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Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total
dependence on parenteral nutrition (PN) is associatedwith numerous adverse effects, including severemicrobial dysbiosis and loss
of important butyrate producers.We hypothesised that a lack of butyrate produced by the gutmicrobiotamay be compensated by its
supplementation in PN mixtures. We tested whether i.v. butyrate administration would (a) positively modulate intestinal defence
mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented
with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were
assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota
composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins
(ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIII𝛾), and lysozyme in the ileal mucosa. Butyrate partially
alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration
was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+
and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift
in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of
some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect.

1. Introduction

Parenteral nutrition (PN) represents a life-saving treatment
in patients with intestinal failure. However, PN and/or lack
of enteral feeding are often associated with serious adverse
effects, including impaired mucosal homeostasis, loss of

immune reactivity [1], compromised intestinal barrier func-
tion, and generalised sepsis [2].

Proper gut barrier function depends on the integrity of
physical barriers, i.e., tight junction proteins and adequate
mucin production, sufficient production of antimicrobial
compounds by Paneth cells and maintaining an optimal
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balance between immune tolerance to commensal micro-
biota and the defence against invading pathogens [3]. Lack
of enteral feeding significantly affects all of these factors.
Paneth cells, which are a specialised type of epithelial
cell, release a spectrum of antimicrobial compounds when
exposed to alloantigens [4]. The absence of enteral feeding
decreases mRNA and protein expression of typical Paneth
cell antimicrobials like lysozyme, cryptdin-4, and secretory
phospholipase A2, thus compromising their function [5, 6].
The data concerning the effect of PN on the function of
Paneth cells are inconclusive, as their antimicrobial functions
have been shown to both increase [3] and decrease [7].

Goblet cells (GCs) continuously secrete glycoproteins
(mucins) in order to repair and replace the intestinal mucus
barrier [8]. Until recently, GCs were considered relatively
passive players in promoting intestinal homeostasis and the
host defence. However, recent reports indicate that GCs are
able to sense and respond to danger signals (such as bacterial
pathogens) as well as modulate the composition of the gut
microbiome by modifying mucin secretion [9]. In a piglet
model of enteral nutrition deprivation, GC expansion was
established within a few days after the start of total or partial
PN [10], which might reflect a higher degradation rate of the
mucus layer, a lower rate of mucus secretion, or an altered
rate ofmucin turnover [11].These data indicate that starvation
alters mucus dynamics in the small intestine, which may in
turn affect the intestinal defence capacity [11, 12].

The gut microbiota has an irreplaceable role in the matu-
ration ofmucosal and systemic immunity [13–15]. Depending
on its composition, it may either promote a tolerogenic state
in the intestinal mucosa [16–20] and instigate mechanisms
preventing bacterial overgrowth or induce proinflammatory
status associated with impaired gut barrier function [21]. PN
itself, together with a lack of enteral feeding, generates a
significant shift inmicrobiota composition. In rodentmodels,
PN and starvation are associated with decreased gut micro-
biota diversity, the enrichment of potentially pathogenic
and inflammation-promoting species, and the depletion of
beneficial anaerobes [3, 7, 22]. Heneghan [7] hypothesises
that the PN-associated shift in the gut microbiota may be
part of a causal relationship with attenuated antimicrobial
compound production.

Besides interacting directly with the host intestinal and
immune cells, the gut microbiota may affect host intestinal
homeostasis via fermentation products. Short-chain fatty
acids (SCFA) have multiple beneficial effects on perfor-
mance and intestinal health [23]. SCFA are produced by
the fermentation of soluble fibre. To target intestinal SCFA
production, an often-used treatment is to supplement the
diet with prebiotics (dietary fibre), probiotics (mostly Lac-
tobacillaceae or Bifidobacteriaceae), or a combination of
both. Unfortunately, this approach is not applicable to all
situations. Particularly PN-dependent patients with short
bowel syndromeoften exhibit an increased abundance of Lac-
tobacillaceae as well as a lack of butyrate producers in the gut.
Therefore, prebiotic/probiotic supplementation may result in
D-lactate acidosis or Lactobacillus sepsis. The alternative to
prebiotic/probiotic treatment is the direct administration of
butyrate either per os or intravenously. To our knowledge,

no study has been published on the effect of i.v. butyrate on
the microbiota in a PN context. The purpose of this study
was to determine whether the supplementation of a nutrition
mixture with butyrate (9 mM) in the absence of enteral
feeding would affect immune function and gut microbiota
composition. In order to examine this hypothesis, we used a
rat model of total parenteral nutrition and assessed the effect
of i.v. butyrate on Paneth cell function, mucin production,
intestine-associated immune cells, and the gut microbiome.

