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The development of chemoresistance remains a significant cause of treatment

failure in breast cancer. We posit that a mathematical understanding of

chemoresistance could assist in developing successful treatment strategies.

Towards that end, we have developed a model that describes the cytotoxic

effects of the standard chemotherapeutic drug doxorubicin on the MCF-7

breast cancer cell line. We assume that treatment with doxorubicin induces a

compartmentalization of the breast cancer cell population into surviving cells,

which continue proliferating after treatment, and irreversibly damaged cells,

which gradually transition from proliferating to treatment-induced death. The

model is fit to experimental data including variations in drug concentration,

inter-treatment interval, and number of doses. Our model recapitulates tumor

cell dynamics in all these scenarios (as quantified by the concordance

correlation coefficient, CCC > 0.95). In particular, superior tumor control is

observed with higher doxorubicin concentrations, shorter inter-treatment

intervals, and a higher number of doses (p < 0.05). Longer inter-treatment

intervals require adapting the model parameterization after each doxorubicin

dose, suggesting the promotion of chemoresistance. Additionally, we propose

promising empirical formulas to describe the variation of model parameters as

functions of doxorubicin concentration (CCC > 0.78). Thus, we conclude that

our mathematical model could deepen our understanding of the cytotoxic

effects of doxorubicin and could be used to explore practical drug regimens

achieving optimal tumor control.
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Introduction

Breast cancer is the most common cancer among women

worldwide and the leading cause of cancer death in over

100 countries (Sung et al., 2021). Chemotherapy is a primary

component of cancer treatment and options have both advanced

and increased considerably in recent years (Anampa et al., 2015).

However, the development of chemoresistance, and resulting

tumor recurrence, remains a common cause of treatment failure

and a primary cause of cancer death (Holohan et al., 2013;

Longley and Johnston, 2005). Indeed, for a standard

chemotherapy drug such as doxorubicin, breast cancer

patients may develop chemoresistance within just

6–10 months (Rivera and Gomez, 2010; O’Shaughnessy, 2005).

From a biological perspective, the development of

chemoresistance is governed by many complex mechanisms,

such as treatment-induced genetic and epigenetic alterations,

altered metabolic states, and adaptive responses of the tumor

microenvironment (Easwaran et al., 2014; Zhao, 2016; Dong

et al., 2018; Ji et al., 2019). Tumor cells can also possess an

intrinsic phenotypic or genetic resistance that can render the

therapy ineffective even before acquired chemoresistance

develops (Harris et al., 2007; Bernard et al., 2009; Campbell

et al., 2018). Moreover, the existence of intratumoral

heterogeneity and its role in tumor regrowth have become

increasingly recognized, as the presence of even a minor

subpopulation of drug-resistant cells can give rise to tumor

relapse (Easwaran et al., 2014; Polyak, 2011; Alizadeh et al.,

2015; Sun and Yu, 2015). Furthermore, phenotype switching, in

which tumor cells swap between varying degrees of drug-

resistant and drug-sensitive phenotypes, can enable the

establishment of more permanent chemoresistance

mechanisms that hinder complete tumor eradication

(Easwaran et al., 2014; Meacham and Morrison, 2013;

Echeverria et al., 2019; Kumar et al., 2019). Considering the

complex biological processes underlying chemoresistance

development, we believe that a robust framework is needed to

comprehensively integrate the growing knowledge of this

phenomenon and guide future research efforts. To this end,

experimentally-validated mathematical models of

chemoresistance mechanisms could be a potent tool in

understanding the dynamics of overall tumor drug response.

The description of cancer growth and therapeutic response by

leveraging mechanistic mathematical models is a rich field

known as mathematical oncology (Yankeelov et al., 2013;

Rockne et al., 2019; Lorenzo et al., 2022). This approach has

already shown promise in characterizing breast cancer growth

and treatment response in both the preclinical and clinical

settings (Atuegwu et al., 2013; Pascal et al., 2013; Weis et al.,

2015; Zhang et al., 2015; Geng et al., 2017; Palmer and Sorger,

2017; Jarrett et al., 2018; Jarrett et al., 2020a).

There are several mechanistic approaches to mathematically

describe chemoresistance (Sun and Hu, 2018; Craig et al., 2019;

Craig et al., 2021; Hori et al., 2021), with the original theoretical

models dating back more than two decades (Panetta, 1997;

Panetta, 1998). The standard strategy consists of defining a

multicompartmental tumor cell population including one or

multiple species of both drug-resistant and drug-sensitive

cells, which evolve and interact over time following a set of

ordinary differential equations, or over both space and time

according to a set of partial differential equations (Craig et al.,

2019; Craig et al., 2021; Hori et al., 2021; Jackson and Byrne,

2000; Greene et al., 2019; Kim et al., 2021; Strobl et al., 2021;

Howard et al., 2022). Alternatively, Sun et al. (2016) utilized a

stochastic, multiscale model that incorporated heterogeneous

population dynamics with drug pharmacokinetics and

microenvironment contributions to drug resistance in

melanoma patients. Furthermore, Pisco et al. (2013) and

Álvarez-Arenas et al. (2019) applied the evolutionary theories

of Darwinian selection and Lamarckian induction to guide their

modeling of drug resistance in leukemia cells and non-small cell

lung carcinoma, respectively. However, despite these promising

studies, there is a still a dearth of experimentally-validated

mechanistic models of chemoresistance in breast cancer, with

which we could test alternative biological hypotheses to

ultimately enhance chemotherapeutic strategies for individual

patients. For instance, Chapman et al. (2019) developed a model

integrating phenotypic switching of cell differentiation states and

tumor heterogeneity to characterize therapeutic escape in the

triple-negative subtype, but the empirical validation of their

model predictions currently remains limited. Additionally,

in vitro studies usually label cell lines as homogeneously drug-

resistant or drug-sensitive and assume a static drug sensitivity

(AbuHammad and Zihlif, 2013; Gottesman, 2002), which

overlooks the existence of intratumoral heterogeneity and

transient drug resistance. Moreover, preclinical studies often

assess tumor cell death at a single time point 24–72 h post-

treatment (Martins et al., 2018; Chung et al., 2020; Low et al.,

2021). This experimental setting does not enable the

characterization of long-term tumor drug responses and,

hence, the development of drug-induced chemoresistance.

Here, we present a mechanistic model to describe the

dynamics of drug response and chemoresistance

development in MCF-7 breast cancer cells treated with

doxorubicin, which we fit to time-resolved microscopy

measurements of tumor cell number subjected to diverse

therapeutic plans over long experimental times (>8 days).
Doxorubicin is a cytotoxic anthracycline drug that is

extensively used in chemotherapeutic regimens for breast

cancer (Jarrett et al., 2020a; Zardavas and Piccart, 2015;

Waks and Winer, 2019). As a cytotoxic drug, treatment

with doxorubicin primarily induces tumor cell death, but

this therapeutic effect may also be preceded by cell cycle

arrest (Anampa et al., 2015; Howard et al., 2022; Gewirtz,

1999; Carvalho et al., 2009; McKenna et al., 2017). Our work

continues the first efforts of Howard et al. in studying
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doxorubicin resistance in breast cancer cell populations by

leveraging several experimentally-informed mechanistic

models (Howard et al., 2022; Howard et al., 2018). While

Howard et al. originally proposed multiple models to

characterize this phenomenon and selected the best of

them for each dataset, we have developed a single model

that can be extended for multiple drug doses. To incorporate

intratumoral heterogeneity, we assume that the cytotoxic

action of doxorubicin treatment induces a

compartmentalization of the breast cancer cell population

into two subgroups: surviving cells and irreversibly damaged

cells, which will ultimately die due to doxorubicin action. We

further assume that the surviving cells continue proliferating

after exposure to doxorubicin, while the irreversibly damaged

cells progressively transition from proliferation to drug-

induced death. Hence, the eventual development of

chemoresistance will be driven by the surviving cells.

Importantly, the model compartmentalization ultimately

results from the underlying distribution of diverse drug

sensitivity phenotypes in the tumor cell population and its

changes after the delivery of each doxorubicin dose (Howard

et al., 2022; Pisco et al., 2013; Álvarez-Arenas et al., 2019). To

accommodate potentially significant treatment-induced

variations in the underlying spectrum of drug resistance

phenotypes, we investigate an adaptive parametrization of

our model with each doxorubicin dose. Hence, drug

sensitivity in the tumor cell population is assumed to be

dynamic with time, thereby accounting for tumor cell

plasticity (Easwaran et al., 2014; Meacham and Morrison,

2013; Echeverria et al., 2019; Kumar et al., 2019).

Additionally, our model is fit to the same time-resolved

microscopy experiments used in Howard et al. (2022), in

which breast cancer cells were subjected to doxorubicin

treatments varying in either drug concentration, inter-

treatment interval, or the number of doses. Our results

show that our proposed model can fit the data observed in

all three scenarios with remarkable accuracy. We have also

analyzed the model parameter trends for each

experiment and built empirical parameter formulas as

functions of doxorubicin concentration, which may

provide further insight into the development of

chemoresistance.

