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Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-
term protection against tuberculosis (TB). However, it is urgently needed to optimize the
boosting schedule of subunit vaccines, which consists of antigens from or not from BCG,
to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX
(MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the
region of difference (RD) ofMycobacterium tuberculosis (M. tuberculosis), were applied to
immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively.
The long-term antigen-specific immune responses and protective efficacy against M.
tuberculosis H37Ra were determined. The results showed that following BCG priming,
MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks
enhanced the number and function of long-lived memory T cells with improved protection
against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and
EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn’t induce long-
term immunity. It suggests that following BCG priming, both BCG antigens MH boosting
twice and “non-BCG” antigens EC immunizations thrice at suitable intervals induce long-
lived memory T cell-mediated immunity.

Keywords: tuberculosis, BCG, subunit vaccine, boost schedule, immunization program
1 INTRODUCTION

Tuberculosis (TB) is a serious infectious disease mainly caused by Mycobacterium tuberculosis (M.
tuberculosis) (1, 2). Bacillus Calmette-Guerin (BCG) is commonly applied in newborns and has
proved to be effective in protecting children from severe tuberculosis infection (3, 4), but the
protective immunity wanes and shows limited protection against tuberculosis in adults (5, 6). T cell-
mediated immune responses are critical for host defense against M. tuberculosis infection (7–9).M.
tuberculosis infection or vaccine immunization activates several kinds of T cells, including stem cell-
like memory T cells (TSCM), central memory T cells (TCM), effector memory T cells (TEM) and
org April 2022 | Volume 13 | Article 8627261
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effector T cells (Teff) (10, 11). TSCM and TCM can be maintained
for many years and have strong proliferation ability, in which
TSCM can live longer than TCM (8, 12–14). Under secondary
infection or antigen re-stimulation, TSCM could differentiate into
TCM, which mainly secrete interleukin-2 (IL-2); TCM can
differentiate into TEM and Teff, and then secrete cytokine
interferon-g (IFN-g) (13, 15, 16). TEM can be maintained for 4
to 8 weeks and provides short-term protection (17). Therefore,
long-term protection against TB depends on long-lived memory
T cells such as TSCM and TCM cells (18, 19).

BCG mainly induces TEM which may wane as the children
grow up, failing to provide enough protection in adults (20). It is
supposed that adjuvanted subunit vaccine had the potential to
boost BCG-primed immunity. For example, ten weeks after BCG
priming, BALB/c mice received ChAdOx1.85A or MVA85A
vaccine twice every 4 weeks showed significantly decreased
bacterial burdens in the lung when the mice were challenged
with aerosolized M. tuberculosis 4 weeks after the last
immunization (P < 0.01) (21). In addition, H4-IC31H vaccine
boosting at 19th and 22nd week after BCG immunizations
significantly reduced bacterial burdens in lung and spleen
compared with BCG when the mice were challenged with M.
tuberculosis 5 weeks after the final booster vaccination (22).
Cynomolgus macaques were primed with BCG and boosted with
Mtb72F/AS02A three times with 4 weeks apart induced
protection superior to BCG alone when the monkeys were
challenged with M. tuberculosis 4 weeks after the last
immunization (23).

However, the above traditional short-interval subunit vaccine
boosting programs usually induced TEM and provided short-
term protection (24, 25). It was reported that macaques
vaccinated with BCG and boosted with M72 vaccine at 16 and
20 weeks did not enhance the protective efficacy of BCG when
the macaques were challenged with a low dose (8–16 CFU) ofM.
tuberculosis Erdman via bronchoscope at 12 weeks after the final
immunization (26). In a clinical trial, boosting healthy infants
(aged 4-6 months) who received BCG previously with MAV85A
induced modest cell-mediated immune responses without
improving protective efficacy against TB (27). Besides limited
antigen profile, the boosting progress was supposed to be a
reason for the poor protection (28–31). Therefore, how to
boost BCG-primed immune memory with subunit vaccine
to induce long-lived memory T cells is urgently needed to
be investigated.

It is well-known that antigen stimulation times and intervals
might affect the development of TCM (32, 33). As far as subunit
vaccine immunization schedule was considered, our previous
work found that compared with the traditional immunization
program of 0-3-6 weeks, prolonging the intervals of
immunization, the schedule of 0-4-12 weeks, could increase the
number and function of long-lived memory T cells and improve
the protective efficacy (25).

The immunization program of boosting BCG with subunit
vaccine is complicated. We hypothesized that BCG antigens and
“non-BCG” antigens (being absent from BCG), from RD of M.
tuberculosis, might require different boosting programs to induce
Frontiers in Immunology | www.frontiersin.org 2
long-term immune memory. In this experiment, Mtb10.4-HspX
(MH) protein was used as the representative of antigen from
BCG and ESAT6-CFP10 (EC) protein was applied as the
representative antigen from RD (34, 35). The optimized
immunization schedules for these two types of antigens
were investigated.
2 MATERIALS AND METHODS

2.1 Animals and Ethics Statement
Specific pathogen-free 6-8-week-old female C57BL/6J mice were
purchased from Gansu University of Chinese Medicine
(Lanzhou, China). Animals received free access to water and
standard mouse chow throughout the study. All animal
experiments were carried out under the guidelines of the
Council on Animal Care and Use, and the protocols were
reviewed and approved by the Institutional Animal Care and
Use Committee of Lanzhou University.

2.2 Preparation of H37Ra, BCG and
Antigen Proteins
M. tuberculosis H37Ra (ATCC25177) and BCG (Danish strain)
bacteria were cultured in Sauton’s medium. The fusion proteins
MH and EC were prepared as previously reported (35, 36). In
brief, MH fusion antigen without tag was purified by
hydrophobic interaction chromatography using butyl-
sepherose high performance (Butyl HP) column and ion-
exchange chromatography using Q-sepharose high
performance (Q HP) column (35). The fusion antigen EC
without tag was purified by ion-exchange chromatography
using Q HP column (36). Single mycobacterial proteins heat
shock protein X (HspX), 10 kDa culture filtrate protein (CFP10)
and 6 kDa early secreted antigen target (ESAT6) with His tag
were purified by Ni-NTA His column (Novagen) (37, 38). The
endotoxin concentrations of fusion protein were tested by
Limulus amebocyte lysate (LAL) (Xiamen bioendo technology
co., ltd, Xiamen, China). The purified protein derivative (PPD) of
tuberculin was extracted from BCG, which contained a variety of
proteins with different molecular weights.