2. Materials and Methods

2.1. Animals and Experimental Design. Male Wistar rats
(Charles River, initial weight 300-325 g) were kept in a
temperature-controlled environment under a 12h light/dark
cycle. For PN administration, the right jugular vein was can-
nulated with a Dow Corning Silastic drainage catheter (0.037
inch) as previously described [3]. Control animals underwent
the same operation. The catheter was flushed daily with
TauroLockHEP-100 (TauroPharmGmbH,Waldbüttelbrunn,
Germany). After the operation, the rats were housed individ-
ually and connected to a perfusion apparatus (Instech, PA,
USA), which allows free movement. For the next 48 hours,
the rats were given free access to a standard chow diet (SD,
SEMED) and provided Plasmalyte (BAXTER Czech, Prague,
CZ) via the catheter at increasing rates (initial rate: 1 ml/hr;
goal rate: 4 ml/hr) in order to adapt to the increasing fluid
load. Two days after the operation, the rats were randomly
divided into three groups. Rats in the experimental groups
(PN; PN+But) were provided PN (205 kcal. kg−1. d−1; 10 hrs
per day; rate 4 ml. hr−1; light period), the composition of
which is given in Table S1. In the PN+But group, the PN
mixture was supplemented with 9 mM butyrate. Stability of
butyrate (monitored as butyric acid) in PN was tested using
solid phase microextraction coupled to gas chromatography
withmass spectrometric detector. Butyratewas stable at room
temperature for at least 24 hours after its addition into PN.

PN alone, PN+But or Plasmalyte was administered for
12 days. All experiments were performed in accordance with
the Animal Protection Law of the Czech Republic 311/1997 in
compliance with the Principles of Laboratory Animal Care
(NIH Guide for the Care and Use of Laboratory Animals, 8th
edition, 2013) and approved by the Ethical Committee of the
Ministry of Health, CR (approval no. 53/2014).

2.2. Histological Evaluation. Tissue samples (distal ileum,
proximal colon) were fixed in 4% paraformaldehyde, embed-
ded in paraffin blocks, and routinely processed. Sections
cut at 4-6 𝜇m were stained with haematoxylin/eosin and
examined with an Olympus BX41 light microscope. Mucosal
thicknesswasmeasured through specialised cameraCANON
EOS (Canon, Tokyo) and microscope imaging software
system QuickPHOTO Camera 3.2 (Promicra, Prague) that
provides advanced measuring, editing, annotating, and sav-
ing of acquired images andmeasurements. Beforemeasuring,
an appropriate calibration of objectives was performed. The
measurement of mucosal thickness of each sample was
repeated six times and the average thickness of mucosa was
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determined. The number of Paneth cells in a base of the
Lieberkühn crypts was recorded per individual histological
section of ileum and the average number per 10 crypts was
calculated. The number of Goblet cells was recorded per 200
enterocytes in well preserved parts of thin sections of ileum
and the average number was calculated.

2.3. Intestinal Permeability. Intestinal permeability of the
isolated segments of ileum was measured as previously
described [3]. Briefly, cca 8 cm segment of terminal ileum
was resected, inverted, filled with 1 ml Tris buffer (125mmol/l
NaCl, 10 mmol/l fructose, 30 mmol/l Tris, pH=7.5), and
closed at both ends. The segments were put into container
with heated (37∘C) Tris buffer containing HRP enzyme
(0.04𝜇g/l) and incubated for 45 min. After incubation, the
inner content of the segment was precisely collected andHRP
concentrationwas determined using spectrophotometry (450
nm, substrate: tetramethylbenzidine).

2.4. Immunohistochemistry. Paraffin sections (4 𝜇m) were
deparaffinised in xylene and rehydrated in graded ethanol.
Endogenous peroxidase was blocked, with proteinase K
digestion (Dako, Glostrup, Denmark) used for antigen
retrieval. The primary antilysozyme antibody (rabbit poly-
clonal, Dako, Glostrup, Denmark) was detected using
Histofine Simple Stain Rat MAX PO (Nichirei, Japan).
Lysozyme staining intensity was assessed by two independent
blinded observers (scale 0 to 3), with average scores presented
for each group.

