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ABSTRACT

The tRNA:m?,G10 methyltransferase of Pyrococus
abyssi (PAB1283, a member of COG1041) catalyzes
the N?,N°-dimethylation of guanosine at position 10
in tRNA. Boundaries of its THUMP (THioUridine syn-
thases, RNA Methyltransferases and Pseudo-uridine
synthases)—containing N-terminal domain [1-152]
and C-terminal catalytic domain [157-329] were
assessed by trypsin limited proteolysis. An inter-
domain flexible region of at least six residues was
revealed. The N-terminal domain was then produced
as a standalone protein (THUMPa) and further char-
acterized. This autonomously folded unit exhibits
very low affinity for tRNA. Using protein fold-
recognition (FR) methods, we identified the similarity
between THUMPa and a putative RNA-recognition
module observed in the crystal structure of another
THUMP-containing protein (Thil thiolase of Bacillus
anthracis). Acomparative model of THUMPa structure
was generated, which fulfills experimentally defined
restraints, i.e. chemical modification of surface
exposed residues assessed by mass spectrometry,
and identification of an intramolecular disulfide
bridge. A model of the whole PAB1283 enzyme
docked onto its tRNA”SP substrate suggests that
the THUMP module specifically takes support on
the co-axially stacked helices of T-arm and acceptor
stem of tRNA and, together with the catalytic

domain, screw-clamp structured tRNA. We propose
that this mode of interactions may be common to
other THUMP-containing enzymes that specifically
modify nucleotides in the 3D-core of tRNA.

INTRODUCTION

After their transcription, tRNA precursors are subjected to
numerous post-transcriptional modifications. To date, out of
102 chemically distinct modified nucleosides presently known
in all types of RNA, 87 have been identified in tRNA
[(1), see also http://medlib.med.utah.edu/RNAmods/ and
http://genesilico.pl/modomics/]. Methylation at different posi-
tions of bases and/or of the 2/-hydroxyl group of riboses are the
most frequently encountered ones. These modifications can
alter the tRNA’s codon specificity or stabilize the tRNA
tertiary structure [reviewed in (2) and several chapters in
(3)], but significance of many tRNA modifications only begins
to be understood [see several chapters in (4)]. Concerning
tRNA modification enzymes, several have been identified
over the last decade, mostly from Escherichia coli, Saccha-
romyces cerevisiae and also a few from Archaea (5-7).
Remaining uncharacterized enzymes are now systematically
studied after identification by comparative genomics and/or
structural genomics approaches [see for examples (8—12)].
Most enzymes involved in RNA metabolism are conserved
multi-domain proteins: beside a catalytic domain carrying out
the enzymatic reaction, they often require one or several other
domains to recognize and possibly help to bind the RNA
substrate. These domains also may help to bind other
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macromolecules thus forming multi-subunits ribonucleopro-
tein complexes (13). Among these maturation enzymes, RNA
methyltransferases (MTases) have been reported to comprise a
catalytic domain that belongs to a limited number of
well-studied enzyme superfamilies (10) and one or several
additional variable domains, such as domain S4, PUA,
TRAM, THUMP, NusB, OB-fold and wHTH (14), which
are supposed, but not always experimentally tested, to be
involved in binding of nucleic acids. While most studies
focused on the catalytic domains of tRNA modification
enzymes [see for examples refs (15-18)], only in rare cases
their putative RNA-binding domains have been characterized
biochemically and structurally (19,20).