2.3 Vaccine Immunization Program
2.3.1 Long Interval Immunization Schedule
The mice were primed subcutaneously with BCG (5 × 105 CFU
in 100 ml per mouse). The purified protein MH or EC (10mg/
dose) was emulsified in an adjuvant being composed of N,
N′-dimethyl-N, N′-dioctadecyl ammonium bromide (DDA)
(250mg/dose) (Anhui Super chemical technology Co., Ltd.,
China) and polyinosinic-polycytidylic acid (Poly I: C) (50mg/
dose) (Kaiping Genuine Biochemical Pharmaceutical Co., Ltd.,
Guangdong, China) to construct subunit vaccine (39). To
observe the long-term immune memory and protective
efficacy, the BCG-primed mice were boosted with MH and EC
twice or thrice subcutaneously with a long interval: MH/EC
immunizations at 12-24 weeks groups; MH/EC immunizations
April 2022 | Volume 13 | Article 862726

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lv et al. Optimizing Boosting Schedule of Vaccines
at 12-16-24 weeks groups. The number of mice per group was 30.
The BCG-primed mice were revaccinated subcutaneously with
BCG (5 × 105 CFU in 100 ml per mouse) at 24 weeks to be
consistent with other boosters on immunoassays. BCG is a live
attenuated tuberculosis vaccine and is usually boosted once when
considering re-vaccination (40). PBS and BCG without boosting
groups were used as control (Figure 1A). The immune memory
was evaluated at 12 weeks and 28 weeks after the last
immunization. The long-term protective efficacy was detected
by H37Ra (5 × 106 CFU in 50 ml per mouse) intranasal challenge
at 19 weeks after the last immunization.

2.3.2 Short Interval Immunization Schedule
Based on the results from the long interval immunization
schedule, the protective efficacy of subunit vaccine boosting
with a shortened interval was observed. The BCG-immunized
mice were boosted with MH at 8-14 weeks or EC at 8-10-14
weeks subcutaneously (SC). The number of mice per group was
10. PBS and BCG without boosting groups were used as control
(Figure 1B). The immune responses were detected by flow
cytometry at 12 weeks after the last immunization. The long-
term protective efficacy was detected by H37Ra intranasal
challenge at 17 weeks after the last immunization.
Frontiers in Immunology | www.frontiersin.org 3
2.4 Flow Cytometry and Intracellular
Cytokine Staining (ICS)
2.4.1 IFN-g and IL-2 Secretion Following Antigen
Stimulation In Vitro
Lymphocytes were isolated from spleen or bone marrow of mice
by using Mouse 1 × Lymphocyte Separation Medium (Dakewe
Biotech Company Limited, China) and cultured in media
containing RPMI-1640, 10% fetal bovine serum (FBS), 100 U/
ml Penicillin-Streptomycin Solution. Then the lymphocytes were
inoculated in 24 well plates at the number of 5 × 106 cells/well.
The lymphocytes were stimulated with PPD (4 ug/ml) or mixed
antigens PHEC including PPD (4 ug/ml), HspX (2ug/ml),
ESAT6 (2ug/ml) and CFP10 (2ug/ml) at 37°C, 5% CO2. To
keep experiments consistent, the same stimulus (PHEC) was
used to observe the immune responses induced by the different
vaccines. After 4 hours of stimulation, the cells were incubated
for 7-8h with BD GolgiPlug™ (containing brefeldin A) at 37°C,
5% CO2. At last, the cells were collected and stained with anti-
CD4-FITC (RM4-5, eBioscience) and anti-CD8-PerCP-Cy5.5
(53-6.7, eBioscience). Lymphocytes were permeabilized using
the BD Cytofix/Cytoperm kit according to the manufacturer’s
instructions and stained with anti-IFN-g-APC (XMG1.2,
eBioscience) and anti-IL-2-PE (JES6-5H4, BD). Lymphocytes
A

B

FIGURE 1 | Immunization Schedule. (A) Long interval immunization schedule: C57BL/6 mice were primed with BCG and boosted with MH/EC at 12-24 weeks and
12-16-24 weeks respectively. Then, the function of memory T cells was evaluated at 12 weeks and 28 weeks after the last immunization. At 19 weeks after the last
immunization, the mice were challenged intranasally with H37Ra, and lung tissues were collected for CFU counting 3 weeks after the challenge. (B) Short interval
immunization schedule: C57BL/6 mice were primed with BCG and immunized with MH at 8-14 weeks or EC at 8-10-14 weeks respectively. The immune response
of memory T cells was evaluated at 12 weeks after the last immunization. At 17 weeks after the last immunization, mice were challenged intranasally with H37Ra,
and lung tissues were collected for CFU counting 3 weeks after the challenge. ICS, intracellular cytokine staining.
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from individual mice were analyzed on a NovoCyte flow
cytometer (ACEA Biosciences). Flow cytometry gating strategy
was shown in Supplementary Figure 1A. The spleen or bone
marrow lymphocytes were first gated by the parameters SSC-H
and FSC-H (lymphocytes), and then single cells were gated by
the parameters FSC-H and FSC-A (single cells). Finally, CD4+

IFN-g+ T cells, CD4+ IL-2+ T cells, CD8+ IFN-g+ T cells, CD8+

IL-2+ T cells or CD8+ IFN-g+ IL-2+ T cells were analyzed by flow
cytometric. The analyzed cytokine-producing T-cells were either
represented as percentages among total number of spleen
lymphocytes or described as actual counts of cytokine-
producing cells as bar graphs.