2.5. FlowCytometry. Single cell suspensions frommesenteric
lymph nodes (MLN) were obtained by gently fragmenting
and filtering the tissues through 100 𝜇m cell strainers (Sigma
Aldrich), with lymphocytes isolated by centrifugation on
Ficoll (𝜌 = 1.077 g/ml, GE Healthcare). Isolated cells were
frozen and stored at -80∘C until analysis. Prior to staining,
the lymphocytes were thawed and incubated for two hours in
RPMI 1640+ 10%FCS, 2mML-glutamine, 1%Pen/Strep. Pan-
els for both effector and regulatory T cells were stained simul-
taneously. First, cells were surface-stained using the following
anti-rat antibodies: anti-CD45-FITC (OX-1, Thermo Fisher
Scientific), anti-CD4-BV-786 (OX-35, BD Biosciences), and
anti-CD8𝛼-PerCP-e710 (OX-8,Thermo Fisher Scientific), for
the effector T-cell panel, and anti-CD45-FITC, anti-CD4-BV-
786, and anti-CD25-PE (OX-39,ThermoFisher Scientific) for
the regulatory T-cell panel. Second, the cells in both panels
were fixed and permeabilised using an intracellular staining
kit (Anti-Mouse/Rat Foxp3 Staining Set APC,Thermo Fisher
Scientific) either with Foxp3 antibody (FJK-16s, regulatory T
cells) or PBS (effector T cells) in conjunction with 15-min
blocking using 2% normal rat serum (regulatory T cells only,
Thermo Fisher Scientific). Immediately after staining with
anti-Foxp3-APC, the lymphocytes were analysed using the
BD LSR II flow cytometer (BD Biosciences). The stability of
the antigens of interest after one freezing/thawing cycle was
tested in an independent experiment (Figure S1).

2.6. RT-qPCR. Pieces of the distal ileum (5-8 cm from
the ileocaecal valve) were rapidly dissected, flushed first

with cold saline and then with RNA later, and opened
along the mesenteric border, and the mucosa was then
scraped using a glass slide and immediately frozen in
liquid nitrogen. To determine cytokine expression, Peyer’s
patches were dissected from the rest of the ileum. Total
RNA was extracted using the RNeasy PowerMicrobiome Kit
(Qiagen, Hilden, Germany). A DNAase step was included
to avoid possible DNA contamination. A standard amount
of total RNA (1600 ng) was used to synthesise first-
strand cDNA with the High Capacity RNA-to-cDNA Kit
(Applied Biosystems, Foster City, CA, USA). The RT-PCR
amplification mixture (25ul) contained 1 ul template cDNA,
SYBR Green Master Mix buffer (QuantiTect, Qiagen,
Hilden, Germany) and 400nM (10 pmol/reaction) of
sense and antisense primers. Primers were designed based
on known rat sequences taken from the GeneBank Graphics
database: https://www.ncbi.nlm.nih.gov. Primer design was
performed with Primer3 software: http://bioinfo.ut.ee/
primer3-0.4.0/primer3/ (Table 1). The reaction was run on
the ViiA 7 Real-Time PCR System (Thermo Fisher Scientific,
USA). Results were analysed using SDS software, ver. 2.3
(Applied Biosystems, Foster City, CA, USA). The expression
of genes of interest was normalised to the housekeeper gene
Rplp2 and calculated using the ΔΔCt method.

2.7. Determination of Microbiota Composition. Microbiota
composition was determined in caecum content. All samples
were frozen at -20∘C until required. DNA was isolated
using the QIAamp PowerFecal DNA Kit (Qiagen). Extracted
DNA was used as a template in amplicon PCR to target the
hypervariableV4 region of the bacterial 16S rRNAgene. A 16S
metagenomics library was prepared according to the
Illumina 16S Metagenomic Sequencing Library Preparation
protocol, with some modifications described below. Each
PCR was performed in triplicate, with the primer pair
consisting of Illumina overhang nucleotide sequences,
an inner tag and gene-specific sequences (forward:
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-
InnerTag-GTGYCAGCMGCCGCGGTAA; reverse: GTC-
TCGTGGGCTCGGAGATGTGTATAAGAGACAGC-
InnerTag-GGACTACNVGGGTWTCTAAT) [24, 25]. The
Illumina overhang served to ligate the Illumina index and
adapter. Each inner tag—a unique sequence of 7–9 bp—was
designed to differentiate samples into groups. After PCR
amplification, triplicates were pooled and the amplified
PCR products were determined by gel electrophoresis. PCR
clean-up was performed with Agencourt AMPure XP beads
(Beckman Coulter Genomics). Samples with different inner
tags were equimolarly pooled based on fluorometrically
measured concentrations using the Qubit� dsDNAHS Assay
Kit (Invitrogen�, USA) and microplate reader (Synergy
Mx, BioTek, USA). Pools were used as a template for the
second PCR with Nextera XT indexes (Illumina, USA).
Differently indexed samples were quantified using the KAPA
Library Quantification Complete Kit (Kapa Biosystems,
USA) and equimolarly pooled according to the measured
concentration. The prepared library was checked with the
2100 Bioanalyzer Instrument (Agilent Technologies, USA),
with concentrations measured by qPCR shortly prior to

https://www.ncbi.nlm.nih.gov
http://bioinfo.ut.ee/primer3-0.4.0/primer3/
http://bioinfo.ut.ee/primer3-0.4.0/primer3/
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Table 1: Primer sequences (5�耠 - 3�耠).

