knocking out of these genes may cause metabolism alterations and affect the emergence of DKD. The first
column is the gene symbol of DEG; the second column is the Entrez gene ID; the third and fourth columns are the fold change value for glomeruli and tubuli
cell, respectively; the fifth column shows the representative affected reactions, and the sixth column is gene name.

biochemical research so far. Secondly, metabolic network
can integrate the different types of experimental omics data,
such as transcriptomics for genes, proteomics for enzymes,
and metabolomics for metabolites. Furthermore, the health
and disease states of the human can be described more
meaningfully by the metabolic state of human specific type
of cells, tissues or organs.

As one of the most important tissues, kidney plays an
essential part in regulating many important body functions.
Therefore, it would be valuable to construct a complete
and reliable human kidney-specific metabolic network to
obtain a better understanding of the relationship between
human kidney metabolism and diseases. In this study, we
reconstructed a comprehensive kidney-specific metabolic
network by integrating transcriptome and proteome data
using an algorithm (MBA) with Recon 1 as a template. Then
we performed a series of analysis to elucidate the metabolic
genotype-phenotype relationship in human kidney. Firstly,
we performed gene essentiality analysis by categorizing genes
into HK genes and KS genes. The results indicate that HK
genes are always involved in fundamental cellular functions,
knockingout of these genesmay causemetabolism alterations
resulting in lower growth rate or lethality. In contrast, the KS
genes are mainly relevant to tissue-specific functions and dis-
eases. And the functions of KS genes can be complemented by
other members in the same gene family. Consequently, their
mutations do not lead to lethality in human. In summary,
our study provided important insight into studies of genetic
functions of different types of genes.

As stated in the introduction, the human metabolism
is more closely related to human diseases compared with
genes and proteins. Many human diseases are characterized
by an abnormal metabolic state, such as a high glucose
concentration in the blood of diabetes patients and high urine
amino acid level resulting from liver or renal disorders. For
a long time, the utility of metabolites from blood or urine
samples as biomarkers has been proved effective for diagnos-
ing diseases. Several hundred diseases are characterized by

metabolic syndrome, which is mainly caused by a deficiency
of enzymes and the subsequent altered concentration of
essential metabolites. In order to give an in-depth insight
into disease focusing on the relationship between diseases
and kidney metabolism, we obtained the disorder-gene
association information from the OMIM and detected new
metabolite biomarkers for kidney-related diseases. And the
subsequent analysis suggests that our predicted biomarkers
are suitable for early diagnosing of different kidney disorders,
because that various disorders tend to have different sets
of biomarkers. Additionally, the results are consistent with
the existing experimental and clinical data. On the basis of
our results, it would be worthwhile to further examine the
predicted biomarkers for disease diagnosis. It should also
be noted that not all kidney disease genes were included
in our study, and here we only analyzed the kidney disease
related enzymes. Our finding provides the fundament for a
subsequent disease prevention and diagnosis.

Furthermore, we compared our constructed kidney-
specific metabolic model with other two tissue-specific mod-
els aiming to find some tissue-specific metabolic behaviors
in which the involved genes have strong evidence supporting
their function in the respective tissue. The results show that
the kidney metabolic genes were largely involved in amine
metabolic process, indolalkylamine biosynthetic process,
hormone biosynthetic process, and so on. It could provide
an explanation of how kidney executing its functions, such as
filtering the byproducts to form urine and regulating impor-
tant body functions. In brief, tissues execute their functions
via different gene sets and metabolic pathways. Advances
in microarray and RNA-seq technologies allow the systemic
analysis and characterization of expression level alterations
of genes during the disease process. As a demonstration of
the utility of our model in kidney disease research, we took
DKD as an example and performed gene essentiality and flux
variability analysis for DEG to characterize the gene deletion
phenotypes. We found that dozens of reactions changed their
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flux spans compared to wild-type strains, especially in the
LPL gene deletion strain. It suggests that these DEG genes
may be possible to affect disease development via altering
metabolic flux distributions.These findings could offer excel-
lent insights into metabolism research and illuminate DKD
disease mechanisms.

Metabolic network has been proved to be an effective way
to study the molecular mechanism of disease occurrence and
development.Wemeasured the properties of the drug targets
and explored the kidney model to detect potential targets for
kidney-related diseases. The GO enrichment analysis shows
that these selective drug targets tend to be distributed in
the various pathways, including G-protein coupled peptide
receptor activity, protein phosphatase binding, growth factor
binding, and hormone receptor binding (see Figure S4).
The high quality human metabolic network will help to
identify more enzyme targets through systematic analysis of
the metabolic network. In a recent paper, several examples
have shown that enzyme drug targets were found by using
metabolic control analysis [38]. Theoretically, potential drug
targets and known drug targets should respond similarly to
the exogenous drugs to reach the expected therapeutic effects.
Then, based on the known enzyme targets in one metabolic
pathway, we can approach some better results by targeting
other enzymes to get the expected outcome. Applying FVA
on all genes in the kidney model, in the case of HMG-CoA
reductase (EC 1.1.1.34), we found that several other enzymes
have the same flux alterations (Table S4); these enzymes
may be the potential drug targets similar to HMG-CoA
reductase.

In the case of the species evolution, it is necessary to com-
pare the kidney-specific metabolic networks between human
beings and common animal models of human diseases, and
the information about functionally divergent and conserved
metabolic pathways will provide excellent insights into the
optimal modeling of human kidney disease.

5. Conclusion

In this paper, we constructed a human kidney-specific meta-
bolic model by integrating transcriptome and proteome data.
Based on the resultingmodel, a series ofmetabolic simulation
indicate that HK genes are more essential than KS genes
in terms of kidney metabolism. Subsequently, a set of 267
potential metabolite biomarkers for different kinds of kidney
disease has been successfully predicted, and further statistical
analysis validated the feasibility of being early disease diag-
nosis. Tissue-specific networks comparison imply that dis-
crepancies in metabolic processes are corresponding to their
functions, such as kidney metabolic genes, which are largely
involved in amine metabolic process. We further analyzed
DEG detected in DKD, and the metabolism alterations were
detected; it suggests that these genes may affect disease devel-
opment through altering metabolic flux distributions. The
human kidney-specific model provides valuable information
for the studies of urinary system activity and development of
kidney disease.
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