The remainder of this work is organized as follows. First,

given that we utilize the time-resolved microscopy data

previously collected by Howard et al. (2022), we briefly

outline their acquisition and preprocessing procedures. We

also describe the derivation of the model and explain the

numerical and statistical methods leveraged in this study. We

then present the results from our model fittings for each of the

three aforementioned experimental scenarios and analyze the

corresponding quality of fit and trends in model parameters.

To conclude, we discuss the main implications from our

work, its limitations, and future directions.

Methods

Data acquisition and preprocessing

The experimental data leveraged in this study were fully

obtained from Howard et al. (2022). In the following, we provide

only the salient details of the data acquisition and preprocessing

procedures presented in Howard et al. (2022) and directly

relevant to our study, to which we added a final outlier

assessment.

Cell culture
MCF-7 human breast cancer cells (ATCC HTB-22) were

cultured in Minimum Essential Media (Gibco) supplemented

with 10% fetal bovine serum (Gibco) and 1% penicillin-

streptomycin (Gibco). Cells were maintained at 37°C with 5%

CO2. A stable fluorescent cell line expressing constitutive EGFP

with a nuclear localization signal (MCF7-EGFPNLS1) was

established to aid in the automated cell quantification of the

time resolved microscopy measurements (Howard et al., 2022;

Howard et al., 2018). Genomic integration of the EGFP

expression cassette was accomplished by leveraging the

Sleeping Beauty transposon system. The EGFP-NLS sequence

was obtained as a gBlock (IDT) and cloned into the optimized

Sleeping Beauty transfer vector pSBbi-Neo (which was a gift from

Eric Kowarz, Addgene plasmid #60525) (Kowarz et al., 2015). To

mediate genomic integration, this two-plasmid system consisting

of the transfer vector containing the EGFP-NLS sequence and the

pCMV(CAT)T7-SB100 plasmid containing the Sleeping Beauty

transposase was co-transfected into the MCF-7 population

utilizing Lipofectamine 2000 (mCMV(CAT)T7-SB100 was a

gift from Zsuzsanna Izsvak, Addgene plasmid #34879) (Mátés

et al., 2009). After gene integration with Sleeping Beauty

transposase, EGFP + cells were collected by fluorescence

activated cell sorting and maintained in media supplemented

with 200 ng/ml G418 (Caisson Labs) in place of penicillin-

streptomycin.

Doxorubicin response experiments
Cells were seeded in a 96-well plate at a target density of

2,000 cells/well and grown for approximately 48 h to allow for

cell adhesion and recovery from passaging. An IncuCyte S2 Live

Cell Analysis System (Essen/Sartorius, Goettingen, Germany)

was used to collect fluorescent and phase contrast images every

2–4 h. Images were collected for periods of 21–56 days to ensure

that cultures in which cells recover after exposure to doxorubicin

were able to display logistic growth. Doxorubicin treatment was

prepared by reconstituting doxorubicin hydrochloride (Cayman

Chemical 15,007, Ann Arbor, Michigan) in water and mixing it

with 100 µl of growthmedia at 2× the target concentration, which

was then added to each well of the plate. The drug-containing

media was then replaced with fresh growth media after 24 h.

Three experiment types were run, in which either the
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doxorubicin concentration, the inter-treatment interval, or the

number of doses was varied (see Table 1). Each doxorubicin

concentration was tested in n = 6 replicates, while each inter-

treatment interval and number of doses was tested in n =

12 replicates.

Image analysis
Using IncuCyte’s integrated software, the quantification of

total tumor cell counts was performed on the fluorescent images

using the green fluorescence channel. Individual cells were

consistently resolved using standard image analysis techniques

of background subtraction, followed by thresholding, edge

detection, and minimum area filtering. The phase contrast

images were consulted in parallel to aid the validation of

image analysis (Howard et al., 2022; Howard et al., 2018).

Data truncation
The tumor cell time courses extracted from some wells did

not provide meaningful data throughout the entire time course

due to a variety of reasons. These included the cell population

growing to confluence and fluctuating with feeding cycles, being

disturbed during media replenishment, or growing three-

dimensionally resulting in cells overlapping each other and

thereby compromising the ability to accurately quantify cell

numbers. Thus, for each dataset, the estimated cell number

was truncated either just prior to reaching confluence, when

the cell number dropped more than 50% due to media handling,

or when repeated discontinuities were observed in the time

course data.

Data normalization
For smaller discontinuities in which less than 50% of the cells

were lost due to media handling, the data was normalized by

dividing the cell number at time points before the discontinuity

by a constant α (Howard et al., 2022) calculated via Eq. 1:

α �
(Nd−1−Nd−2)
(td−1−td−2) + 2 Nd−1

td−td−1
2 Nd
td−td−1 + Nd−Nd+1

td+1−td
(1)

in whichNd,Nd−i, andNd+i are the total tumor cell counts at the

discontinuity, i points before the discontinuity, and i points after

the discontinuity, respectively. td,td−i, and td+i are the times of the

discontinuity, i points before the discontinuity, and i points after

the discontinuity, respectively. The objective of this

normalization was to smooth the first and second derivatives

of the total tumor cell counts across the discontinuity, as

proposed in (Howard et al., 2022). Supplementary Appendix

A in the Supplementary Information provides further details

about the purpose and derivation of Eq. 1.

Outlier removal
For datasets that possessed outliers, the rmoutliers function

from MATLAB R2020b (The Mathworks, Natick, MA) was used

to remove data points using median filtering. A visual inspection

of the resulting data confirmed that this method removed evident

outliers from the original series, while maintaining the natural

fluctuations in tumor cell counts (see Supplementary Figures

S1–S5).

Mathematical model

We present a mathematical model to describe the response of

MCF-7 breast cancer cells to the cytotoxic action of doxorubicin

in the three experimental scenarios listed in Table 1. We begin by

describing the biological mechanisms captured by the model

assuming a single dose of doxorubicin (Experiment 1, Table 1).

Then, we show how the model can be generalized to multiple

doses (Experiments 2 and 3, Table 1), and can also be modified to

vary specific parameters with each dose. Figure 1 illustrates the

main tumor cell dynamics described by ourmodel after each dose

of doxorubicin, which are further detailed in the following

paragraphs. The reader can refer to Supplementary Table S1

for a consolidated list of model parameter definitions and their

units.

Single-dose model
We start with a population of tumor cells (N) that grow

untreated for a specified period of time prior to doxorubicin

treatment (approximately 48 h). We assume that these untreated

cells follow logistic growth:

dN

dt
� g0N(1 − N

θu
) (2)

N(0) � N0 (3)

TABLE 1 Experimental conditions. In Experiment 1, one dose of doxorubicin was delivered at concentrations varying from 10 to 300 nM (n = 6). In
Experiment 2, two doses of 75 nM doxorubicin were delivered at inter-treatment intervals varying from 0 to 16 days (n = 12). In Experiment 3, one
to five doses of 75 nM doxorubicin were delivered at either 2-day or 2-week inter-treatment intervals (n = 12).

Experiment Concentration [nM] Inter-treatment Interval [d] Number of Doses Number of Replicates

1 0, 10, 20, 35, 50, 75, 100, 125, 150, 300 - 1 6

2 75 0, 2, 4, 6, 8, 10, 12, 14, 16 2 12

3 75 2 or 14 1, 2, 3, 4, 5 12
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where g0 is the untreated proliferation rate, θu is the untreated

tumor cell carrying capacity, and N0 is the initial number of

tumor cells. We set θu = 53,873 cells, which corresponds to the

mean value resulting from the fitting of Eqs 2, 3 to the untreated

datasets in Experiment 1 (i.e., 0 nM doxorubicin; further details

can be found in Supplementary Tables S2–S5 and Supplementary

Figure S1).

Let t1Dox denote the time at which a single dose of doxorubicin

is delivered, as described in Experiment 1 (Table 1). At this time

point, we assume that a fraction fs of the tumor cells survives the

treatment (S), whereas the complementary fraction (1 − fs) is
irreversibly damaged by the cytotoxic action of doxorubicin and

will ultimately die (D) (Anampa et al., 2015; Howard et al., 2022;

Gewirtz, 1999; Carvalho et al., 2009; McKenna et al., 2017).

Hence, the fraction fs ultimately depends on the underlying

spectrum of drug sensitivities in the tumor cell population as well

as on the amount of drug delivered with each dose (Howard et al.,

2022; Gewirtz, 1999; Carvalho et al., 2009; McKenna et al., 2017;

Zoli et al., 1995). We denote the initial number of surviving and

irreversibly damaged tumor cells immediately after treatment

with doxorubicin as S(t1+Dox) andD(t1+Dox), respectively, which are
defined based on the number of untreated cells immediately

before the delivery of doxorubicin, N(t1−Dox), as

S(t1+Dox) � fsN(t1−Dox) (4)
D(t1+Dox) � (1 − fs)N(t1−Dox) (5)

such that the total tumor cell number N for time t> t1Dox is

calculated as

N(t) � S(t) +D(t) (6)

Note that Eqs 4–6 ensure the continuity in the tumor cell

count before and after the treatment with doxorubicin, as

observed in the corresponding experimental data (see

Supplementary Figure S2).