Recently, we reported the characterization of PAB1283
protein from the archaeon Pyrococcus abyssi, a prototype
member of COG1041. This enzyme catalyzes the N?N*-
dimethylation of guanosine at position 10 in archaeal
tRNAs and was previously called Trm-G10 (9,21). It is
hereby designated TrMet(m2,2G10) according to a newly
developed, uniform nomenclature (7). Enzymes belonging
to COG1041 are ubiquitous in Eukaryota and Archaea
but are not present in Bacteria (9,22). In their C-terminus,
they all exhibit a characteristic Rossmann fold, S-
adenosylmethionine-dependent MTase domain (pfam01170)
and in their N-terminus, a predicted RNA-binding THUMP
domain (abbreviated after THioUridine synthases, RNA
MTases and Pseudo-uridine synthases (23); pfam02926). As
implied by its name, THUMP domain is present in many
families of enzymes that catalyze very diverse reactions on
tRNA. For example, Thil (COG0301) from E.coli is involved
in 4-thiouridine formation at position 8 of some bacterial
tRNAs (24-26) and Tanl (KOG3943, related to COG1818)
from S.cerevisiae was reported to be required for N*-
acetylcytidine formation at position 12 in tRNAs harbouring
a long extra arm (27). Other THUMP-containing proteins,
COG1258 (a tRNA pseudouridylate synthase; Martine
Roovers and Louis Droogmans, personal communication)
and COGO116 (predicted as MTase), are still uncharacterized.
Therefore, THUMP that is present in proteins of the three
domains of life, is an ancient module, which probably
has been recruited during evolution to act in different
processes related to tRNA modification.

Recently, the structures of two Thil orthologs (members
of COGO0301) have been solved: that of PH1313 from
Pyrococcus horikoshii [1vbk in the Protein Data Bank;
unpublished analysis by M. Sugahara, and N.Kunishima,
the RIKEN structural genomics initiative) and BA4899
from Bacillus anthracis strain Ames (2c¢5s, (28)]. Both struc-
tures are composed of a C-terminal PP-loop domain that con-
tains the thiolase active site (probably degenerated in PH1313)
and a N-terminal predicted RNA-binding module compris-
ing the THUMP domain [as defined in its minimal form by
Aravind and Koonin (23)], closely linked with a N-terminal
ferredoxin-like domain (NFLD) (28). Waterman et al. (28)
suggested that the NFLD domain may be specific to Thil.

Despite the widespread occurrence and presumed impor-
tance of the THUMP domain, no experimentally proven func-
tion has yet been assigned to it. Recently, we proposed that
THUMP may interact with a specific region of tRNA and
target the catalytic domains of various enzymes towards the
central 3D-core of the tRNA molecule (9). This hypothesis

was based on the fact that three well characterized THUMP-
containing proteins, Thil, Tanl and TrMet(m2,2G10), are all
involved in site-specific modification within the same region
of the L-shaped tRNA substrate: positions 8, 12 and 10,
respectively. In order to obtain better insight into the structural
and functional features of the THUMP domain and the
TrMet(m2,2G10) variant of its N-terminal extension, we
first delineated the boundaries of domains in PAB1283 and
then purified the N-terminal region as a standalone protein
[1-155 aa, including the THUMP domain (59-139 aa) as
initially defined by Aravind and Koonin (23)]. We found
that this N-terminal fragment of PAB1283 (here termed
THUMPa) is autonomously folded and exhibits only a
very low affinity for tRNA. We propose a structural model
based on protein fold-recognition analysis, which we then
validate experimentally using chemical modification of
surface-exposed residues and identification of an intramolecu-
lar disulfide bridge. Our results suggest that the THUMPa.
fragment of PAB1283 assumes a similar structure to that of
the N-terminal fragment of Thil, i.e. that it contains two inter-
linked o/B subdomains [the NFLD (sub)domain and the clas-
sical THUMP domain]. Finally, we constructed a docking
model of the whole PAB1283 enzyme onto yeast tRNAP
(a genuine substrate of PAB1283) based on experimental
restraints from our previous work on the elucidation of
the identity elements in tRNA required for dimethylation of
G10 in tRNA (21). Our model suggests a potential binding
mode for the THUMP domain, which may be common to
various RNA modification enzymes that specifically modity
nucleotides in the 3D-core of the tRNA molecule.