2.4.2 IFN-g Secretion Following Re-Stimulation With
Antigens In Vivo and In Vitro
Our previous experiment showed that at 25 weeks following
subunit vaccine immunization, once antigen stimulation could
not induce cytokines production (41), which suggests that TEM

cells wane at that time (42). Therefore, at 28 weeks after
vaccination only long-lived memory T cells (TSCM and TCM)
exist. Since the percentage of antigen-specific long-lived memory
T cells was too few to be detected directly by the surface markers
of central memory T cells (CCR7, CD62L, CD44, and CD127)
(17). Upon antigen stimulation antigen-specific TSCM and TCM

cells proliferate and differentiate into TEM and Teff cells, and then
produce cytokine IFN-g (32, 43, 44). Based on the principle, in
our previous studies we detected the role long-lived memory T
cells through analyzing IFN-g production following stimulation
with same antigen twice every 9 days (25, 41).

At 28 weeks after last immunization, the vaccine-immunized
mice were injected subcutaneously with mixed of antigens of
PPD (4 ug/mouse), HspX, EAST6, CFP10 (2 ug/mouse of each
protein) in vivo. The long-lived memory T cells were supposed to
be activated and differentiated into TEM or Teff cells (32).
Subsequently, the spleen lymphocytes were separated at 3 days
later and stimulated with the same mixed antigens of PPD
(4 ug/ml), HspX, EAST6, CFP10 (2 ug/ml of each protein) for
12 hours in vitro, during that time TEM cells could differentiate
into Teff cells and produce IFN-g. The intracellular cytokine
staining was analyzed by flow cytometry to indirectly reflect the
function of long-lived memory T cells (25, 45).

2.5 Cultured IFN-g ELISPOT Assay
A cultured IFN-g enzyme-linked immunospot (ELISPOT) assay
was also used to evaluate the immune responses of long-lived
memory T cells (43, 44). Twenty-eight weeks after the last
immunization, spleen lymphocytes were suspended in RPMI-
1640 medium supplemented with 10% fetal bovine serum, 100U/
ml Penicillin-Streptomycin Solution, 2 mM L-glutamine, 25 mM
HEPES buffer, 1% sodium pyruvate, and 50 mM 2-
mercaptoethanol. Spleen lymphocytes (5 × 106 cells/ml/well)
were stimulated with mixed antigens of PHEC containing PPD
(4 mg/ml) and HspX, ESAT-6, CFP10 (2 mg/ml of each protein).
Spleen lymphocytes were incubated at 37°C and 5% CO2 with
half culture media containing recombinant human IL-2 (rhIL-2)
100 U/ml, which were replaced on days 3 and 7, allowing
expansion of antigen-specific T cells. On day 9, the cultured
Frontiers in Immunology | www.frontiersin.org 4
cells were harvested and antigen-presenting cells (APCs) were
added. Then, cultured cells were plated (1 × 106 cells/well) and
re-stimulated with PHEC for an additional 20 hours in the
presence of APCs in anti-IFN-g coated ELISPOT plates
(Dakewe Biotech Company Limited, China). The spot-forming
cells (SFCs) were counted by an ELISPOT reader (Dakewe
Biotech Company Limited, China).

2.6 EdU Proliferation Assay for Long-Lived
Memory T Cells
5-Ethynyl-2’-deoxyuridine (EdU) is to be infiltrated into the
deoxyribonucleic acid (DNA) of T cells as the cells proliferate,
and it can be detected following proliferation and division of
memory T cells. Spleen lymphocytes (5 × 106 cells/well) were
stimulated with the mixed antigens PHEC for 7 days in 24-well
plates. Three days after antigen stimulation, when TSCM and TCM

were to be activated into TEM, EdU (Click-iT™ EdU Flow
Cytometry Assay Kit, Invitrogen™, OR, USA) was added at a
final concentration of 30 mM and the lymphocytes were
continued to be cultured for 4 days. On day 7, cells were
harvested, fixed, permeabilized, and incubated with Click-iT
reaction buffer according to the manufacturer’s instructions of
the Click-iT™ EdU Flow Cytometry Assay Kit. Subsequently,
cells were stained with anti-CD4-APC (RM4-5, eBioscience).
Finally, a flow cytometry assay was performed to evaluate the
proliferating capability of CD4 + T cells. Spleen lymphocytes
were first gated by the parameters SSC-H and FSC-H
(lymphocytes), and then single cells were gated by the
parameters FSC-H and FSC-A (single cells). Flow cytometry
gating strategy was shown in Supplementary Figure 1B.

2.7 Detection of Antigen-Specific
Antibodies in Mouse Sera by ELISA
At 12 and 28 weeks after the last immunization, antigen-specific
immunoglobulin IgG, IgG1, and IgG2c in sera were detected by
enzyme-linked immunosorbent assay (ELISA). Firstly, 0.5 µg/
well of PPD, HspX, and ESAT6 were separately added into the
plate at 4°C overnight. Secondly, the plates were blocked with 5%
skimmed milk powder, then incubated with the double-diluted
serum at 37°C for an hour. And then the plates were washed and
added 100 µL of goat anti-mouse IgG (Solarbio, Beijing, China)
and rabbit anti-mouse IgG1 and IgG2c (Rockland
Immunochemicals Inc., Montgomery, PA, USA) The 3,3′,5,5′-
tetramethylbenzidine (TMB) substrate was added at 200 µL/well
and incubated at room temperature for 5 min. The reaction was
then stopped by diluted sulfuric acid (1 mol/L) at 50 µL/well. The
color was quantified at 450 nm. The serum in the PBS group was
used as the negative control. The antibody titer was evaluated as
a reciprocal of each endpoint dilution.

2.8 Quantification of CFU of
Mycobacterium tuberculosis H37Ra in
Lung Tissue
The mice received intraperitoneal anesthesia with 1% sodium
pentobarbital at a concentration of 50 mg/kg. Mice from each
group were challenged through intranasal route (i.n.) with 5 ×
April 2022 | Volume 13 | Article 862726
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106 CFU of H37Ra. Lungs of infected animals were harvested
three weeks after the H37Ra intranasal challenge. Organs were
ground and resuspended in PBS. The dilutions were plated in
Middlebrook 7H10 plates (BD) containing oleic acid/albumin/
dextrose/catalase (OADC). The colony-forming units (CFU)
were counted.