We assume that the surviving cells also follow logistic growth

with a different rate and carrying capacity:

dS

dt
� gsS(1 − N

θDox
) (7)

where gs is the proliferation rate of surviving tumor cells and

θDox is the treated tumor cell carrying capacity. For the

irreversibly damaged cells, we assume that their logistic

growth dynamics gradually transition from proliferation to

treatment-induced death at an exponentially-decaying rate:

dD

dt
� (kd + (gd − kd) exp( − γd(t − t1Dox)))D(1 − N

θDox
), (8)

where kd and gd denote the drug-induced death rate and the

proliferation rate of the irreversibly damaged tumor cells,

respectively, while γd represents the drug-induced death delay

rate. The latter mechanism represents the varying duration of the

cascade of biological events that takes place between drug

exposure and the ultimate doxorubicin-induced tumor cell

death (e.g., uptake by tumor cells, damage to DNA, cell cycle

arrest, induction of tumor cell death) (Howard et al., 2022;

Gewirtz, 1999; Carvalho et al., 2009; McKenna et al., 2017). In

Eq. 8, the use of a common logistic model formulation to describe

FIGURE 1
Generalized model of tumor cell response to multiple doses of doxorubicin treatment. We start with a population of untreated tumor cells and
let them grow for approximately 48 h. At time t1Dox , we add a dose of doxorubicin (Dox) to each well. We assume that after the treatment, the tumor
cells either survive (S) or are irreversibly damaged (D1) and ultimately die due to the cytotoxic action of doxorubicin. The fraction of cells in either
subpopulation is determined by f1s , the fraction of surviving cells after the first dose. After the subsequent nd doses of doxorubicin
(i � 2, 3, . . . ,nd), we assume that a fraction f is of the surviving cells survive the treatment, while a fraction (1 − f is) induces a new subpopulation of
irreversibly damaged cells (Di), such that the total number of tumor cells is N � S + D1 + D2 + ...+Dnd for times t> tnd

Dox . In this study, we further assess
whether the collection of f is can be assumed to take on the same value or whether they require an independent parameterization with each
doxorubicin dose. This Figure was created using BioRender.com.
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the initial growth after treatment and the ensuing drug-induced

death in the irreversibly-damaged tumor cell compartment

facilitates the modeling of this transition in the dynamics of

this subpopulation within the growth rate of the logistic model

(i.e., the first factor in parenthesis in the right-hand side of Eq. 8).

Additionally, the cytotoxic action of doxorubicin targets

proliferating cells (Howard et al., 2022; Gewirtz, 1999;

Carvalho et al., 2009; McKenna et al., 2017). The logistic

model formulation in Eq. 8 further enables to account for the

limitation to tumor cell proliferation depending on the total

tumor cell density, which may hence limit drug-induced tumor

cell death.

In Eqs 7, 8, we introduce a treated tumor cell carrying

capacity (θDox), which may be different from θu defined for

untreated cells in Eq. 2. The rationale for this modeling choice is

inspired by the experimental data from Howard et al. (2022),

which shows that the maximum tumor cell counts in the

replicates treated with doxorubicin could reach either larger

or smaller values at confluence with respect to their untreated

counterparts (i.e., the 0 nM replicates in Experiment 1; see

Supplementary Figures S1–S5). To estimate θDox in Eqs 7, 8,

we used either one of two approaches. If the last tumor cell count

in a dataset was greater than 30% of θu, then θDox was fit along

with the other model parameters. Conversely, if the last tumor

cell count was less than 30% of θu,then we fixed θDox to the mean

of the values obtained from the replicates of the same experiment

in which this parameter was directly fit. The rationale for this

approach is that we observed that final tumor cell counts below

30% of θu did not provide enough identifiability for θDox, which

ultimately induced significant model fitting errors.

Multiple-dose model
Let us now consider a treatment schedule consisting of nd

doses of doxorubicin delivered at times tiDox, (i � 1, 2, . . . , nd), as

described in Experiments 2 and 3 (Table 1). For the first dose, we

assume that a fraction f1
s of the tumor cells survives treatment

with doxorubicin and, thus, the multiple-dose model remains

identical to the single-dose model described in the previous

section. For each of the subsequent drug doses, we assume

that a fraction fi
s (i � 2, . . . , nd) of the tumor cells that

escaped the cytotoxic action of the previous doxorubicin

doses, S(ti−Dox), survives the new dose, while a corresponding

fraction 1 − fi
s gives rise to a new irreversibly damaged

population Di. We further assume that each new

subpopulation Di is characterized by a distinct value of the

death delay rate γid. The rationale for considering an adaptive

parameterization of parameters fs and γd with each doxorubicin

dose is that the underlying spectrum of tumor cell sensitivities

may significantly change with each doxorubicin dose and inter-

treatment interval (Howard et al., 2022; Pisco et al., 2013;

Álvarez-Arenas et al., 2019; Lyman, 2009; De Souza et al.,

2011; Ponnusamy et al., 2017), such that the surviving

fraction may exhibit an increased resistance to the drug. We

hypothesize that this phenomenon results in a higher potential to

survive a new drug dose (i.e., larger values of fs) or to partially

hinder the cytotoxic action of doxorubicin before ultimately

succumbing (i.e., lower values of γd).

Thus, after the delivery of the ith dose (i≥ 2), the number of

surviving tumor cells S(ti+Dox) and the initial number of the new

subpopulation of irreversibly damaged cells Di(ti+Dox) are

calculated as

S(ti+Dox) � fi
sS(ti−Dox) (9)

Di(ti+Dox) � (1 − fi
s)S(ti−Dox) (10)

such that the total number of tumor cells during and after

treatment with multiple doses of doxorubicin is given by

N(t) � S(t) +∑nd
i�1
Di(t)H(t − tiDox), (11)

where H(t − tiDox) is the Heaviside step function, which equals

0 for t < tiDox and 1 for t ≥ tiDox. Note that Eqs 8–11 ensure the

continuity in the total tumor cell number before and after each

doxorubicin dose, as observed in the data from Experiments

2 and 3 (Table 1; see Supplementary Figures S3–S5).

In this multiple-dose model, we assume that the surviving

cells continue to follow logistic growth after each of the

consecutive doxorubicin doses, as described by Eq. 7.

Additionally, each of the ith irreversibly damaged

subpopulations are assumed to follow the growth dynamics

defined in Eq. 8. Thus, for i � 1, . . . , nd, the dynamics of each

irreversibly damaged subpopulation Di is given by

dDi

dt
� (kd + (gd − kd) exp( − γd(t − tiDox)))Di(1 − N

θDox
)
(12)

Finally, we further investigate two versions of the multiple-

dose model: 1) the general formulation outlined above in which

we varyfs and γd with the delivery of each dose, and 2) a

simplified version in which we assume a constant

parameterization for all doses (i.e., f1
s � f2

s � . . . � fnd
s and

γ1d � γ2d � . . . � γndd ). Our underlying hypothesis is that longer

inter-treatment intervals require an adaptive parameterization

because they contribute to the development of chemoresistance

(Howard et al., 2022; Lyman, 2009; De Souza et al., 2011;

Ponnusamy et al., 2017), which would be represented in our

model by higher fractions of surviving cells (fi
s) along with

irreversibly damaged subpopulations (Di) exhibiting longer

transition times from proliferation to treatment-induced death

(i.e., lower values of γid). Conversely, we hypothesize that shorter

inter-treatment intervals may not introduce significant changes

to the survival fractions (fi
s) and death delay rates (γ

i
d) associated

with each drug dose, such that a constant parameterization

would suffice to capture the tumor cell population response to

the cytotoxic action of the prescribed doxorubicin treatment. In

the Results section, we show that these hypotheses are
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significantly supported by the fitting of these two model versions

to the data from Experiments 2 and 3 (Table 1).

Numerical methods

Model fitting
We fit the single-dose model to each individual time course of

total tumor cell counts from each replicate from Experiment 1

(n = 60; Table 1), and we fit the multiple-dose model to each

individual time course of total tumor cell counts from each

replicate from Experiments 2 and 3 (n = 108 and 120,

respectively; Table 1). Model fitting was carried out with a

nonlinear least-squares method, via the MATLAB (R2020b)

function lsqnonlin. We leveraged a trust-region reflective

algorithm with function, step, and optimality tolerances of

10–6, while the maximum number of function evaluations and

iterations was set to 20,000. The parameter bounds and initial

guesses were guided by the results fromHoward et al. (2022), and

are summarized in Supplementary Tables S2, S8, S12, S16, S17.

The ordinary differential equations in our models were solved

using a Runge-Kutta method as provided by ode45 in MATLAB

(R2020b). Supplementary Appendix B in the Supplementary

Information provides further details about the model fitting

approach used in this study.