MATERIALS AND METHODS

Limited trypsin proteolysis of PAB1283 and
THUMPa proteins

Proteolysis reactions were carried out in 25 mM TRIS/HCI
buffer, pH 8.0, containing 200 mM NaCl and 1 mM DTT at
25°C for 60-180 min using different protease/polypeptide
ratio [1:5 and 1:2 (w/w)]. The protein concentrations were
0.54 mg/ml for PAB1283 and 1.23 mg/ml for THUMPa.
The reactions were stopped by addition of 4 mM 4-(2-
aminoethyl)-benzene-sulfofluoride (a Ser-protease inhibitor,
Pefabloc SC from Pentafarm). The reaction mixtures were
directly analyzed by Matrix Assisted Laser Desorption
Ionization-Time Of Flight (MALDI-TOF) mass spectrometry
or resolved by SDS-PAGE prior fingerprint identification
and membrane blotting for Edman sequencing.

Construction of a N-terminal 6His-tagged THUMP«
overexpressing plasmid

Two synthetic oligonucleotide primers were designed in
order to amplify a truncated version of the PABI283 gene
from P.abyssi using pSBTN-ACI18 plasmid (Armengaud
et al. (19) as template. These primers are oAJOl (5'-
caccATGTTCTACGTTGAAATCCTAGGTTTGC-3')  and
0AJ02 (5'-atcaATCGGCCTTCCTCTCGTCAAACTCC-3).
Nucleotides in lower cases were not present in the original
coding sequence. PCR performed with Pwo polymerase
(Roche Diagnostics) gave a 473 bp homogeneous product
that was resolved on a 1.5% GTG agarose gel, purified by



means of a QiaexII agarose gel extraction kit (Qiagen) and
cloned into pET200 D-TOPO (Invitrogen). The resulting
plasmid was sequenced in order to ascertain the integrity of
the nucleotide sequence and was named pSBTN-ADSS.
Thirty-six amino acid residues (MRGSHHHHHHGM-
ASMTGGQQMGRDLYDDDDKDHPFT) were introduced
with the N-terminal 6His/Xpress-tag from pET200.

Purification of recombinant THUMP«a module

Large scale liquid cultures of E.coli Rosetta(DE3)pLysS strain
(Novagen) transformed with pSBTN-ADS5 were set up at
30°C and induced with 1 mM Isopropyl-B-D-thiogalacto-
pyranoside (IPTG) as described earlier (29). Cells (63 g of
wet material) were resuspended in 315 ml of cold 50 mM
Tris/HCI buffer (pH 8.0 at 20°C) containing 500 mM KCl
and 10% (w/w) glycerol, disrupted and centrifuged. THUMPo
was purified from 80 ml of this cell extract (corresponding to
16 g of wet cells). The sample was subjected to a 20 min heat
treatment at 60°C. After centrifugation, the supernatant was
diluted with 60 ml of 50 mM Tris/HCl buffer (pH 8.0)
containing 500 mM KCI, 10% glycerol (w/w) and 50 mM
imidazole (buffer A) and applied onto a 5 ml HiTrap Chelating
HP column (Amersham Biosciences) at a flow rate of
1.5 ml/min. After wash with buffer A, the 6His-tagged
THUMPa. protein was eluted over a 45 ml linear gradient
comprising 50-300 mM imidazole. The major peak, which
eluted at about 180 mM imidazole, was desalted by gel filtra-
tion on a G25SF gel (Amersham Biosciences) previously
equilibrated with 50 mM Tris/HCI buffer (pH 8.0) containing
20 mM KCI and 10% (w/w) glycerol. Protein concentrations
were determined using the molar absorption coefficient of
17 900 M~' cm ™" at 280 nm. Determination of native mole-
cular mass and tRNA binding assay by gel filtration were done
essentially as described earlier (9).