2.9 Statistical Analysis
The experimental data were expressed as Mean ± SD. The data
were evaluated by GraphPad Prism 8.0 software with unpaired
two-tailed Student′s t-tests to compare two groups and one-way
analysis of variance (ANOVA) followed by a Tukey post hoc test
to compare multiple groups. Among them, P < 0.05 was
considered statistically significant.
3 RESULTS

3.1 Longitudinal Changes of Immune
Responses Induced by BCG Vaccination
To observe the longitudinal changes of immune responses
induced by BCG, lymphocytes in spleen and bone marrow
were stimulated with PPD antigen for 12 hours in vitro at
different times after BCG immunization, and flow cytometry
was used to quantify IFN-g producing CD4+ T cells. In spleen
lymphocytes, the frequency of IFN-g producing CD4+ T cells
peaked at 4 weeks, slightly decreased at 9 weeks, and the immune
responses reduced to a low level at 12 weeks (Supplementary
Figures 2A, C). In bone marrow, the frequency of IFN-g
producing CD4+ T cells increased at 4 weeks, reached the
highest level at 9 weeks and decreased at 12 weeks
(Supplementary Figures 2B, D). It indicated that the immune
response induced by effector memory T cells decreased at the
12th week after BCG vaccination, which should be an optimal
time for boosting (46–49).

3.2 Boosting BCG With Subunit Vaccines
With Suitable Schedules Induced
Long-Lived Memory T Cells
3.2.1 Cytokines Production by Memory T Cells at 12
Weeks After Last Vaccine Immunization
The fusion proteins MH and EC and single proteins ESAT6,
CFP-10 and HspX were prepared (Supplementary Figure 3). At
the concentration of MH and EC (1mg/ml of each protein), the
endotoxin levels were 0.009031EU/mg and 0.00985 EU/mg,
respectively (Supplementary Table 1). According to above
results, the mice were boosted with the subunit vaccine at 12
weeks after BCG immunization. Fusion protein EC consisting of
RD antigen (“non-BCG” antigen) and MH consisting of BCG
antigen were administered twice at 12-24 weeks and thrice at 12-
16-24 weeks respectively to investigate which immunization
programs could induce long-term immune memory to prolong
BCG-primed immune responses (Figure 1A).

To assess the frequency of vaccine-induced antigen-specific
memory T cells at 12 weeks after last immunization, cytokines
production in the splenocytes following specific antigens PHEC
Frontiers in Immunology | www.frontiersin.org 5
stimulation for 12 hours in vitro was analyzed by flow cytometry.
The results showed that compared with MH boosting at 12-16-
24 weeks group (0.82 ± 0.46) and EC immunizations at 12-24
weeks group (0.61 ± 0.21), MH boosting at 12-24 weeks group
produced a higher frequency of IFN-g producing CD4+ T cells
(1.97 ± 0.70, P < 0.05; Figures 2A, B). Compared with PBS group
(0.23 ± 0.12) and BCG revaccination group (0.36 ± 0.15), MH
boosting at 12-24 weeks group (0.88 ± 0.32) and EC
immunizations at 12-16-24 weeks group (1.33 ± 0.56)
produced a higher frequency of IFN-g producing CD8+ T cells
(P < 0.05; Figures 2A, B). Compared with PBS (1.89 ± 0.95)
group and BCG group (2.67 ± 0.7), EC immunizations at 12-16-
24 weeks group (5.84 ± 1.41) increased frequency of IL-2
producing CD4+ T cells (Figures 2A, B). Furthermore,
compared with MH boosting at 12-16-24 weeks group, the EC
immunizations at 12-16-24 weeks group had a higher number of
IFN-g/IL-2 producing CD4+ and CD8+ T cells (P < 0.05;
Figure 2C). Moreover, compared with MH boosting twice or
EC immunizations thrice groups, MH boosting at 12-24 weeks
and EC immunizations at 12-16-24 weeks improved the
proportion of IFN-g+ and IL-2+ double-positive CD8+ T cells
(Supplementary Figure 4). The results indicated that MH
boosting at 12-24 weeks and EC immunizations at 12-16-24
weeks induced strong memory T cell-mediated immune
response compared with the EC immunizations at 12-24 weeks
and MH boosting at 12-16-24 weeks.

3.2.2 Antigen-Specific Cytokines Production by
Long-Lived Memory T Cells at 28 Weeks After the
Last Vaccine Immunization
At 28 weeks after vaccine immunization, the antigen-specific
effector memory T cells would fade away, so the vaccine-induced
long-lived memory T cells were analyzed (41). The immune
responses following antigen stimulation to monitor the number
and function of vaccine-induced long-lived memory T cells
indirectly by two methods as follow (25, 41).

First, the cultured ELISPOT was used to investigate the
function and number of antigen-specific long-lived memory T
cells (43). The results showed that compared with the group of
EC immunizations at 12-24 weeks (86.2 ± 33.7 SFCs/5 × 106

cells), MH boosting at 12-24 weeks group induced an increasing
number of antigen-specific IFN-g producing T cells (166 ± 22.4
SFCs/5 × 106 cells, P < 0.05; Figures 5A, B). In addition,
compared with the group of MH boosting at 12-16-24 weeks
(73 ± 52 SFCs/5 × 106 cells), the group of EC immunizations at
12-16-24 weeks (162.25 ± 18.3 SFCs/5 × 106 cells) significantly
elevated numbers of antigen-specific IFN-g secreting T cells (P <
0.05; Figures 3A, B). The results indicated that both MH
boosting at 12-24 weeks and EC immunizations at 12-16-24
weeks might induce a great number of long-lived memory
T cells.