Empirical parameter formulas
We constructed empirical formulas for the single-dose model

parameters as a function of doxorubicin concentration based on

the model fittings to the datasets from Experiment 1 (Table 1). To

this end, we also applied a nonlinear least-squares method using

a trust-region reflective algorithm provided by lsqnonlin in

MATLAB (R2020b), as described in the previous section. The

initial guess and bounds for the empirical parameters in these

formulas were chosen according to the range of the single-dose

model parameter values obtained from the fittings to the datasets

from Experiment 1 (Table 1). The medians of the distributions of

these fitted model parameters at each doxorubicin concentration

were used as the observed values for the empirical parameter

formula fits. The choice of the of the empirical formula for each

parameter was based on the observed trend of the fitted

parameter values obtained with the single-dose model as a

function of increasing doxorubicin concentration (e.g., an

exponentially decaying trend was represented with an

exponential function; see the Results section and

Supplementary Tables S6, S7 for further details).

Statistical analysis

To assess our model’s quality of fit to the time course data, we

calculated the coefficient of determination (R2), the normalized

root mean squared error (NRMSE), the Pearson correlation

coefficient (PCC), and the concordance correlation coefficient

(CCC) (Lin, 1989). In the Results section, we report the median

and range of these metrics across all the replicates of each

experiment (i.e., n = 60, 108, 60, and 60 for Experiment 1,

Experiment 2, Experiment 3 with 2-day inter-treatment

interval, and Experiment 3 with 2-week inter-treatment

interval, respectively). More detailed values can be found in

Supplementary Tables S4, S10, S14, S20. We further assessed

our model parameterizations and fits to experimental data

through 95% nonlinear regression parameter confidence

intervals and 95% nonlinear regression prediction confidence

intervals calculated using nlparci and nlpredci in MATLAB

(R2020b), respectively (see Supplementary Appendix C). To

test for significant differences between two values of a model

parameter or quality-of-fit metric within each experimental

scenario, we performed two-sided Wilcoxon rank sum tests

with 5% significance using ranksum in MATLAB (R2020b).

To assess the validity of the proposed empirical formulas

using the single-dose model fittings, we ran a simulation test in

which we qualitatively compared the model outcomes based on

these formulas with the corresponding experimental

observations at each drug concentration. To this end, Latin

hypercube sampling based on lhsdesign in MATLAB (R2020b)

was used to define 200 parameter combinations assuming

uniform distributions over the 95% confidence intervals of the

fitted empirical parameter formulas at each doxorubicin

concentration, as calculated by nlpredci in MATLAB (R2020b).

Results

Fitting the single-dose model to
experiment 1 data: Varying doxorubicin
concentrations

Figure 2 shows representative model fits for the observed

growth of MCF-7 cell populations treated with only one dose of

doxorubicin at concentrations ranging from 10 to 300 nM

(Experiment 1, Table 1). Model fits for all replicates at each

drug concentration (n = 6) can be found in Supplementary Figure

S2. We report the median and range of all the fitted model

parameters for each doxorubicin concentration in

Supplementary Table S3, while Figure 3 shows the boxplots of

the fitted parameter distributions for each doxorubicin

concentration. The median and range of the quality of fit

metrics for the single-dose model fits to Experiment 1 data

(n = 60) were: NRMSE (3.33 [0.80, 12.20]), R2

(>0.99 [0.96, >0.99]), PCC (>0.99 [0.98, >0.99]), and CCC

(0.99 [0.97, >0.99]). Supplementary Table S4 further provides

detailed quality of fit metrics for each doxorubicin concentration.

Figure 2, Supplementary Figure S2 and Supplementary Table S3

show that, as doxorubicin concentration is increased, the

surviving cells exhibit a decrease in growth rate and number,
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while the irreversibly damaged cells undergo a faster transition

from proliferation to treatment-induced death. These trends

ultimately lead to significantly lower final total tumor cell

counts (p < 0.05, see Supplementary Table S5) and larger

delay or even suppression of tumor regrowth in the cells

exposed to higher doxorubicin concentrations (see

Supplementary Figure S2), suggesting that tumor control

improves as the doxorubicin dose is increased.

Figure 3 shows the fitted empirical formulas for the fraction

of surviving cells (fs), the proliferation rate of the surviving cells

(gs), the proliferation rate of the irreversibly damaged cells (gd),

the doxorubicin-induced death rate of the irreversibly damaged

cells (kd), and the doxorubicin-induced death delay rate of

irreversibly damaged cells (γd). These empirical formulas are

functions of doxorubicin concentration, which is denoted withC.

The fitted empirical parameter values and their confidence

intervals can be found in Supplementary Table S6, while the

corresponding quality of fit metrics can be found in

Supplementary Table S7. For fs, gs, and gd, we observe a

clear exponentially decaying trend as drug concentration is

increased (Figures 3A–C). In the case of fs, we added an

additional constant empirical parameter to the decaying

exponential to ensure that the empirical formula captures the

low nonzero values of this parameter for the higher doxorubicin

concentrations (otherwise, the exponential decay would reach

the horizontal asymptote at fs = 0 for low doxorubicin

concentrations). The parameter kd exhibits a complex trend,

consisting of a steep decreasing branch for doxorubicin

concentrations under 50 nM, followed by an increasing

branch that plateaus for doxorubicin concentrations over

150 nM. We found that an empirical formula based on a

Morse-potential relationship (Girifalco and Weizer, 1959)

FIGURE 2
Representative fits of the single-dose model for varying concentrations of doxorubicin. Data and model fittings are shown for a representative
replicate treated with 10–300 nM doxorubicin concentrations (Experiment 1, Table 1). Experimental data are shown in gray circles. The number of
total cells, surviving cells, and irreversibly damaged cells obtained with the fitted single-dose model are shown in black, red, and blue solid lines,
respectively. The time of doxorubicin delivery (Dox) is represented with a vertical grey dashed line. As doxorubicin concentration is increased,
we observe a decrease in the growth rate of surviving cell subpopulation and a faster transition from growth to treatment-induced death in
irreversibly damaged cell subpopulation. These drug-induced effects ultimately translate into a longer delay (or even suppression) of total tumor cell
population growth post-treatment and lower total tumor cell count for higher doxorubicin concentrations, indicating superior tumor control overall.
The median and range of the quality of fit metrics across all replicates in Experiment 1 (n = 60, Table 1) are NRMSE: 3.33 [0.80, 12.20],
R2: >0.99 [0.96, >0.99], PCC: >0.99 [0.98, >0.99], and CCC: 0.99 [0.97, >0.99].
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captured this trend (Figure 3D). For γd, we chose a decaying

exponential flipped with respect to the horizontal axis to capture

the increasing trend that ultimately plateaus at a nonzero value

(Figure 3E). The median and range of the quality of fit metrics for

the five proposed empirical formulas were: NRMSE (17.65 [5.45,

153.6]), R2 (0.91 [0.78, 0.98]), PCC (0.95 [0.88, 0.99]), and CCC

(0.85 [0.78, 0.88]). We note that the NRMSE of the fitted

empirical formula for fs reached values beyond 100%. This is

due to the small values of fs at high concentrations of

doxorubicin, where the NRMSE is not relevant to modeling

outcomes; for reference, the RMSE for the fitted empirical

formula for fs is 0.0476.

Once the parameter formulas had been established, we

wanted to qualitatively assess the range of tumor cell

population dynamics that our formulas could reproduce. For

each doxorubicin concentration, we sampled the 95% confidence

intervals of the fitted empirical parameter formulas (dashed

purple lines in Figure 3) using Latin hypercube sampling to

obtain 200 parameter combinations, with which we ran

corresponding model simulations. Figure 4 presents the

median and range of the model simulations plotted against

the median and range of the experimental data measured at

each time point for each doxorubicin concentration tested in

Experiment 1 (Table 1). We observe that the proposed empirical

parameter formulas (Figure 3) are able to predict a wide range of

model solutions and that the simulations are able to capture the

overall tumor cell population dynamics observed in the datasets

from Experiment 1 (Table 1).