Circular dichroism

Far- and near-ultraviolet (UV) circular dichroism spectra were
recorded at 25°C on a J-810 Jasco spectropolarimeter
equipped with a PTC-424S Jasco Peltier, using a quartz
cuvette of 1 mm path length, with a 20 nm/min scanning
speed and a band-width of 1 nm. For each sample, three
spectra were averaged and corrected from the baseline for
buffer solvent contribution. Experimental data were analyzed
using the program K2D (http://www.embl-heidelberg.de/
~andrade/k2d/).

tRNA gel retardation assay

tRNAs used for band shift assays were transcribed in vitro in
presence of [0-**P]CTP to label tRNA as described previously
(30). PAB1283 (15 nM to 4 uM) or THUMPa (98 nM to
25 uM) were incubated with **P-labeled tRNA (10 fmol) in
25 mM Tris-HCI buffer (pH 7.5) containing 50 mM NacCl,
5 mM MgCl,, 10% glycerol, 0.1 mg/ml RNase free BSA,
2 mM DTT in a final volume of 20 pl. After incubation at
25°C for 20 min, the mixture was placed on ice and bromo-
phenol blue was added to a final concentration of 0.05% before
loading on a 6% polyacrylamide gel (mono/bis, 37.5:1) con-
taining 5% glycerol and 1 mM EDTA in 45 mM Tris/Boric
acid buffer (pH 8.0) at 4°C. After electrophoresis, the gel
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was dried and analyzed by using a Storm PhosphorImager
(Molecular Dynamics) to quantify free and bound tRNA.

Lysine, tyrosine and serine labeling by three
NHS ester reagents

Sulfo-N-hydroxysuccinimide-biotin (Sulfo-NHS-Biotin), Sulfo-
N-hydroxysuccinimyl-6-(biotin-amido)-hexanoate (Sulfo-NHS-
LC-Biotin) and Sulfo-N-hydroxysuccinimyl-6-(biotin-amido)-
6-hexanamidohexanoate (Sulfo-NHS-LC-LC-Biotin) were
obtained from Pierce. Labeling of one residue by Sulfo-
NHS-Biotin, Sulfo-NHS-LC-Biotin or Sulfo-NHS-LC-LC-
Biotin, should result in a mass increase of 226.293/226.078
(C]OH]402N2S]), 339.452/339.162 (C]6H25O3N331) and
452.611/452.246  (CpoH3604N4S1)  (average/monoisotopic
masses in a.m.u.), respectively. THUMPo modification was
performed by incubating 1.66 nmol of protein in 50 mM
K,HPO4/KH,PO, buffer (pH 7.5), 50 mM NaCl, with various
amounts of freshly prepared chemical dissolved at 2 mM in
the same buffer with a constant protein concentration of
33.2 uM. After 30 min of incubation at room temperature,
samples were dialyzed against the same reaction buffer. All
samples were desalted by means of ZipTipc;g (Millipore) prior
MALDI-TOF analysis. Trypsin proteolysis was carried out
for 5 h at 37°C with a trypsin/protein ratio of 1:50 (w/w).

Mass spectrometry

Mass spectra were recorded on a MALDI-TOF Biflex IV mass
spectrometer (Bruker Daltonics) in positive ionization mode.
The matrix solutions for desalted protein or peptide samples
were sinapinic acid prepared as saturated solution in 30%
acetonitrile, 70% milli-Q water and 0.1% trifluoroacetic
acid and o-cyano-4-hydroxycinnamic acid prepared as one-
fourth diluted satured solution in 50% acetonitrile containing
0.1% trifluoroacetic acid, respectively. Spectra of proteins and
peptides were acquired in linear mode (150-250 laser shots)
and reflectron mode (90-180 laser shots), respectively. A
pepmix calibration kit (Bruker Daltonics) or internal peaks
were used for calibration. MALDI mass spectra were pro-
cessed using the Xmass 5.1.5 software from Bruker Daltonics.
Peptide assignment and identification of labeled residues
were carried out using the FindMod package from ExPaSy
(http://www.expasy.org/tools/findmod/).