sense (forward) antisense (reverse)
Defa 8 NM 001033077.1 GGTCCAGGCTGATCACATTC TTATGTCCTCCCTGGTGTCC
lysozyme NM 012771.3 AAGGCATTCGAGCATGGGTG TGAGAAAGAGACAGTGTGAGCTG
RegIII NM 173097.1 GAGCCTCAGGATTTCTGAG TCAAATGAGAGGAAGGAAGG
Muc3 XM 017598596.1 CAACGAAGAACAAGAAAACG TGGGCTCTTCTGAATCTGG
Muc2 NM 173097.1 CCAATATCACCTGCCCTGAC AGCAAGAACACCCATGATCC
Fcgbp NM 001164657.2 TCTCCCCATGTCCCAACTG GTTTGAATTCAGGGGCTCAG
IFN𝛾 NM 138880.2 CCAAGTTCGAGGTGAACAAC CCAGAATTCTTCTTATTGGCACAC
IL-10 NM 012854.2 CTGCAGGACTTTAAGGGTTACTTG TTCTCACAGGGGAGAAATCG
TNF𝛼 NM 012675.3 ACGTCGTAGCAAACCACCAAG TGTGGGTGAGGAGCACATAG
IFN𝛾 NM 138880.2 CCAAGTTCGAGGTGAACAAC CCAGAATTCTTCTTATTGGCACAC
ZO-1 NM 001106266.1 TGTTCCTGTGAGTCCTTCAG AAGGTGGGAGGATGCTATTG
Cldn7 NM 031702.1 CATCGTGGCAGGTCTTGCTG GTGCACGGTATGCAGCTTTG
Igha NC 005105.4 ATCCCACCATCTACCCACTGA ATTGTTCCAGCGCTCGGCA
IL-4 NM 201270.1 CCACGGAGAACGAGCTCATC GAGAACCCCAGACTTGTTCTTCA
Cdh1 NM 031334.1 GAAGACCAGGACTTTGATTTG TCAGAACCACTCCCCTCATAG
Rplp2 NM 001030021.1 TCGCTCAGGGTGTTGGCAAG AGGCCAAATCCCATGTCGTC

sequencing. The library was diluted to a final concentration
of 8 pM with the addition of 20 % PhiX DNA (Illumina,
USA). Sequencing was performed using the Miseq Reagent
Kit v2 according to themanufacturer’s instructions (Illumina,
USA).

2.8. Data Processing and Statistical Analysis. Sequencing
data, i.e., raw sequences, were processed using standard
bioinformatic procedures within QIIME 1.9.1 package [26]. In
short, these include quality filtering, chimera removal, open
reference clustering, and taxonomic identification based on
the SILVA 123 database and UCLUST algorithm [27]. Raw
sequences were filtered according to default quality require-
ments in QIIME 1.9.1 (-r: 3; -p: 0.75; -n:0; -q:3). Chimeras
were detected and filtered using the UCHIME algorithm with
the Gold database. Data were afterwards clustered at the
97% similarity threshold against SILVA database version 123.
Representative sequences were aligned, and a phylogenetic
tree was constructed and taxonomic identity determined
by the USEARCH algorithm. The data were treated as
compositional (proportions of total read count in each
sample, nonrarefied) and prior to all statistical analyses were
transformed using centered log-ratio transformation [28].
Sequencing data are available from ENA database under the
accession number PRJEB28521. All analyses were performed
in R, version 3.4.2. [29].

Gene expression data and flow cytometry data are pre-
sented as mean ± SD. Statistical analysis was performed using
the Kruskal-Wallis test with multiple comparisons. Differ-
ences were considered statistically significant at the level of
p<0.05. For testing group pairwise differences in microbial
composition, we applied ANOVA test with Tukey’s honest
significance. The statistical analyses were performed on each
of the six taxonomy levels (Phylum, Class, Order, Family,
Genus, and OTUs) separately. The resulting p-values were

adjusted for multiple hypothesis testing using the Benjamini-
Hochberg procedure. Results were considered significant at
FDR<=10%. Hierarchical clustering with Euclidean distance
and the average-linkage algorithm was used to cluster micro-
bial profiles in the heatmap and the radar chart.