Fitting the multiple-dose model to
experiment 2 data: Varying inter-
treatment intervals

To fit the experimental data for varying inter-treatment

intervals (Experiment 2, Table 1), we initially used the two

versions of the multiple-dose model; i.e., with all parameters

held constant or varying fs and γd with each drug dose. Figure 5

FIGURE 3
Empirical parameter formulas for varying doxorubicin concentrations. The proposed empirical formulas indicated at the top of each panel (A–E)
were fit to the median of the corresponding parameter distributions obtained from fitting the single-dose model to the varying concentration
datasets from Experiment 1 (Table 1). C denotes doxorubicin concentration in nM, while αi (i � 1, 2, . . .) are empirical parameters. The distributions of
the single-dose model parameters are represented with black boxplots, in which outliers are represented as black circles. The resulting curves
from fitting the empirical parameter formulas are shown as purple solid lines, and their corresponding 95% confidence intervals are plotted as purple
dashed lines. Panel (A) shows the parameter formula for the fraction of surviving cells (fs). Panel (B) shows the parameter formula for the proliferation
rate of the surviving tumor cells (gs). Panel (C) shows the parameter formula for the proliferation rate of the irreversibly damaged tumor cells (gd). In
panels (A–C), we observe that as the drug concentration increases, the corresponding single-dose model parameter values decrease exponentially.
Panel (D) shows the parameter formula for the doxorubicin-induced death rate of irreversibly damaged cells (kd), which we approximated with an
equation based on aMorse-potential relationship. Panel (E) shows the parameter formula for the doxorubicin-induced death delay rate of irreversibly
damaged cells (γd), which increases and then plateaus as the drug concentration increases. Median and range of quality of fit metrics for the empirical
parameter formulas (n = 5) are NRMSE: 17.65 [5.45, 153.6], R2: 0.91 [0.78, 0.98], PCC: 0.95 [0.88, 0.99], and CCC: 0.85 [0.78, 0.88].
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shows the distribution of the NRMSE in fitting the datasets at

each inter-treatment interval (n = 12) for both models. We

observe a significant difference between the NRMSEs obtained

with either version of the multiple-dose model, such that the

varyingfs and γd model provides a significantly lower NRMSE at

8-, 10-, 12-, 14-, and 16-day inter-treatment intervals (p: 0.0061,

0.0017, 1.56 × 10−4, 5.92 × 10−4, 3.66 × 10−5, respectively). Thus,
the results shown in Figure 5 justify the use of the model with

constant parameters for inter-treatment intervals shorter than

8 days and the model with varying fs and γd for inter-treatment

intervals ≥8 days. We followed this model selection criterion for

fitting the datasets from Experiments 2 and 3 (Table 1) for the

remainder of this work.

Figure 6 shows representative model fits for the observed

growth of MCF-7 cell populations treated with two doses of

75 nM doxorubicin delivered at inter-treatment intervals ranging

from 0 to 16 days (Experiment 2, Table 1). Model fits for all the

replicates at each inter-treatment interval (n = 12) can be found

in Supplementary Figure S3. Additionally, Supplementary Table

S9 summarizes the median and range of the fitted model

FIGURE 4
Comparison of simulated tumor cell population growth based on empirical parameter formulas with respect to experimental data for varying
doxorubicin concentrations. We sampled the 95% confidence intervals for the fitted empirical parameter formulas in Figure 3 using Latin hypercube
sampling to obtain 200 parameter combinations for each doxorubicin concentration, with which we carried out corresponding simulations with the
single-dose model. The median and range of the model simulations are plotted with the median and range of the experimental data from
Experiment 1 (Table 1) at each time point for comparison. The median of the experimental data is shown with gray circles, and the range of the
experimental data is represented with gray shaded regions. The median of the model simulations is plotted as a pink solid line, and the range of the
simulations is shown as pink shaded regions. The time of doxorubicin delivery is represented with a vertical grey dashed line. We observe that our
fitted parameter formulas from Figure 3 can reproduce a wide range of tumor cell population dynamics, including those observed in the varying
concentration datasets (Experiment 1, Table 1).
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parameters for each inter-treatment interval. The median and

range of the quality of fit metrics across all replicates in

Experiment 2 (n = 108) were: NRMSE (4.64 [2.74, 14.3]), R2

(0.99 [0.80, >0.99]), PCC (>0.99 [0.91, >0.99]), and CCC

(0.99 [0.90, >0.99]). More detailed quality of fit metrics for

each inter-treatment interval are reported in Supplementary

Table S10. As the inter-treatment interval lengthens, the

surviving cells tend to adopt an increasingly larger

proliferation rate and the irreversibly damaged cells transition

more slowly from proliferation to drug-induced death after two

doses of doxorubicin treatment (see Figure 6, Supplementary

Figure S3 and Supplementary Table S9). These effects appear to

promote the tumor cell population regrowth after the second

dose in most replicates for inter-treatment intervals of 6 days or

longer and after the first dose for inter-treatment intervals of

12 days or longer. Overall, this ultimately leads to significantly

higher final total tumor cell counts as the inter-treatment interval

is lengthened (p < 0.05, see Supplementary Table S11),

suggesting that increased time spans between consecutive

doses of doxorubicin is conducive to poorer tumor control.

Additionally, Figure 7 shows the distributions of the fitted fs

and γd values from fitting the multiple-dose model to the data

with varying inter-treatment intervals (Experiment 2, Table 1).

When the model with constant parameters is used (inter-

treatment intervals from 0 to 6 days), we observe a trend

towards higher surviving fractions and delayed transitions to

treatment-induced death in irreversibly damaged cells as the two

doses are further spaced in time. This observation is further

supported by the distributions of varying fs and γd obtained

from fitting the multiple-dose model to the data for inter-

treatment intervals from 8 to 16 days. After the second dose

in each of these longer intervals, the surviving fraction

significantly increases and the transition from proliferation to

treatment-induced death in irreversibly damaged cells

significantly slows (p < 0.05, see Figure 7), thereby suggesting

an enhanced chemoresistance in both tumor cell subpopulations

for longer inter-treatment intervals. Additionally, comparing the

distributions of parameter f2
s obtained for the different inter-

treatment intervals considered in Experiment 2, the values

obtained in the 0-day and 2-day cases are significantly lower

than those obtained in any larger intervals, thef2
s values obtained

in the 4-day and 6-day scenarios are significantly lower than

those obtained for any inter-treatment interval larger or equal to

8 days, and the f2
s values obtained in the 8-day case are

significantly lower than those obtained for the 12-day inter-

treatment interval (p < 0.05; see Supplementary Appendix D for

further detail). Likewise, for parameter γ2d, the values obtained for

the 0-day, 2-day, 4-day, 6-day, and 8-day cases are significantly

larger than those obtained for any inter-treatment interval larger

or equal to 6, 4, 6, 10, and 12 days, respectively (p < 0.05; see

Supplementary Appendix D). Furthermore, the γ2d values

obtained for the 10-day inter-treatment interval are

significantly larger than those obtained for the 12-day and 14-

day intervals, and the γ2d values obtained for the 14-day inter-

treatment interval are significantly lower than those obtained for

the 16-day interval (p < 0.05; see Supplementary Appendix D).

FIGURE 5
Comparison of fitting the experimental data for varying inter-treatment intervals with the multiple-dose model with constant versus varying
parameters. For each inter-treatment interval tested in Experiment 2 (Table 1), we compared the normalized root mean squared error (NRMSE)
calculated from the fittings using the multiple-dose model with constant parameters (yellow boxplots) with the NRMSE calculated from the fittings
using themultiple-dosemodel with varying fs and γd (green boxplots). Outliers are represented with circles. At inter-treatment intervals of 8, 10,
12, 14, and 16 days, there is a significantly lower NRMSE when the model with varying fs and γd is used (p: 0.0061, 0.0017, 1.56× 10−4, 5.92× 10−4,
3.66 × 10−5, respectively). An asterisk (*) indicates p<0.05 (two-sided Wilcoxon rank sum test).
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Thus, these results along with the distributions plotted in Figure 7

show that there is a tendency towards a larger f2
s value for larger

inter-treatment intervals, which is suggestive of increased

chemoresistance in the surviving cell compartment. However,

this trend becomes less clear among the longest intervals

considered in Experiment 2 (i.e., >8 days), for which f2
s

appears to plateau at a value between 0.10 and 0.15.

Additionally, our results also show a decreasing trend in the

values of γ2d between the 0-day and the 14-day inter-treatment

interval scenario, which suggests an increase in the

chemoresistance of the irreversibly-damaged cells (i.e., they

transition more slowly from proliferation to drug-induced cell

death); although this tendency is reverted for the 16-day inter-

treatment interval. Moreover, the distributions shown in Figure 7

further support the use of the multiple-dose model with varying

fs and γd for longer inter-treatment intervals.

Fitting the multiple-dose model to
experiment 3 data: Varying number of
doses

Figure 8 shows representative model fits for the observed

growth of MCF-7 cell populations treated with 1–5 doses of

75 nM doxorubicin delivered at either 2-day or 2-week inter-

treatment intervals (Experiment 3, Table 1). The datasets from

the cells treated with a 2-day inter-treatment interval were fitted

with the multiple-dose model with constant parameters, while

FIGURE 6
Representative fits of the multiple-dose model for varying inter-treatment intervals. Data and model fittings are shown for a representative
replicate exposed to two doses of 75 nM doxorubicin delivered at inter-treatment intervals ranging from 0 to 16 days (Experiment 2, Table 1).
Experimental data are shown in gray circles. The number of total cells, surviving cells, and irreversibly damaged cells obtainedwith the fittedmultiple-
dosemodel are shown in black, red, and blue solid lines, respectively. The times of doxorubicin (Dox) delivery are represented with vertical grey
dashed lines. For the 0-day case, a single line represents a continuous treatment with no interval between the doses. For inter-treatment intervals of
0–6 days, the multiple-dose model with constant parameters was used for data fitting. For inter-treatment intervals of 8–16 days, we used the
multiple-dose model with varying fs and γd. As the inter-treatment interval is lengthened, we observe an increase in the proliferation rate of the
surviving cells and a slower transition from proliferation to treatment-induced death in the irreversibly damaged cells. These drug-induced effects
ultimately lead to a tumor cell population relapse after the second dose for inter-treatment intervals of 6 days or longer in most replicates, as well as
tumor cell population regrowth after the first dose for inter-treatment intervals of 12 days or longer. These observations suggest increasingly poor
tumor control as the two doses of 75 nM of doxorubicin are spaced further out in time. The median and range of the quality of fit metrics across all
datasets in Experiment 2 (n = 108, Table 1) are NRMSE: 4.64 [2.74, 14.3], R2: 0.99 [0.80, >0.99], PCC: >0.99 [0.91, >0.99], and CCC: 0.99 [0.90, >0.99].
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the datasets from the cells treated with a 2-week inter-treatment