Second, according to the principle of cultured ELISPOT, flow
cytometry assay was used to detect the immune responses of
long-lived memory T cells under repeated antigen stimulation
(25, 43). The immunized mice were stimulated subcutaneously
with PHEC antigens in vivo 3 days prior to immunoassay. It was
supposed that the long-lived memory T cells activated and
April 2022 | Volume 13 | Article 862726
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developed into TEM or Teff. Three days later, spleen lymphocytes
were isolated and stimulated with PHEC antigens for 12 hours in
vitro, during that time the TEM developed into Teff and secreted
cytokine IFN-g. Then the secretion of cytokines IFN-g was
detected by intracellular cytokine staining. This method
indirectly reflected the functions of vaccine-induced long-lived
memory T cells (11, 25). The results showed that compared with
PBS group (1.29 ± 0.17), BCG group (1.91 ± 0.53), and the
groups of EC immunizations twice at 12-24 weeks (1.59 ± 0.34)
and MH boosting thrice at 12-16-24 weeks (1.00 ± 0.38), MH
boosting twice at 12-24 weeks group (3.58 ± 0.37) produced high
Frontiers in Immunology | www.frontiersin.org 6
frequencies of IFN-g producing CD4+ T cells (P < 0.05;
Figures 3C, D). Compared with the group of MH boosting
thrice at 12-16-24 weeks (1.00 ± 0.38), EC immunizations thrice
at 12-16-24 weeks group produced higher frequencies of IFN-g
producing CD4+ T cells (3.27 ± 1.21, P < 0.05; Figures 3C, D).
The MH boosting at 12-24 weeks group had a higher number
of IFN-g producing CD4+ T cells compared with EC
immunizations at 12-24 weeks group (P < 0.05; Figure 3E).
The EC immunizations at 12-16-24 weeks group had more IFN-g
producing CD4+ T cells compared with EC immunizations at 12-
24 weeks group (P < 0.05; Figure 3E). The above results
A

B

C

FIGURE 2 | The ratio and number of IFN-g and IL-2 producing T cells following antigen stimulation. At 12 weeks after the last immunization, the splenic lymphocytes
were separated and stimulated with mixed antigens of PPD, ESAT-6, CFP10 and HspX (PHEC) in vitro for 12 hours. The intracellular cytokines staining was analyzed
using flow cytometry. (A) Flow cytometric analysis of IFN-g and IL-2 producing CD4+ T cells and CD8+ T cells. (B) Statistical analysis of the proportion of IFN-g and
IL-2 producing CD4+ T cells and CD8+ T cells. (C) Statistical analysis of the number of IFN-g and IL-2 producing CD4+ T cells and CD8+ T cells among total spleen
lymphocytes from each immunized group. Results are presented as means ± SD, n = 4 ~ 5. The data were evaluated with unpaired two-tailed Student′s t-tests to
compare two groups and one-way analysis of variance (ANOVA) followed by a Tukey post hoc test to compare multiple groups. *P < 0.05.
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D

E
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FIGURE 3 | IFN-g production by long-lived memory T cells. At 28 weeks after the last immunization, spleen lymphocytes were cultured with or without mixed
antigens of PPD, HspX, ESAT-6, and CFP10 for 9 days and then the cells were harvested and restimulated with the same antigens for 20 hours in the presence of
APCs in anti-IFN-g coated ELISPOT plates. At 28 weeks after the last immunization, mice were injected subcutaneously with mixed antigens of PPD, ESAT-6, CFP10
and HspX (PHEC) for 3 days. Then, mice were euthanized and spleen lymphocytes were isolated and stimulated with mixed antigens PHEC for 12 hours in vitro
and analyzed by Flow cytometry. (A) Representative images of IFN-g ELISPOT wells from long-term cultured IFN-g ELISPOT assays. (B) Statistical analysis of the
cultured IFN-g ELISPOT assay. Results are presented as means ± SD, n = 4. *P < 0.05. (C) Flow cytometric analysis of IFN-g producing CD4+ and CD8+ T cells.
(D) Statistical analysis of the proportion of IFN-g producing CD4+ T cells and CD8+ T cells. (E) Statistical analysis of the actual number of IFN-g producing T cells
among total spleen lymphocytes from each immunized group. Results are presented as means ± SD, n = 4 ~ 5. The data were evaluated with unpaired two-tailed
Student′s t-tests to compare two groups and one-way analysis of variance (ANOVA) followed by a Tukey post hoc test to compare multiple groups. *P < 0.05.
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indicated that MH boosting twice at 12-24 weeks and EC
immunizations thrice at 12-16-24 weeks increased the immune
responses of long-lived memory T cells.

3.2.3 The Proliferation Capability of Long-Lived
Memory T Cells
To verify the proliferative capacity of T cells induced by different
boosting programs, the proliferation capacity of long-lived
memory T cells was analyzed by the EdU method at 12 weeks
and 28 weeks after the last immunization, respectively. At 12
weeks after the last immunization, compared with PBS group
(0.95 ± 0.46), BCG group (1.28 ± 0.46), and BCG revaccination
group (1.17 ± 0.45), the proportion of EdU+ cells in the MH
boosting twice at 12-24 weeks group (2.18 ± 0.32) increased
significantly (P < 0.05). The proportion of EdU+ cells in MH
boosting twice at 12-24 weeks group (2.18 ± 0.32) and EC
immunizations thrice at 12-16-24 weeks group (2.00 ± 0.36)
were significantly higher than MH boosting thrice at 12-16-24
weeks group (1.42 ± 0.63) (P < 0.05; Figures 4A, C). At 28 weeks
after the last immunization, compared with the PBS group
Frontiers in Immunology | www.frontiersin.org 8
(0.67 ± 0.31), BCG group (0.98 ± 0.40) and BCG revaccination
group (0.71 ± 0.57), the proportion of EdU+ cells in MH boosting
twice at 12-24 weeks group (2.83 ± 0.57) and EC immunizations
thrice at 12-16-24 weeks group (3.33 ± 0.39) increased
significantly (P < 0.05; Figures 4B, D). Compared with the
MH boosting thrice at 12-16-24 weeks group (1.20 ± 0.78), and
EC immunizations twice at 12-24 weeks group (1.89 ± 0.82), the
proportion of EdU+ cells in MH boosting twice at 12-24 weeks
group (2.83 ± 0.57) increased significantly (P < 0.05; Figures 4B,
D). Taken together, both MH boosting twice at 12-24 weeks
group and EC immunizations thrice at 12-16-24 weeks group
enhanced the proliferative capacity of CD4+ T cells.