3. Results

3.1. Ileal and Colonic Architecture. Compared with controls,
we observed significantly reduced mucosal thickness in
the ileum (550±40 versus 746±28 𝜇m, p<0.05) and colon
(886±90 versus 2750±110𝜇m, p<0.01) (Figure 1) in rats totally
dependent on PN. Butyrate supplementation had no effect on
these parameters (ileum: 535±32; colon: 1020±103 𝜇m).

3.2. Butyrate Stimulates Paneth Cell Function. To examine
the potential Paneth cell alterations associated with butyrate
administration, we determined the expression of Paneth cell-
produced compounds. First, we examined the expression of
lysozyme. Immunohistochemical staining confirmed its pres-
ence inPaneth cell granules in the ileum in all groups (Figures
2(a)–2(c)). Based on staining intensity, PN administration
substantially increased lysozyme expression compared with
controls. Supplementation of the PN mixture with butyrate
resulted in the further elevation of lysozyme-specific staining
intensity (Figure 2(d)). Corresponding results were obtained
at the mRNA level (Figure 2(e)). Next, we determined the
expression of other antimicrobial peptides, i.e., 𝛼-defensins
(Rd5, Defa8) and RegIII𝛾 (Figures 2(f)–2(h)). Whereas PN
alone had no effect, we found significantly increased expres-
sion of all three compounds in the PN+But group. The
number of Paneth cells per crypt was similar in all three
groups (control: 4.7±0.8; PN: 5.3±0.9; PN+But: 4.8±0.8). In
conclusion, our data show that supplementation of the PN
mixture with butyrate is associated with increased Paneth



BioMed Research International 5

control PN PN + But

Ile
um

 
C

ol
on

 

L=525 m

L=1085 m

100 m

100 m

100 m

100 m 100 m

200 m

L=797 m

L=2827 m

L=523 m

L=825 m

Figure 1: Histology of the intestinal mucosa. Mucosal thickness was assessed in the small intestine (ileum) and the large intestine (colon).
Sections of intestinal tissues were stained with H&E (magnification x100).
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Figure 2: Host defence peptide proteins and mRNA expression in the ileum. (a)–(c) Lysozyme staining, magnification x 200; (d) lysozyme
staining quantification; (e) lysozyme mRNA expression; (f) RD5 mRNA expression; (g) Defa8 mRNA expression; (h) RegIII𝛾 mRNA
expression. mRNA expression is given as a fold change over the control group. Results are presented using Tukey box-and-whisker plots
as quartiles (25%, median, and 75%). ∗∗p <0.01 PN versus control; ††p <0.01; †††p<0.001 PN+But versus control; #p<0.05, ###p<0.001 PN+But
versus PN.
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cell function, as measured by the expression of antimicrobial
peptides.

3.3. Butyrate Promotes Mucin Production. GCs specialise
in producing and secreting mucin glycoproteins and other
factors to form a protective mucus layer in the intestine.
We assessed their function according to the number of GCs
(normalised as the GC number per 200 enterocytes) and by
mRNA expression of three GC products in the ileum. GC
numbers tended to be higher in the PN group compared with
controls, but the difference was not statistically significant
(53.2±5 versus 44±9.4, p=0.08). The addition of butyrate
resulted in a further increase in abundance (63.6±8.5, p<0.01
versus controls, p<0.05 versus PN). Expression of Muc2, the
main secretory mucin, increased in the PN group compared
with controls and was further potentiated by butyrate.Muc3,
the dominant transmembrane mucin, was elevated only in
the PN+But group. Fcgbp expression was not affected in
any group (Figure 3). These data indicate that in response
to the absence of enteral feeding GCs increase activity and
that butyrate supplementation significantly stimulates this
process.

3.4. Butyrate Alleviates PN-Induced Small Intestinal Perme-
ability. The effect of butyrate on small intestinal integrity
was assessed by in vitro permeability for HRP and by
the expression of tight junction proteins. Ileal segments of
both the PN and PN+But groups were more permeable
for HRP compared with controls (Figure 4(a)). Butyrate
supplementation decreased intestinal permeability compared
with the PN group, although it did not match the control
level.The expression of tight junction proteins (ZO-1, claudin-
7, E-cadherin) was similar in the control and PN groups
and significantly increased in the PN+But group (Figures
4(b)–4(d)). In summary, these findings support the hypoth-
esis that butyrate alleviates the detrimental effect of PN on
intestinal permeability via the stimulation of tight junction
protein expression.