interval were fitted with the multiple-dose model with varying fr

and γd. Model fits for all the replicates for each number of doses

and both inter-treatment intervals (n = 12) can be found in

Supplementary Figures S4, S5. The median and range of the fitted

model parameters for each dose number are summarized in

Supplementary Tables S13, S18, S19. For the replicates treated

every 2 days, the median and range of the quality of fit metrics

(n = 60) were: NRMSE (12.2 [2.72, 19.1]), R2 (0.99 [0.87, >0.99]),
PCC (0.99 [0.93, >0.99]), and CCC (0.99 [0.93, >0.99]). Likewise,
for the replicates treated every 2 weeks, the median and range of

the quality of fit metrics (n = 60) were: NRMSE (3.21 [1.91,

8.57]), R2 (>0.99 [0.93, >0.99]), PCC (>0.99 [0.97, >0.99]), CCC
(0.99 [0.96, >0.99]). More detailed quality of fit metrics for each

number of doses and both inter-treatment intervals can be found

in Supplementary Tables S14, S20.

The model fittings plotted in Figure 8 and Supplementary

Figures S4, S5 show that increasing the number of doses

contributed to improved tumor control for the two inter-

treatment intervals investigated in this work. In general, for

the cells treated every 2 days, we observed significantly lower

final total tumor cell counts as the number of doses was increased

(p < 0.05, see Supplementary Table S15). Furthermore, delivering

two ormore doses effectively suppressed tumor growth at the end

of the experiment, typically showing a decreasing branch in the

total tumor cell count right after the first dose. When the inter-

treatment interval was extended to 2 weeks, delivering more than

one dose of doxorubicin also contributed to limited tumor cell

growth (p < 0.05, see Supplementary Table S21); however, most

of the replicates showed an increasing trend in total tumor cell

count over the experiment duration. Thus, with a 2-week inter-

treatment interval, an increasing number of doses can decelerate

tumor cell growth, but it cannot suppress it as observed with a 2-

day inter-treatment interval. Furthermore, the model fitting

results reported in Figure 8, Supplementary Figures S4, S5 and

Supplementary Tables S3, S18, S19 show that, as the inter-

treatment interval is lengthened from 2 days to 2 weeks, the

surviving cells exhibit a larger proliferation rate, while the

irreversibly damaged cells emerging after the second and

subsequent doses undergo a slower transition to treatment-

induced death. These effects, induced by the lengthened inter-

treatment interval, contribute to explaining the superior tumor

control in the 2-day experiments and align with the

corresponding results shown in Figure 6, Supplementary

Figure S3 and Supplementary Table S9.

We further investigated tumor cell dynamics for the

Experiment 3 data with 2-week inter-treatment intervals by

analyzing the evolving distributions of parameters fs and γd,

which are shown in Figure 9. We observe that the surviving

fraction corresponding to the first to fourth doses (f1
s , f

2
s , f

3
s , f

4
s )

shows an increasing trend, which is indicative of progressive

chemoresistance during treatment and aligns with the

FIGURE 7
Comparison of the fs and γd distributions obtained from fitting the multiple-dose model to the experimental data for varying inter-treatment
intervals. The parameter distributions are represented as boxplots and were obtained from fitting the multiple-dose model to the varying inter-
treatment interval datasets from Experiment 2 (Table 1). Outliers are represented with circles. Panel (A) shows the distributions for the fraction of
surviving cells (fs). Panel (B) shows the distributions for the doxorubicin-induced death delay rate of the irreversibly damaged tumor cells (γd).
For 0–6 days inter-treatment intervals, fs and γd are kept constant in the model (yellow boxplots); whereas, for 8–16 days inter-treatment intervals,
we vary fs and γdwith each doxorubicin dose (f1s , γ

1
d: purple boxplots, f2s , γ

2
d: green boxplots). As the inter-treatment interval is lengthened from 0 to

6 days, the constant fs and γd show a trend towards higher surviving fractions and slower transitions to doxorubicin-induced death, suggesting
increasingly poorer tumor control. When fs and γd are varied with each dose, we observe that the second fs values correspond to significantly higher
surviving fractions for 8-, 10-, 12-, 14-, and 16- day inter-treatment intervals (p: 4.7 × 10−5 , 3.7 × 10−5, 3.7 × 10−5, 3.7 × 10−5, and 3.7 × 10−5,
respectively) and that the second γd values represent significantly slower transitions to treatment-induced death for 10-, 12-, 14-, and 16- day inter-
treatment intervals (p: 0.0141, 3.7 × 10−5, 6.0 × 10−5, and 9.7 × 10−5 , respectively). These changes in fs and γd after the second dose also suggest an
increasingly poorer tumor control after the second dose with a longer inter-treatment interval. An asterisk (*) indicates p<0.05 in two-sided
Wilcoxon rank sum tests comparing the distributions of the two fs and γd values obtained for each inter-treatment interval where the multiple-dose
model with varying parameters was used.
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FIGURE 8
Representative fits of the multiple-dose model for a varying number of doxorubicin doses. Data and model results are shown for a
representative replicate treated with 1–5 doses of 75 nM doxorubicin delivered at either 2-day or 2-week inter-treatment intervals (Experiment 3,
Table 1). Experimental data are shown in gray circles. The number of total cells, surviving cells, and irreversibly damaged cells obtained with the fitted
multiple-dose model are shown in black, red, and blue solid lines, respectively. The times at which doxorubicin (Dox) is delivered are
represented with vertical grey dashed lines. Panel (A) shows fittings for 1 to 5 doxorubicin doses delivered at 2-day inter-treatment intervals obtained
with the model with constant parameters. The median and range of the quality of fit metrics across all replicates for this Experiment 3 subgroup (n =
60, Table 1) are NRMSE: 12.2 [2.72, 19.1], R2: 0.99 [0.87, >0.99], PCC: 0.99 [0.93, >0.99], CCC: 0.99 [0.93, >0.99]. Panel (B) shows fittings for 1 to
5 doxorubicin doses delivered at 2-week inter-treatment intervals obtained with the model with varying fs and γd. The median and range of the
quality of fit metrics across all replicates for this Experiment 3 subgroup (n = 60, Table 1) are NRMSE: 3.21 [1.91, 8.57], R2: >0.99 [0.93, >0.99], PCC:
>0.99 [0.97, >0.99], CCC: 0.99 [0.96, >0.99]. Overall, we observe that there is superior tumor control with an increased number of doses, which is
further improved when the doses are delivered at shorter inter-treatment intervals. As the inter-treatment interval is lengthened from 2 days to
2 weeks, we observe that the population growth rate and number of the surviving cells increase, while the irreversibly damaged cells exhibit a slower
transition from proliferation to treatment-induced death.
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corresponding results shown in Figure 7. However, the fitted

values for f5
s are significantly lower than the value obtained for

f4
s (p = 0.0015). Additionally, we observe that the values for γ2d

are significantly lower than that of γ1d (p = 5.6 × 10−19), following
the trend observed in Figure 7 for the data from Experiment 2.

However, the values for γ2d, γ
3
d, γ

4
d, and γ5d exhibit an increasing

trend, with γ5d being significantly larger than γ4d (p � 0.0093).
These changes in fs and γd suggest that delivering multiple doses

of doxorubicin may progressively limit or even revert the

chemoresistance observed in the initial surviving and

irreversibly damaged subpopulations.

Discussion

We have presented a mathematical framework to describe

the therapeutic response of MCF-7 breast cancer cells to

treatment with doxorubicin and the development of

chemoresistance in the in vitro setting. Our mathematical

models rely on a compartmentalization of the tumor cell

population after the delivery of each drug dose into either

surviving cells or irreversibly damaged cells, the latter of

which ultimately die due to the cytotoxic action of

doxorubicin (Anampa et al., 2015; Howard et al., 2022;

Gewirtz, 1999; Carvalho et al., 2009; McKenna et al., 2017).

With this dichotomy, we aim to capture the underlying diverse

spectrum of drug sensitivities in the tumor cell population, as

well as its changes after the delivery of subsequent doxorubicin

doses considering different inter-treatment interval lengths

(Howard et al., 2022; Pisco et al., 2013; Álvarez-Arenas et al.,

2019). We presented a single-dose model that can be extended to

a multiple-dose model, in which parameterization can vary with

each dose. We fitted our models to various time-resolved

microscopy datasets, which enabled us to evaluate tumor cell

population dynamics with our models in three experimental

scenarios that varied either the doxorubicin concentration, the

inter-treatment interval, or the number of doses (see Table 1). In

all three cases, our models recapitulated the experimental

observations, achieving a remarkable quality of fit.