Bioinformatic methods

The multiple sequence alignment was carried out using
MUSCLE (31) and refined based on the results of structure
predictions, to place insertions and deletions in the regions of
solvent-exposed loops. Structure prediction was carried out
via the GeneSilico metaserver gateway [(32), and references
therein]. Access to PONDR was kindly provided by Molecular
Kinetics (Indianapolis, IN). A combination of various methods
for prediction of secondary structure, protein disorder and
residue accessibility was used to predict the local structure,
along with a number of protein FR servers to detect the best
structural templates in the Protein Data Bank and to align
them to the target sequence (i.e. the sequence of the protein
to be modeled). The modeling of the 3D structure was done
independently for each domain, using the ‘FRankenstein’s
monster’ approach (33,34). It consists of iterative cycles com-
prising the following steps: automatic model-building using
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MODELLER (35), assessment of the local model quality using
the VERIFY3D scoring system (36) via the COLORADO3D
engine (37), creation of hybrid models by recombination of
consensus fragments with best-scoring non-consensus frag-
ments, inference of a new alignment by superposition
of the hybrid model with the template structure, and local
modification of the alignment for regions with poor score.
The initial pool of models was generated based on raw FR
alignments and the cycles of realignment and remodeling were
continued until the VERIFY3D score of resulting models
could not be improved. 100 models with the best score
were retained for experimental validation.

Mapping of the sequence conservation onto the protein
sequence was carried out via COLORADO3D (37), using
the Rate4Site method (38), with the JTT matrix and the
Bayesian model of sequence substitution, based on the
alignment of the N-terminal regions of PAB1283 orthologs.

Protein—-RNA docking was performed using the Global
RAnge Molecular Matching (GRAMM) method (39). In the
absence of the scoring function specific for protein—RNA
interactions we resorted to the low-resolution docking option
of GRAMM that optimizes only the geometric fit of molecular
surfaces between the two molecules, without taking into
account the energy of interactions, e.g. from electrostatics.
Thousand docking solutions were retained for each domain
and tested for agreement with the experimental data using the
FILTREST3D method for discrimination of models that fulfill
distance restraints (J. M. Bujnicki, M. J. Gajda, M. Kaczor and
A. Bakulina, manuscript in preparation).

To facilitate reading and future discussions about amino
acids of TrMet(m2,2G10) from P.abyssi, position of residues
in purified proteins (6HIS-tagged PABI1283 and 6HIS-
Xpress-tagged THUMPa proteins) and models refers to the
native PAB1283 sequence as defined in (9).

RESULTS
FR analyses for THUMP modeling

COG1041 proteins are predicted to be organized in at least
two structural domains. Figure 1 shows a sequence alignment
of the N-terminal half of some archaecal COG1041 members.
As the 60 N-terminal amino acids are notably less conserved
(7 identical residues in at least 2/3 of the sequences shown in
Figure 1 over 60) than the next 90 aa (14 identical residues
over 90), it is difficult to assess if they really belong to the
THUMP domain or if they should be considered as a distinct
structural domain. Protein FR methods reported with high
confidence that the best template for modeling the 155
N-terminal amino acid of PAB1283 is the N-terminal region
of PHI1313 (lvbk). The recently solved structure of
B.anthracis Thil ortholog (2¢5s) has not yet been included
in the template libraries of most FR servers and, when
reported, gave similar scores compared to 1vbk. The aligned
region spanned both subdomains of Thil orthologs: 1-76 aa
matched the NFLD domain, while 77-165 aa matched the
‘minimal”’ THUMP domain. The B—o—B—p—o—B*—o—
B—a—B—B—B pattern predicted for the N-terminus of
PAB1283 was perfectly aligned with the pattern observed
in the crystal structure of PH1313 (“*’ indicates the B-strand
shared by both subdomains). In the sequence alignments