3.5. Effect of Butyrate on Lymphocyte Phenotypes and Cytokine
Expression. In order to determine the effect of butyrate
on gut-associated T-cell subpopulations, we isolated lym-
phocytes from MLN and analysed them by flow cytom-
etry (Figure 5). In MLN, PN alone did not affect the
total number of CD4+ or CD8+ lymphocytes, CD4+/CD8+
ratio (2.3±0.5 versus 2.4±0.4) or percentage of different
CD8+ subpopulations, but it did increase the percentage of
CD4+Foxp3+CD25+ (Treg). Butyrate supplementation led to
a significant rise inCD4+ lymphocytes but did not change the
total number of CD8+ lymphocytes, resulting in an increased
CD4+/CD8+ ratio (3.5±0.2).

In the PN group, we found significant attenuation of IL-
10 (Figure 6(a)) and IL-4 mRNA (Figure 6(b)) expression in
Peyer’s patches as well as IgAmRNA expression (Figure 6(c))
in the intestinal mucosa. In the PN+But group, the expression
of both cytokines increased to the levels observed in controls
and IgA expression was nearly normalised. IFN𝛾 expression
was decreased in both PN-dependent group compared with
controls (Figure 6(d)). Taken together, butyrate added to

a PN mixture is associated with an increase in the total
CD4+ lymphocyte population, normalisation of the Tregs
subpopulation in MLN, and an increase in gut mucosal
immunity.

3.6. Effect of Butyrate Supplementation on the Microbiota.
Microbiota composition was assessed via sequencing of the
16S rRNA gene in caecum content sampled at the time of
sacrifice. Alpha diversity was assessed in terms of species
richness (OTU numbers, Chao1 index) or evenness (Shan-
non index, Simpson index) (Table 2). Caecal microbiota
in PN+But group tend to be less diverse compared with
control or PN groups, but this tendency reached the statistical
significance only when OTUs number is concerned.

The absence of enteral feeding in combination with PN
administration had a significant effect on gut microbiota
composition. At the phylum level, Proteobacteria significantly
increased in both PN-dependent groups. Butyrate adminis-
trationwas associatedwith a decrease in Proteobacteria abun-
dance, but this trend did not reach statistical significance.
Butyrate supplementation counteracted the deregulation of
Cyanobacteria observed in the PN group (Figure 7).

The distribution pattern of abundant (<1%) bacterial
families is shown in Figure 8. Porphyromonadaceae and
Alcaligenaceaewere significantly elevated while the Clostridi-
ales vadinBB60 was reduced in both PN-dependent groups
compared with controls. The abundance of Bacteroidaceae,
Enterobacteriaceae, Lachnospiraceae, and Lactobacillaceae
was significantly altered only in one of the PN-dependent
groups compared with controls, but the trend was similar,
i.e., of the same orientation, in both of them. Butyrate
supplementation had significant effect on the abundance
of Peptococcaceae and one unidentified taxon belonging to
Gastranaerophilales.

We identified 20 genera that were significantly differently
(p < 0.05) represented in at least one of the PN-dependent
groups compared with controls (Figure 9). Five genera were
deregulated in both the PN and PN+But groups, i.e., Bac-
teroides, Parabacteroides, Alistipes, Parasutterella (increased),
and Prevotellaceae NK4A214 group (decreased). Compared
with the PN group, butyrate supplementation resulted in
the increased abundance of Anaerostipes, Lachnospiraceae
AC2044 group, and Roseburia but decreased the represen-
tation of the Prevotellaceae Ga6A1 group and unidentified
bacteria from the Gastranaerophilales order. Similar trend
(PN+But < PN) was observed in case of Desulfovibrio sp.
(p=0.055). All relevant statistical data are shown in Table S2.
Our data confirm the profound effect of the lack of enteral
feeding on microbiota composition. Butyrate supplementa-
tion counteracted only some of the alterations.

4. Discussion

4.1. Butyrate and Nonimmune Defence Systems. In the intes-
tine, the basic line of defence (independent of immune cells)
consists of a tight attachment of epithelial cells mediated by
tight junction proteins, a mucin layer secreted by GCs, host
defence peptides produced by Paneth cells, and enterocyte
products like RegIII𝛾 and Muc3. All of these factors prevent
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bacteria from coming into contact with the subepithelial layer
and thus inducing the inflammatory response. PN adminis-
tration disturbs these systems [6, 7, 10, 30–33], resulting in
the increased exposure of antigens to the immune system,
increased intestinal permeability, and the establishment of
proinflammatory status in the intestine.