In Experiment 1 (Table 1), we evaluated the effect of a single

dose of doxorubicin on MCF-7 breast cancer cell population

growth and we found that tumor control was significantly

improved with increased drug concentration (p < 0.05, see

Supplementary Table S5). Our single-dose model showed that,

at a subpopulation level, these dynamics emerged from a lower

proliferation rate of surviving cells and a faster transition from

proliferation to treatment-induced death in irreversibly damaged

cells. The dynamics observed in our varying concentration

experiment have also been reported in other studies of

doxorubicin effects on breast cancer cell lines, both as

monotherapy and in combination with other therapeutic

agents (McKenna et al., 2017; Zoli et al., 1995; Czeczuga-

Semeniuk et al., 2004).

We used the parameter distributions obtained from our

single-dose model fits to the varying drug concentration

datasets to empirically fit various parameter formulas as

functions of doxorubicin concentration, as shown in Figure 3.

The model simulations generated from our proposed empirical

parameter formulas were able to capture a spectrum of model

solutions that encompass the dynamics observed in our data

FIGURE 9
Distributions of fs and γd obtained from fitting the multiple-dose model to the experimental data for a varying number of doses with a 2-week
inter-treatment interval. The parameter distributions are represented as boxplots and were obtained from fitting the multiple-dose model to the 2-
week inter-treatment interval datasets from Experiment 3 (Table 1), in which the model with varying fs and γd was used. Outliers are represented as
circles. Panel (A) shows the distributions of the fraction of surviving cells, such that a new value for fsis defined for each drug dose (f1s , f

2
s , . . . , f

5
s ).

We observe an increasing trend in the first four fs parameters, which suggests an increasing chemoresistance with each dose. However, f5s takes on
significantly lower values than f4s (p � 0.0015), which suggests that addingmore dosesmay limit the trend towards chemoresistance. Panel (B) shows
the distributions of the doxorubicin-induced death delay rate of irreversibly damaged cells, such that a new value of γd is defined for each drug dose
(γ1d, γ

2
d,. . ., γ

5
d ). The values for γ2d are significantly lower than those of γ1d (p � 5.6 × 10−19). Hence, the second irreversibly damaged subpopulation

shows a slower transition to treatment-induced death. However, the subsequent doxorubicin doses induce irreversibly damaged subpopulations
exhibiting an increasing γd, with γ5d being significantly larger than γ4d (p � 0.0093). This observation further suggests that past a certain number of
doses, initial chemoresistance appears to be reverted. An asterisk (*) indicates p<0.05 (two-sided Wilcoxon rank sum test).
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from Experiment 1 (see Figure 4). We observed clear

exponentially decaying trends for the fraction of surviving

cells (fs) and the proliferation rates of surviving and

irreversibly damaged tumor cells (gs and gd, respectively) as

doxorubicin concentration increases (see Figures 3A–C). These

trends seem to capture the growth-inhibition effect of

doxorubicin as well as the dose-response curve for this drug

within our mechanistic modeling framework, in which

doxorubicin efficacy has been observed to plateau at high

concentrations (El-Kareh and Secomb, 2005; Neale et al.,

2000). The distributions of the doxorubicin-induced death

rate in the irreversibly damaged cells (kd) exhibited a non-

monotonic trend as doxorubicin concentration was varied,

which we approximated with a Morse-potential relationship

(Girifalco and Weizer, 1959). This result was counterintuitive,

as we had initially anticipated a strictly decreasing trend in kd for

higher doxorubicin doses, which would indicate an increasingly

more intense effect of treatment-induced death. However, the

cytotoxic action of doxorubicin (Gewirtz, 1999; Carvalho et al.,

2009; McKenna et al., 2017) also induces cell cycle arrest. The

interplay between these two drug-induced effects may ultimately

lead to nonlinear tumor cell responses, such as the one captured

by the empirical formula for kd proposed in this work. The

relative participation of cell death and cell cycle arrest in the

overall doxorubicin action on breast cancer cells may follow

more complex dynamics that are not fully captured by our

models, and thus requires further investigation. Indeed, to

refine the description of these doxorubicin effects, our models

could also be extended to account for the dynamics of

doxorubicin uptake and binding (McKenna et al., 2017);

although this would require additional data reporting on those

phenomena. From a modeling point of view, previous studies

have leveraged other formulations to represent cytotoxic drug

action (e.g., an exponential decay, alternative transition terms

from proliferation to drug-induced death) (Lorenzo et al., 2022;

Howard et al., 2022; Colli et al., 2021) which could be explored

with our modeling framework in a model selection study

(Lorenzo et al., 2022) to assess the optimal approach to

capture the cytotoxic action of doxorubicin.

Experiment 2 involved the delivery of two doses of

doxorubicin to each replicate of MCF-7 breast cancer cells at

varying-inter-treatment intervals ranging from 0 to 16 days

(Table 1). We fit two versions of our multiple-dose model to

these datasets: either with constant parameters or with fs and γd
varied at each drug dose. The model with constant parameters

sufficed to describe the observed tumor cell population dynamics

for inter-treatment intervals from 0 to 6 days, while the model

with varying fs and γd was superior for inter-treatment intervals

from 8 to 16 days (p < 0.05, see Figure 5). For two consecutive

doses of doxorubicin delivered at varying inter-treatment

intervals, our results showed significantly poorer tumor

control with longer inter-treatment intervals (p < 0.05, see

Supplementary Table S11). In the fittings from the model

with varying fs and γd, we observed that the second dose

induced a significantly larger f2
s and a lower γ2d compared to

the corresponding values of f1
s and γ1d (p < 0.05, see Figure 7),

further supporting the adoption of an adaptive model

parameterization for inter-treatment intervals from 8 to

16 days. Additionally, comparing the distributions of f2
s and

γ2d obtained for the different inter-treatment intervals, we

observed a tendency towards higher survival fraction and a

slower death delay rate for higher inter-treatment intervals.

Nevertheless, f2
s appears to plateau in long inter-treatment

intervals and the general trend observed for γ2d is reverted in

the 16-day interval scenario. Thus, the changes observed in fs

and γd in Experiment 2 suggest that longer inter-treatment

intervals contribute to the development of chemoresistance in

both tumor cell subpopulations in our model; although our

results also suggest to further investigate whether the trends

in f2
s and γ

2
d are reverted for inter-treatment intervals larger than

16 days. From a biological perspective, long inter-treatment

intervals may allow cancer cells to acquire chemoresistance

through processes like treatment-induced mutations, altered

epigenetics, and phenotype switching, which ultimately limit

the efficacy of the second dose and may lead to tumor

regrowth (Easwaran et al., 2014; Zhao, 2016; Dong et al.,

2018; Ji et al., 2019; Meacham and Morrison, 2013; Echeverria

et al., 2019; Kumar et al., 2019). This phenomenon has been

observed in preclinical studies (Lyman, 2009; De Souza et al.,

2011; Ponnusamy et al., 2017), but the trends are less clear in the

clinical setting (Lyman, 2009; Richards et al., 1992; Citron et al.,

2003; Untch et al., 2009; Foukakis et al., 2016).

In Experiment 3, we treated MCF-7 breast cancer cells with

multiple doses of doxorubicin at either 2-day or 2-week inter-

treatment intervals (Table 1). We observed significantly

improved tumor control with an increased number of doses

delivered at a 2-day inter-treatment interval (p < 0.05, see

Supplementary Table S15), with tumor cell population growth

effectively suppressed after two or more doxorubicin doses.

When the treatment interval was extended to 2 weeks, tumor

cell population growth was significantly decelerated (p < 0.05, see

Supplementary Table S21) but not suppressed, aligning with our

previous conclusions that longer inter-treatment intervals may

promote chemoresistance. Moreover, these results underscore

that, in comparison to the total number of doses, it is the

treatment interval that holds a critical impact on determining

overall tumor control. Indeed, as most patients receive

chemotherapy treatments delivered every 1–3 weeks, our

results point to the clinical importance of optimizing

treatment interval in designing effective drug regimens (Jarrett

et al., 2020a; Lyman, 2009; Richards et al., 1992; Citron et al.,

2003; Untch et al., 2009; Foukakis et al., 2016). Additionally, the

evolving distributions for the varying fs and γd from the model

fits to the 2-week inter-treatment interval datasets (see Figure 9)

exhibit trends that potentially explain the relationship between

the number of doses and the resulting chemoresistance
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dynamics. For fs, the initially increasing trend for the first four

doses (f1
s , f

2
s , f

3
s , f

4
s ), suggests a progressive increase in

chemoresistance with each dose. However, the values of f5
s

were significantly lower than those of f4
s (p = 0.0015),

potentially indicating that increasing the number of doses may

ultimately hinder chemoresistance. This is further corroborated

by the trends for γd, in which γ2d drops significantly with respect

to γ1d (p = 5.6 × 10−19), but γ2d, γ
3
d, γ

4
d, and γ

5
d exhibit an increasing

trend. This result suggests that further doses of doxorubicin can

promote increasingly faster transitions to treatment-induced

death, thus reverting the initial chemoresistance observed in

the irreversibly damaged subpopulation. We do note that

because we have only tested up to five doses of doxorubicin,

further studies with a larger number of doses would be needed to

further probe these trends.