3.3 BCG-Prime and MH/EC-Boost Induced
Durable Humoral Immune Response
At 12 weeks and 28 weeks after the last immunization, the IgG,
IgG1 and IgG2c against HspX, ESAT6 and PPD in serum were
measured by ELISA. The results demonstrated that compared
with BCG and BCG revaccination groups, MH/EC-boosting
groups produced long-durable higher levels of antibody titers
A

B

DC

FIGURE 4 | CD4 + T cell proliferation detected by EdU assay. At 12 weeks and 28 weeks after the last immunization, splenic lymphocytes (5×106 cells/well) were
stimulated with mixture antigens of PPD, ESAT-6, CFP10 and HspX in vitro for 7 days. Three days after antigen stimulation, EdU was added at a final concentration
of 30 mM, continued to culture for 4 days and was determined using flow cytometry. (A, B) Representative experiments of flow cytometric analysis of CD4+ T cells
proliferation. (C) Statistical analysis of CD4+ T cell proliferation at 12 weeks after the last immunization. (D) Statistical analysis of CD4+ T cell proliferation at 28 weeks
after the last immunization. Results are presented as means ± SD, n = 4 ~ 5. The data were evaluated with unpaired two-tailed Student′s t-tests to compare two
groups and one-way analysis of variance (ANOVA) followed by a Tukey post hoc test to compare multiple groups. *P < 0.05.
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(P < 0.05; Table 1). Furthermore, MH/EC boosting at 12-16-24
weeks group produced significantly higher levels of HspX/
ESAT6-specific IgG, IgG1, and IgG2c than MH/EC boosting
at 12-24 weeks group (P < 0.05; Table 1). The results indicated
that MH/EC vaccine boosting induced durable strong
serum antibodies.

3.4 The Protective Efficacy of BCG-Prime
and MH/EC Boosting at Different
Schedules
Furthermore, we observed the long-term protective effect induced
by MH boosting twice at 12-24 weeks and EC immunizations at
12-16-24 weeks. The attenuated M. tuberculosis H37Ra, which
expresses all single proteins of Mtb10.4/HspX and ESAT-6/CFP-
10 (50), was used to challenge the immunized mice. ESAT-6
expression in H37Ra was further confirmed by western blotting
(Supplementary Figure 5). Considering H37Ra was an
attenuated strain and could be cleared in mice around 4 weeks,
the mice were challenged with high doses of H37Ra and
determined the bacteria load in lung tissue at 3 weeks after the
challenge. The immunized mice were challenged intranasally with
avirulent M. tuberculosis H37Ra at 19 weeks after the last
immunization. The results demonstrated that BCG group, MH
and EC immunizations groups induced a significant reduction of
mycobacterial loads in the lungs compared with PBS controls (P <
0.01). The groups of MH boosting at 12-24 weeks and EC
immunizations at 12-16-24 weeks reduced bacteria load in lung
tissues, declining approximately 0.1 log10 CFU compared with the
BCG control group (P < 0.05) (Figure 5A). It showed that the
schemes of MH boosting twice at 12-24 weeks and EC
immunizations thrice at 12-16-24 weeks promoted long-lived
memory T cells and improved protective efficacy.

Based on the results from the long interval immunizing
schedule, shorten interval schedules were designed, and the
protective efficacy and immune responses were analyzed.
Following BCG priming, mice were immunized with MH/DP
twice at 8-14 weeks and the EC/DP thrice at 8-10-14 weeks
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(Figure 1B). At 12 weeks after the last vaccine immunization,
the immune response and T cell proliferation were detected by
flow cytometry. At 17 weeks after the last vaccine immunization,
the protective efficacy was detected by H37Ra challenge. The
results showed that MH/DP boosting twice at 8-14 weeks and
the EC/DP immunizing thrice at 8-10-14 weeks did not improve T
cell proliferative capacity and BCG-primed immune protection,
although an increased IFN-g production following antigen
stimulation was observed (Figure 5B; Supplementary Figure 6).
The results suggest that subunit vaccines need suitable boosting
schedules to induce long-term immune memory.
4 DISCUSSION

In this study, we investigated the long-term immune memory
induced by BCG priming and MH/EC vaccine boosting with
different regimens. We found that MH boosting at 12-24 weeks
and EC immunizations at 12-16-24 weeks enhanced the long-
lived memory T cell-mediated immunity and improved
protection efficiency of BCG, while MH boosting at 8-14 weeks
and EC immunizations at 8-10-14 weeks reduced the long-term
protective efficacy compared with BCG without boosting.

BCG vaccination mainly activates effector memory T cells,
which cannot be maintained for a long time. In this experiment, T
cell immune responses following BCG immunization declined at
9-12 weeks, which were consistent with the results in our
laboratory′s previous work (25, 51). Besides, kinetics of BCG
induced immune responses in the spleen of BALB/c mice at weeks
3, 6, and 10 found that T cell activation peaked at week 3 and
gradually declined thereafter (52). In the C57BL/6 mouse model,
the immune response of T lymphocytes collected for retro-orbital
blood was peaked at 3 weeks and weakened at 5 weeks following
BCG vaccination (53). Furthermore, in BCG-vaccinated mice,
anti-mycobacterial T cell responses persisted for long period,
peaked at 12-32 weeks, and waned gradually thereafter (54, 55).
These studies suggest that the mouse strain, BCG vaccine strain,
TABLE 1 | The production of antigen-specific IgG, IgG1, and IgG2c.