Although there is abundant evidence (obtained both in
vitro and in vivo) that butyrate affects all components of this
defence system, the mechanism is not yet fully understood
and controversies remain. Muc 2, secreted by GCs, is the
major structural component of the intestinal mucus. Muc
3 is a transmembrane mucin produced by enterocytes and
the major component of glycocalyx, which plays an active
role in the intestinal mucosal defence [34]. Studies published

thus far have only focused on the effect of butyrate on mucin
production when administered per rectum or in cell lines
in vitro; furthermore, these results are rather inconsistent
[35, 36]. Gaudier [37] reported that, in vitro, butyrate grossly
stimulated Muc2 expression but only in a glucose-deprived
medium, while the effect of butyrate was dose-dependent and
inhibitory at higher concentrations. These findings indicate
that the effect of butyrate on mucus formation is context-
dependent.The stimulatory effect of butyrate on host defence
peptides and tight junction protein expression has been
proved both in vitro and after dietary supplementation in
vivo [38–42]. Nevertheless, to our knowledge, no study has
evaluated the effect of butyrate administered parenterally.
Our data show that supplementation of a PN mixture
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Table 2: Alpha diversity.

OTUs Chao1 Shannon Simpson
control 477 (180) 814 (340) 6.23 (1.14) 0.96 (0.03)
PN 429 (109) 726 (289) 6.04 (1.43) 0.96 (0.1)
PN+But 328 (157)† 583 (288) 4.53 (3.44) 0.85 (0.34)
Data are given as median and IQR. † p <0.05 PN+But vs. control.
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with butyrate at a concentration within physiological limits
(9 mM) upregulates the expression of all components of
the nonimmune defence—including mucins, host defence
peptides, and tight junction proteins in the ileum—while
also improving intestinal permeability. We conclude that
enforcement of the intestinal barrier may represent one of
the beneficial effects of i.v. butyrate in the context of total
dependence on PN and the absence of enteral nutrition
and/or butyrate producers.

4.2. Butyrate and Immune Functions. Total dependence on
PN in critically ill patients is accompanied by decreased
immune responsiveness, reduced gut-associated lymphoid
tissue (GALT)mass, diminished IgA secretion, and increased
risk of generalised sepsis [43]. Nevertheless, it seems that
the main factor responsible for immune dysfunction in PN-
dependent patients is not PN administration itself, but the
lack of enteral feeding [1]. One consequence of the absence
of enterally provided nutrients is low SCFA content in the
gut. SCFA and, in particular, butyrate have been shown
to influence immune cells towards anti-inflammatory and
tolerogenic phenotypes [44] and to induce the differentiation
of Foxp3+ Treg lymphocytes [45–47]. In mice, an SCFA
mixture administered per os increased the numbers of IgA-
secreting lamina propria B cells, IgA expression or levels of
secreted IgA in various compartments of the intestine, and

IgA and IgG levels in the blood circulation [48]. On the
other hand, Kespohl et al. [49] showed that the effect of
butyrate depends on its concentration. In vitro, low butyrate
concentration (0.25 mM) facilitated differentiation of Tregs
while higher dose (1 mM) induced proliferation of IFN𝛾
producing T cells. Furthermore, oral treatment with 100 mM
butyrate potentiated the inflammatory status during acute
colitis in germ-free mice.

To our knowledge, only one study has focused on the
effect of butyrate when added to PN on GALT. In mice,
47 mM butyrate administered in i.v. in nutrition mixture
partially restored a PN-induced drop in lymphocyte numbers
in Peyer’s patches and intestinal IgA levels [50]. In our study,
butyrate administration was associated with the increased
expression of anti-inflammatory cytokines IL-4 and IL-10.
Compared with controls, IFN𝛾 expression was reduced in
both PN and PN+But groups suggesting that 9 mM butyrate
concentration in PN mixture does not induce proinflamma-
tory response. Butyrate supplementation was associated with
an increase in CD4+ lymphocyte numbers and an increase
in the CD4+/CD8+ ratio in MLN. Rather surprisingly, we
observed an increase of Tregs in MLN of rats administered a
PN mixture without butyrate, while the addition of butyrate
resulted in a decrease in Tregs percentage to the control level.
Treg cells expressing transcription factor Foxp3 are believed
to play a key role in limiting inflammatory responses in
the intestine [51], as they inhibit bystander T-cell activation
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either by a contact-dependent mechanism or through soluble
factors [52]. Paradoxically, Foxp3+ Tregs are more common
in the inflamed intestinal mucosa of IBD patients, leading
to a reciprocal drop in circulating Treg frequency in the
peripheral blood; this likely reflects sequestration of these
cells to the site of inflammation [53, 54]. In a rat sepsis model,
the prosurvival treatment was associated with a decrease in
spleen Tregs [55] and in septic patients the persistence of
elevated Treg indicated poor outcomes [56]. We hypothesise
that in our experimental setting decreased Treg frequency in
MLN in the PN+But group reflects the lower inflammatory

status of the intestinal epithelium, thus reducing the need to
produce an anti-inflammatory response.