Although our work presents promising insights into the

mechanisms of chemoresistance, this study does have its

limitations. First, we used a limited number of replicates

within the scenarios explored in each experiment (n = 6 or

12, see Table 1). Since we do not observe uniform tumor cell

populations dynamics across all replicates within each scenario,

we would like to re-assess the observations in this study over a

larger experimental setup, for example involving a higher

number of replicates exposed to more diverse combinations of

drug concentration, inter-treatment interval, and number of drug

doses. This would enable us to investigate whether these

observations are from doxorubicin effects altering tumor cell

dynamics or whether the experimental conditions influence the

development of a representative distribution of drug-resistant

and drug-sensitive cells (e.g., ~2,000 seeded cells/well might

potentially limit the emergence of a resistant subpopulation,

which may skew the observed response to treatment). Second,

we also acknowledge the general limitations of extrapolating

from in vitro systems to tumors in patients (Katt et al., 2016), as

cell lines do not capture the unique, heterogeneous nature of each

patient’s tumor. To address this limitation, we plan to evaluate

our models on clinically-relevant breast cancer cells other than

MCF-7 cells (ER + breast cancer), such as the BT-474 (ER +

HER2+ breast cancer) and MD-MBA-231 (triple-negative breast

cancer) considered by Howard et al. (2022). Third, our cells were

grown in monolayers, which are not representative of the three-

dimensional tumor geometry in vivo. However, our

mathematical models could be made readily applicable to

tumor cell spheroid data. In particular, our models could be

extended to a set of partial differential equations, accounting for

tumor cell mobility and spatially-resolved parameters and

variables, which would allow for a spatiotemporal description

of spheroid growth in both in vitro and in vivo settings (Jarrett

et al., 2020a; Kazerouni et al., 2020). Indeed, these extended

models could incorporate other spatially-varying mechanisms

beyond tumor cell dynamics, such as drug diffusion, mechanics,

and angiogenesis, which have also been recognized as key

components of chemoresistance and drug action (Lankelma

et al., 1999; Mascheroni et al., 2017; Yonucu et al., 2017;

Jarrett et al., 2020b; Kazerouni et al., 2020). Fourth, given that

our model requires a moderate number of parameters that may

increase with the number of delivered doses of doxorubicin, their

estimation from specific experimental data may exhibit a certain

degree of uncertainty (see Supplementary Appendix C). Thus,

future studies should investigate whether and how the levels of

uncertainty obtained for the parameters of our models affect the

description of the therapeutic action of doxorubicin on tumor

cells, for example, by leveraging a robust Bayesian framework

(Lorenzo et al., 2022). Fifth, we only analyzed a constant versus

an adaptive parameterization for the surviving fraction (fs) and

the death delay rate (γd) because we hypothesized that these

would suffice to account for the development of chemoresistance.

While this choice was supported by the results presented herein,

an uncertainty quantification approach could also be exploited to

conduct a model selection study aiming to investigate the optimal

combination of constant and adaptive parameters in

Experiments 2 and 3 (Lorenzo et al., 2022), which may

provide new insights in the development of chemoresistance

to doxorubicin. Furthermore, while experimental observations

and modeling results in our study support the adoption of a fixed

value of θDox after treatment, the aforementioned modeling

selection analysis could also be extended to investigate

whether the change in the carrying capacity after treatment

(i.e., from θu to θDox) is permanent or temporal; although this

analysis most likely requires additional experiments and data

types to investigate the biological mechanisms underlying either

of these two modeling alternatives (e.g., doxorubicin-induced

changes in cell size or genetic alterations). Finally, we

acknowledge the limitations in modeling tumor cell

subpopulation dynamics with total tumor cell data, and that

our study thus lacks methods for specifically validating the

proposed mathematical description of surviving and

irreversibly damaged tumor cell dynamics. This issue could

potentially be addressed by incorporating methods to trace

cell lineage, which would enable the collection of time-

resolved measurements of the therapeutic response of diverse

drug-sensitive and drug-resistant phenotypes in the tumor cell

population. For instance, Al’Khafaji et al. (2018) have developed

a functionalized lineage tracing tool to track both cell lineages

and direct lineage-specific gene expression using barcoded

gRNAs. Then, fitting these data to an extension of our model

to a multicompartment formulation describing the dynamics of

the various detected drug sensitivity phenotypes could provide a

more precise insight into the dose-dependent response

(including refined parameter empirical formulas) and how

timing and the number of doses mediate the global response

of the tumor cell population.

In future studies, we intend to explore a refinement of our

model to account for the mechanisms underlying the trends

observed in the empirical parameter formulas from this work,

which will help us further understand doxorubicin effects.
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Additionally, we plan to extend the construction of these empirical

formulas over the three-dimensional space spanned by the dosage,

the inter-treatment interval, and the number of doses by leveraging a

larger collection of replicate datasets exhibiting variations across

those three treatment regimen variables. This experimental

campaign would expand Experiments 2 and 3 in our study

beyond a fixed drug concentration of 75 nM per dose, and an

inter-treatment interval of 2 days or 2 weeks in Experiment 3 (see

Table 1).We hypothesize that nonlinear dependencies will govern the

relationship between the three regimen variables and the model

parameters, thereby enabling the capture of a diverse spectrum of

therapeutic responses to doxorubicin that we already observed in

Experiments 2 and 3 (see Supplementary Figures S3–S5). Hence, the

resulting three-dimensional empirical formulas could allow for

predicting the outcome of any doxorubicin treatment regimen a

priori (i.e., before running the corresponding experiment) by just

selecting the treatment schedule (i.e., dosage, inter-treatment interval,

and number of doses), but this would require previous validation by

leveraging a different collection of experimental datasets than the one

used to construct the three-dimensional empirical formulas. Further

experimentally informed studies with our mechanistic models could

also contribute to identifying the optimal timing and frequency for

doxorubicin delivery in preclinical scenarios. Indeed, wewould like to

explore optimal control theory (Jarrett et al., 2020b; Colli et al., 2021)

in vitro through heterogeneous multiclonal cultures to identify

optimal treatment combinations of doxorubicin concentration,

treatment interval, and number of doses.

High-throughput, time-resolved microscopy in vitro systems

enable the collection of vast amounts of time-resolved data on the

dynamics of tumor cell populations across multiple, diverse

scenarios. We (and others) (Zhang et al., 2015; Strobl et al., 2021;

Howard et al., 2022; Pisco et al., 2013; Álvarez-Arenas et al., 2019;

McKenna et al., 2017; Kazerouni et al., 2020) posit that these time-

resolved datasets can be integrated in mathematical models of tumor

cell population dynamics to systematically investigate the effects of

drugs on tumor cells across a much broader variety of regimens than

are possible to test in vivo. Then, our ultimate goal is to exploit the

knowledge gained from a model constructed and validated in a data-

rich in vitro preclinical environment (e.g., where hundreds of data

points are available for each replicate) to refine mathematical models

and their predictions of therapeutic response in a data-poor in vivo

clinical environment (i.e., where less than five data points may be

available for each patient) (Lorenzo et al., 2022; Weis et al., 2015;

Jarrett et al., 2018; Jarrett et al., 2020a). In particular, we think that the

mechanistic insights provided by the models and empirical formulas

proposed in this study could be leveraged to identify the minimal

dose range required to effectively inhibit breast cancer growth in vivo

and achieve optimal tumor control, both of which are of great clinical

interest (Carvalho et al., 2009; Jarrett et al., 2020b; Harahap et al.,

2020; Chan et al., 1999). Thus, we believe that the complex dynamics

underlying the dose-dependent effect of doxorubicin deserve

further research coupling extensive experiments with mechanistic

modeling.

Conclusion

We have developed a biologically-based, mathematical model of

MCF-7 breast cancer cell response to the cytotoxic action of

doxorubicin accounting for the development of chemoresistance,

which significantly extends the experimentally-informedmechanistic

models byHoward et al. (2022). To this end, we proposed amodeling

framework that can accommodatemultiple doxorubicin doses as well

as an adaptive parameterization with each drug dose. We show that

model fittings to longitudinal, time-resolved microscopy data of

MCF-7 breast cancer cells could remarkably recapitulate the

observed tumor cell population dynamics for all experimental

scenarios varying in either drug concentration, inter-treatment

interval, or number of doses. We also propose empirical formulas

that describe model parameters as functions of doxorubicin

concentration, which could contribute to refining our mechanistic

model and further our understanding of doxorubicin action. We

report significantly improved tumor control with higher doxorubicin

concentrations, shorter inter-treatment intervals, and a higher

number of doses. We also observe that longer inter-treatment

intervals potentially promote chemoresistance, which manifests as

higher surviving fractions and delayed transitions to treatment-

induced death in irreversibly damaged subpopulations. Our

findings show promise in furthering our understanding of

doxorubicin action and chemoresistance progression, while also

representing a step towards systematically exploring optimal

treatment regimens in vitro.
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