between PAB1283 and PH1313 reported by FR servers
(compare first and last sequences in Figure 1B), the only
regions that were not always similarly aligned are 25-65 aa
of PAB1283 (the predicted junction between the NFLD
and THUMP domains) and 135-155 aa (the predicted
C-terminus of the THUMP domain, which in PH1313 folds
back onto the NFLD). As expected, no similarity was detected
between the catalytic domain of PAB1283 and the PP-loop
pyrophosphatase domain of Thil orthologs. We have also inde-
pendently submitted 1-58 aa and 59—139 of PAB1283 to FR
analysis to confirm the presence of two domains in the
N-terminal region of PAB1283. While region 77-165 was
unambiguously aligned to the THUMP domain of PH1313,
region 1-58 could not be confidently aligned to any particular
fold, although nearly all templates proposed by FR servers
displayed the two-layer o/ structure, with the ferredoxin-like
or a similar fold with the same pattern of secondary structures
B—o—B—P—o—P. This result suggests that, despite the
absence of significant sequence similarity (28), 1-58 aa of
PAB1283 are most likely a considerably diverged version
of the N-terminal ferredoxin-like fold present in PH1313
and also that this (sub)domain could require the presence
of the THUMP core domain for correct folding.

Experimental delineation of domain boundaries of
PAB1283

In order to discriminate the function of the THUMP
domain within the whole PAB1283 methyltransferase, we
intended to purify it as a structurally stable standalone poly-
peptide. We first attempted to identify the precise domain
boundaries in PAB1283, using bioinformatic methods avail-
able via the GeneSilico metaserver (32). All methods confi-
dently identified 145—165 aa as the inter-domain linker region.
In particular, this region was predicted to be disordered by
PONDR (40) as indicated in Figure 1. Besides, FR methods
found residues 150-160 to be at the N-terminus of the
conserved core of the MTase domain, in agreement with
our previously published model (9), while residues 140-150
were found to mark the C-terminus of the THUMP domain
(see below).

The domain boundaries were then delineated experiment-
ally by subjecting PAB1283 to limited proteolysis. Trypsin
was found eminently suitable for pinpointing sites of chain
flexibility or local unfolding in between the two domains
because 12 arginines and 4 lysines are scattered along the
region (128 to 180 aa) encompassing the predicted linker.
Figure 2 (left part) shows the fragmentation pattern generated
by limited trypsin proteolysis as revealed by SDS-PAGE.
PAB1283 appears quite refractory to proteolysis as one-third
of the sample was still not digested after 180 min incubation,
even with 50% (w/w) trypsin, a unusually high ratio (Figure 2,
lane 5). Two protein fragments of ~20 and 19 kDa (polypep-
tides C and D in Figure 2, lane 3) were generated after 60 min
incubation with 20% (w/w) trypsin. Edman sequencing
and MALDI-TOF mass spectrometry showed that PAB1283
is divided into two polypeptides: the almost full-length
tagged N-terminus domain (Tag+[1-152], 19 kDa) and the
full-length C-terminal domain ([157-329], 20 kDa) [see
Figure 2 (right part) and Supplementary Data]. The trypsin
cleavage sites delineate a short interdomain tetrapeptide
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Figure 1. Domain organization of COG1041 sequences and archaeal THUMP sequences alignement. Domains of COG1041 orthologs identified by the NCBI
Conserved Domain search tool (http://www.ncbi.nlm.nih.gov) are indicated in (A). Residue-by-residue PONDR score for VLXT, VL3 and VL3E algorithms are
shown in blue, orange and red, respectively. Predicted disorder regions (score >0.5) are indicated with blue and yellow areas (40). A multiple alignments of 17
archaeal COG1041 sequences with the PH1313 sequence (PDB accession number: 1vbk) is presented in (B). Accession numbers (gi) are indicated beside each
organism name: P.abyssi (Pyraby), P.horikoshii (Pyrhor), Pyrococcus furiosus (Pyrfur), Thermococcus kodarensis (Thekod), Thermoplasma volcanium (Thevol),
Thermoplasma acidophilum (Theaci), Ferroplasma acidarmanus (Feraci), Picrophilus torridus (Pictor), Methanococcus maripaludis (Metmar), Methanocaldo-
coccus jannaschii (Metjan), Methanosarcina acetivorans (Metace), Methanosarcina mazei (Metmaz), Methanosarcina barkeri (Metbar), Methanococcoides
burtonii (Metbur), Methanothermobacter thermautotrophicus (Metthe), Methanospirillum hungatei (Methun), Archaeoglobus fulgidus (Arctul). Residues are
colored according to the conservation groups: positively charged (blue), negatively charged (red), hydrophilic (magenta), hydrophobic and aromatic (green),