IgA production by plasmatic B cells in the submucosal
layer is regulated by Th1 and Th2 cytokines produced by dif-
ferent T-helper subpopulations. While Th1 cytokines (IFN𝛾)
downregulate IgA production, Th2 cytokines (IL-4, IL-5, IL-
6, and IL-10) stimulate it [57]. Hanna [58] reported that
PN depressed both IL-4 and IL-10 levels in small intestine
homogenates but that IFN𝛾 levels remained unchanged,
resulting in an imbalance between pro-/anti-IgA-regulating
cytokines and a subsequent reduction in IgA production.
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Figure 9: Heatmap showing the fold change (a) and the abundance (%) (b) of genera that were differently (p<0.05) represented in at least two
groups. Positive values correspond with an increase and negative values with a decrease in the first group compared with the second group.
Shades of blue represent fold change decrease while shades of brown represent fold change increase. Uncoloured fields are not significant at
p<0.05.

Our data confirm this observation concerning the effect
of nonsupplemented PN. Butyrate supplementation resulted
in increases in IL-4 and IL-10 expression to control levels
and the near normalisation of IgA expression. In contrast
to Hanna et al. we found decreased IFN𝛾 expression in
both PN-dependent groups. These data suggest that intraep-
ithelial Th2 helpers are one of the targets of butyrate and
that butyrate supplementation may restore the PN-induced
cytokine imbalance. The interpretation of our data may be
limited by the fact thatwe determined onlymRNAexpression
of particular genes and mRNA and protein expressions do
not necessarily correlate. Nevertheless, we observed corre-
sponding changes at functional level (intestinal permeability,
mucosa thickness) supporting the relevance of mRNA data.

4.3. Butyrate and the Microbiota. The gut microbiome in
animal models of PN is characterised by a significant shift
in microbiota composition, particularly a loss of Firmicutes
and an enrichment of Bacteroidetes and Proteobacteria [3, 7].
In our study, we observed a shift towards an unfavourable
microbiota composition, particularly an enrichment of Pro-
teobacteria and the reduction of bacteria involved in butyrate

production (Lactobacillaceae or Lachnospiraceae) in both
PN-dependent groups. While the abundance of butyrate
producers was not affected by butyrate supplementation
we observed a trend, albeit not statistically significant,
towards Proteobacteria reduction in butyrate-administered
animals. Interestingly, butyrate supplementation (but not
enteral deprivation/PN administration alone) was associated
with a tendency to the loss of diversity.

Although the effects of dietary fibre on the gutmicrobiota
have been described elsewhere [59], information concerning
the direct effect of butyrate on the gut microbiota is scarce.
Dietary butyrate was reported to reduce coliform bacteria
[60] and to increase the abundance of Lactobacillus [42,
61] and butyrate producers Blautia and Anaerostipes [42].
We observed no radical effect of i.v. butyrate, as it did
not attenuate deregulation of the main contributors to PN-
induced dysbiosis. Nevertheless, butyrate supplementation
has been associated with an increased abundance of several
potentially beneficial genera (Anaerostipes, Roseburia, and
Lachnospiraceae AC2044 group), a decreased abundance in
the opportunistic human pathogen Desulfovibrio [62], and
a trend towards attenuation in Proteobacteria dominance.
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We suggest that this subtle shift in microbiota composition
may contribute, along with other mechanisms, to the overall
beneficial effect of butyrate.

4.4. Conclusion. We report that supplementation of a PN
mixture with butyrate resulted in a significant enhance-
ment of gut defence systems, i.e., increased expression of
mucins, tight junction proteins and host defence peptides,
and improvement of PN-induced aggravation of intestinal
permeability. Lack of enteral nutrition and/or PN administra-
tion led to a shift in caecal microbiota composition. Although
butyrate did not reverse the altered expression of most taxa, it
did influence the abundance of several potentially beneficial
or pathogenic genera which might contribute to its overall
advantageous effect. We conclude that supplementation of
a PN mixture with butyrate may represent a prospective
therapeutic approach for mitigating the adverse effects of
parenteral nutrition.
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