Groups 12weeks 28weeks

IgG IgG1 IgG2c IgG2c/IgG1 IgG IgG1 IgG2c IgG2c/IgG1

Anti-HspX BCG 2.31 ± 0.19 2.33 ± 1.03 1.34 ± 0.41 0.57 ± 0.17 2.19 ± 0.12 0.74 ± 0.53 0.62 ± 0.3 0.92 ± 0.37
BCG+BCG 2.28 ± 0.11 2.50 ± 0.17 1.27 ± 0.26 0.50 ± 0.1 1.84 ± 0.49 0.87 ± 0.59 0.80 ± 0.29 0.84 ± 0.45
BCG+MH2 2.93 ± 0.27* 4.39 ± 0.67* 3.48 ± 0.31* 0.79 ± 0.07 2.91 ± 0.46* 3.12 ± 0.81* 2.83 ± 0.3* 0.90 ± 0.1
BCG+MH3 4.00 ± 0.17*# 5.74 ± 0.7*# 4.84 ± 0.81*# 0.84 ± 0.14 3.78 ± 0.42*# 3.93 ± 0.44*# 3.6 ± 0.39*# 0.93 ± 0.1

Anti-PPD BCG 3.00 ± 0.25 2.20 ± 0.13 2.67 ± 0.12 1.21 ± 0.05 2.28 ± 0.41 1.52 ± 0.1 1.66 ± 0.16 1.09 ± 0.1
BCG+BCG 2.80 ± 0.51 2.30 ± 0.17 2.73 ± 0.1 1.18 ± 0.04 2.26 ± 0.32 1.47 ± 0.34 1.89 ± 0.35 1.28 ± 0.24
BCG+MH2 3.20 ± 0.11* 3.71 ± 0.49* 3.96 ± 0.32* 1.10 ± 0.06 3.01 ± 0.4* 2.01 ± 0.32* 2.98 ± 0.37* 1.48 ± 0.18
BCG+MH3 4.27 ± 0.37*# 5.40 ± 0.31*# 5.71 ± 0.54*# 1.07 ± 0.1 3.92 ± 0.9*# 5.13 ± 1.65*# 3.76 ± 0.44*# 0.73 ± 0.08

Anti-ESAT6 BCG 2.17 ± 0.32 1.96 ± 0.41 2.00 ± 0.31 0.84 ± 0.08 2.15 ± 0.14 1.00 ± 0.56 2.10 ± 0.37 2.18 ± 0.27
BCG+BCG 2.19 ± 0.11 2.31 ± 0.18 1.94 ± 0.2 1.02 ± 0.16 2.05 ± 0.28 1.00 ± 0.37 1.98 ± 0.05 1.98 ± 0.05
BCG+EC2 2.57 ± 0.19* 4.93 ± 0.78* 2.14 ± 0.75 0.43 ± 0.15 2.61 ± 0.06* 2.15 ± 0.63* 2.92 ± 0.53* 1.34 ± 0.28
BCG+EC3 3.11 ± 0.35*$ 5.63 ± 0.69* 2.57 ± 0.48 0.45 ± 0.08 2.83 ± 0.15*$ 2.65 ± 0.51* 3.30 ± 0.11* 1.24 ± 0.04
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At 12 weeks and 28 weeks after the last immunization, the IgG, IgG1 and IgG2c against HspX, PPD and ESAT6 in serum were measured by ELISA. Data are expressed as means ±
standard deviation (SD) (n = 4). Antibody titers are presented as the means of log10 antibody titers ± SD. The statistical significance of data was determined using the unpaired two-tailed
Student′s t‐test. *P < 0.05 vs. BCG plus BCG + BCG; #P < 0.05 vs. BCG+MH2; and $P < 0.05 vs. BCG+EC2.
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and antigen(s) used for in vitro stimulations might lead to the
differences of T cell-mediated immune responses.

Boosting BCG-primed immune responses with subunit
vaccines is expected to induce long-lived memory T cells. TSCM

and TCM provide long-term immune protection against M.
tuberculosis infection (8, 56–58). Treating BCG-immunized
mice with Suplatast tosylate and D4476, inhibitor of T help 2
and regulatory T cells, favored the development of TCM over
TEM. Adoptively transfer of TCM cells generated by treatment
with immunomodulators during BCG vaccination conferred
protective efficiency against M. tuberculosis infection (59). To
improve the access of BCG antigens to MHC I pathway, a urease
C-deficient recombinant BCG DureC::hly (rBCG DureC::hly),
which secreted pore-forming listeriolysin (Hly) was
constructed (60, 61). rBCG DureC::hly immunization produced
greater expansion of TCM than BCG (62). Transfer of antigen-
specific TCM distinctly provided protection against M.
tuberculosis infection (62). The Ag85B-ESAT-6/CAF01 subunit
vaccines could promote long-term protective immune responses
characterized by high levels of multifunctional T cells with
proliferative potential (63). Mice immunized with ID93/GLA-
SE exhibited a significant reduction of M. tuberculosis and
elicited sustained antigen-specific multifunctional IFN-g, tumor
necrosis factor alpha (TNF-a), and IL-2 co-producing CD4+ T
cells (64). A novel Sendai virus vectored TB vaccine (SeV85AB)
induced antigen-specific TCM cells and enhanced BCG-primed
immune protection (65).

It is well-known that Teff is apoptotic at 1-2 weeks after
immunization or infection (66), TEM cells wane around 90 days
(42), TCM and TSCM cells live for a long time after formation (67,
68). In our previous study we found that at 25 weeks after the last
immunization, the immune responses of TEM were undetectable,
but the immune response of long-lived memory T cells,
including TCM and TSCM, could be detected by restimulation
with antigen (41). At 12 weeks after vaccination T cell subsets in
spleen could include TEM, TCM and TSCM cells, but only TCM and
Frontiers in Immunology | www.frontiersin.org 10
TSCM cells could maintain up to 28 weeks. In this study, the
vaccine-induced immune responses at 12 and 28 weeks after
MH/EC boosting were detected. At 12 weeks after last
immunization, EC immunizations thrice at 12-16-24 weeks
group produced high numbers of IL-2 producing CD4+ and
CD8+ T cells. MH boosting twice at 12-24 weeks produced more
IFN-g producing CD4+ T cells than MH boosting thrice at 12-16-
24 weeks and EC immunizations twice at 12-24 weeks. As same
as the results of cytokines production, the results of memory T
cells proliferation showed that both programs of MH boosting at
12-24 weeks and EC immunizations at 12-16-24 weeks improved
the proliferation of long-lived memory T cells. At 28 weeks after
last immunization, proliferation assay, cultured ELISPOT assay,
detection of IFN-g production following antigen restimulation in
vivo and in vitro were applied for the detection of vaccine-
induced long-lived memory T cells. The results showed that both
MH boosting at 12-24 weeks and EC immunizations at 12-16-24
weeks enhanced the number and function of long-lived memory
T cells. In the protection efficiency against M. tuberculosis
H37Ra, these two regiments of MH boosting at 12-24 weeks
and EC immunizations at 12-16-24 weeks prolonged BCG-
primed protective efficacy, consisting with the assumption that
vaccine-generated memory T cells were essential for preventing
or limiting M. tuberculosis infections (69).