Gly and Pro (yellow), Cys (brown).

linker region: [153—156]. Under harsh proteolysis conditions,
no other stable intermediate could be detected (Figure 2, lane
5). The experimentally determined domain boundaries fit with
those predicted from sequence comparisons and disorder pre-
dictions. These results confirm the existence of at least two
well-defined structural domains in PAB1283 connected by a
short solvent-exposed linker. This linker is flexible as it is
sensitive to trypsin proteolytic cleavage.

Purification of a standalone THUMPa protein

To confirm that THUMPa is a structurally independent
unit, an expression plasmid (pSBTN-ADSS) encoding
a O6HIS/Xpress-tagged version of the N-terminal module

(NFLD+THUMP, residues [1-155]) was constructed. The
22 kDa soluble protein, hereby designated THUMPo, was
obtained with a high degree of purity (Figure 2, lane 6).
THUMPa. behaves as a monomeric protein on a Superdex75
column (data not shown), like the native PAB1283 protein (9).
The near UV-CD spectrum of this protein (Figure 3)
shows typical negative ellipticity signals with minima at
208-218 nm. Deconvolution of the CD signal leads to an
estimation of the content of secondary structure elements of
about 30% of o-helices and 20% of B-sheets. To further con-
firm that the protein was not unfolded, it was subjected to
limited trypsin proteolysis. As shown in Figure 2 (lanes 6
and 7), a truncated polypeptide of ~19 kDa (band F) was
identified on SDS-PAGE. Edman sequencing and mass
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Figure 2. 7SDS-PAGE analysis of limited proteolysis products. SDS-PAGE was performed on a 15% polyacrylamide gel and stained with Coomassie blue. Lane M,
molecular weight markers; Lane 1, trypsin; Lane 2, purified PAB1283; Lanes 3-5, proteolyzed PAB1283, Lane 6, purified THUMPa; Lane 7, proteolyzed
THUMPa. Samples consisted of 5 Lg of proteins. Incubation time is 60 min for all samples except Lane 5 where it was extended to 180 min. Ratios trypsin/protein are:

1:5 (Lanes 3 and 7) or 1:2 (Lanes 4-5). Bands corresponding to trypsin (T)
delineation of each products by mass spectrometry.
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Figure 3. Evaluation of THUMPa secondary structure elements by circular
dichroism. The molar ellipticity was calculated on the basis of exact amino acid
composition of recombinant THUMPa. product. Signal of 8.48 uM purified
protein in 10 mM Tris/HCI buffer (pH 8.0) is shown in red while k2D estimation
is shown in blue. Secondary structures predictions by different methods avail-
able via the GeneSilico metaserver (32) gave on the average 44% of a-helices
and 21% of B-sheets. The content of o-helices is overestimated by the predic-
tions (or alternatively, the CD measurements may underestimate it).

measurement of this entity confirmed that only the N-terminal
tag is proteolyzed (Supplementary Data). The THUMPo. core
as defined above, remains quite resistant to further proteolysis,
even under the harshest conditions used, as shown in Figure 2
(see lanes 5 and 7). Such proteolysis results are clearly in favor
of a well structured and folded THUMPo domain. Thus, we
conclude that the N-terminal domain of TrMet(m2,2G10) can
fold autonomously.