The times of antigen stimulations affect the development of
memory T cells (70–73). It was reported that the expansion and
survival of memory T cell populations were impaired if antigens
were stimulated more times (33, 74). The decreasing-potential
model for generating effector and memory T cell heterogeneity
suggests that repetitive stimulation with antigen and other
signals drive greater effector cell proliferation and terminal
differentiation (32). Our experiments found that following
BCG priming, the RD antigen EC immunizations thrice at 12-
16-24 weeks induced long-term immune protection. Claus
Aagaard et al. reported that the M. tuberculosis-specific (or
“non-BCG”) vaccine ESX-1-associated antigens (H74) boosting
A B

FIGURE 5 | Bacterial burden at necropsy. (A) In the long interval immunization schedules, at 19 weeks after the last immunization, the immunized mice were
challenged intranasally with M. tuberculosis H37Ra. (B) In the short interval immunization schedules, at 17 weeks after the last immunization, the immunized mice
were challenged intranasally with M. tuberculosis H37Ra. At 3 weeks after challenge, mice were euthanized and the bacterial burden was measured in the lungs.
Data were presented as log10 CFU ± SD from groups of 5-6 mice. The data were evaluated with unpaired two-tailed Student′s t-tests to compare two groups and
one-way analysis of variance (ANOVA) followed by a Tukey post hoc test to compare multiple groups. *P < 0.05, ***P < 0.001.
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BCG-primed mice three times at 2-week intervals added
significantly to the BCG-induced protection (75). BCG
expresses the antigen of Mtb10.4 and HspX. In the program of
MH boosting twice, Mtb10.4 and HspX actually encountered
three times, which was as same times as that of ESAT6 and
CFP10 encountered in the EC immunizations thrice program.
BCG-prime and MH boosting twice induced more long-lived
memory T cells than MH boosting thrice. In a clinical trial in
which BCG-vaccinated participants received varying doses of
ID93 + GLA-SE at 0-28-112 days, the vaccination-induced Th1
cellular responses peaked after two administrations rather than
after the third administration (74). It suggests that the immune
schedule including vaccination times and intervals be related to
the production of memory T cells, and should be investigated for
different vaccines respectively.

In our study, MH boosting at 8-14 weeks and EC
immunizations at 8-10-14 weeks after BCG priming decreased
the long-term protective efficiency. The interval of vaccination
affected the generation of TCM (25). Subunit vaccine boosting at
short intervals might produce abundant Teff/TEM cells, which wane
several weeks (47) and are poised for immediate protection at the
expense of forming stable long-term memory (24). Therefore, in
the case of vaccine boosting, a suitable long interval played an
important role in inducing long-term immune memory.

As far as humoral immune responses were considered, BCG-
prime and subunit vaccine MH/EC immunizations improved the
production of durable antigen-specific antibodies, while BCG
revaccination did not stimulate the production of durable
antibodies. The same results were also observed in clinical
trials on H4:IC31 and H56:IC31. In the BCG-primed
population, H4:IC31 and H56:IC31 vaccine boosting
significantly increased the IgG level, while BCG revaccination
did not (76). In addition, BCG revaccination of cattle did not
increase the level of antigen-specific antibodies (77). Mounting
data showed that the subunit vaccines such as ID93 + GLA-SE
(74, 78) and M72/AS01 (79, 80) vaccination increased antigen-
specific IgG responses significantly in the animal experiments
and clinical trials. The role of antibodies in immune protection
against M. tuberculosis infection needs further investigation
(81, 82).

In this study, H37Ra was used to preliminarily evaluate the
protective efficacy induced by fusion proteins MH and EC in
adjuvant DP with different boosting schedules. Our study
suggests that both BCG and “non-BCG” antigens require
different schedules to boost BCG-primed immune responses so
as to induce long-term immune protection against TB. Although
H37Ra has some limitations, it still has been used to
preliminarily evaluate the protective efficacy of vaccines (83).
However, H37Ra was an attenuated strain and could not persist
in mice for a long time as virulent strain. For this reason, we only
detected bacterial load in lung of the mice after intranasal
challenge. The whole lungs of each mouse were used for
bacteria counting and the pathological lesion was not analyzed.
In future, virulent M. tuberculosis strain H37Rv will be required
to evaluate the protective efficacy induced by BCG-prime and
different subunit vaccines-boost with different strategies.
Frontiers in Immunology | www.frontiersin.org 11
5 CONCLUSION

Following BCG priming, MH boosting twice at 12-24 weeks, and
EC immunizations thrice at 12-16-24 weeks could produce long-
term immune responses and improved the BCG-primed
protective efficiency. MH represents the antigens from BCG,
while EC represents the antigens from RD. It suggests that
following BCG-priming BCG antigen MH boosted twice or
“non-BCG” antigens EC immunized thrice at suitable intervals
tend to induce long-lived memory T cells. This finding will be
helpful for optimizing subunit vaccine boosting schedules to
prolong BCG-primed immune protection. Following BCG
vaccination, the expression and persistence of antigens in vivo
can vary, therefore the boosting schedules of different subunit
vaccines should be investigated respectively to induce durable
immunity against M. tuberculosis infection.
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Improves Protection in Mice. J Immunol (2020) 205(8):2146–55. doi: 10.4049/
jimmunol.2000563

76. Bekker LG, Dintwe O, Fiore-Gartland A, Middelkoop K, Hutter J, Williams A,
et al. A Phase 1b Randomized Study of the Safety and Immunological
Responses to Vaccination With H4:IC31, H56:IC31, and BCG
Revaccination in Mycobacterium Tuberculosis-Uninfected Adolescents in
Cape Town, South Africa. EClinicalMedicine (2020) 21:100313. doi:
10.1016/j.eclinm.2020.100313

77. Parlane NA, Shu D, Subharat S, Wedlock DN, Rehm BH, de Lisle GW, et al.
Revaccination of Cattle With Bacille Calmette-Guérin Two Years After First
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