The affinity of THUMPa for tRNA is very low

Since THUMP has been predicted to be a RNA-binding
domain (23), we analyzed whether purified recombinant
THUMPa could interact with tRNAs. THUMPo was incu-
bated with E.coli bulk tRNAs (or yeast bulk tRNAs) in the

and polypeptides of interest (A—F) are indicated. See Supplementary Data for the

same experimental conditions where a 1/1 complex with the
full-length recombinant PAB1283 (9) was previously identi-
fied. The mixture was subjected to gel filtration on Superdex75
and the elution profile compared to those obtained under ident-
ical conditions with the protein or bulk tRNAs alone (data not
shown). A new peak of compound eluting faster than that of
either THUMPo or tRNAs alone was not observed, indicating
no formation of a complex between THUMPo and tRNAs.
In order to estimate the affinity of THUMPa for tRNA, we
performed tRNA gel retardation assays. Radiolabeled in vitro
transcribed tRNA was incubated with increasing amounts of
PAB1283 or THUMPa. Similar results were obtained with
the two tRNA substrates that were tested: P.abyssi tRNAP
(data not shown) and yeast tRNA® (Figure 4). As shown
in Figure 4, one band shift was observed with PAB1283
protein, a result consistent with the formation of a 1/1 complex
as indicated by gel filtration assays (9). The dissociation con-
stant (Ky) was estimated at about 1 uM. With THUMPq,
the complex is barely detectable even at 25 uM of protein
(Figure 4) and this weak interaction can be considered as
unspecific. Therefore, THUMPo is not responsible per se
for the affinity of TrMet(m2,2G10) for tRNA, although its
contribution in the interaction with tRNA in the context of
the whole protein can be anticipated.

Modeling the 3D-structure of THUMPa

We modeled the structure of THUMPo using the
‘FRankenstein’s Monster’ approach. Briefly, we generated
alternative models based on different alignments between
the region 1-155 of PAB1283 and the region 1-175 of
PHI1313 from P.horikoshii and BA4899 from B.anthracis
strain Ames. Then, we assessed the local sequence-structure
fit in the models using VERIFY3D (41), and iteratively
recombined the models and locally shifted the alignments
to generate new models with improved VERIFY3D score.
The shifts in the alignments were constrained to maintain



PAB1283

Figure 4. Gel retardation assay of PAB1283 and THUMPa with
tRNA substrate. Radiolabeled in virro transcribed yeast tRNA™P was incubated
with PAB1283 protein (upper panel) or THUMPo. protein (lower panel).

the overlap of identical secondary structure patterns in
PAB1283 and PHI313/BA4899 (Thil). As a result, we
obtained a number of relatively similar models of THUMPq,
which differed mainly in the conformation of the variable
loops (e.g. residues 7-11, 80-84, 92-97 and 113-117) and
orientation of the side-chains (see below). The root mean
square deviation (RMSD) between the models ranged from
<1 A (models based on very similar alignments, with differ-
ences limited to loops) to 4.5 A (models based on significantly
different alignments).

Validation of the THUMPa 3D-structural model by
chemical modification and mass spectrometry

To validate the models and identify the variant with the best
conformation, we attempted to determine, which residues
are accessible to labeling reagents using mass spectrometry
measurements. The amino groups of Lys and the N-terminal
Met, as well as Ser and Tyr hydroxyl groups, were specifically
labeled with Sulfo-NHS-biotin. After reaction with the chemi-
cal reagent, samples were subjected to trypsin proteolysis
and compared to untreated samples by MALDI-TOF mass
spectrometry. The coverage of the THUMPa. sequence was
estimated to be 80% with two lysine residues (Lys19 and one
amino acid from the tag) not included in this coverage.
To unequivocally confirm the assignment of modified
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peptides, we labeled in separate assays THUMPo, with two
other reagents (Sulfo-NHS-LC-biotin and Sulfo-NHS-
LC-LC-biotin), exhibiting the same overall reactivity but
introducing mass differences (+113.084 a.m.u.) due to their
spacer arm lengths. As shown in Table 1, peptide assignment
of a majority of ions is clearly redundant and confirmed by the
theoretical mass increment observed for each modified pep-
tides. Besides three residues from the tag, nine reactive resi-
dues were unambiguously labeled and are therefore solvent
accessible: Lys30, Lys79, Lys83, Lys90, Lys105, Lys122,
Tyr130, Lys134, Lys147 and Lys153 (Table 1). The labeling
of Tyr34, Tyr56, Lys101 and Lys128 was not observed under
these experimental conditions, although the native peptides
encompassing these residues were clearly detected.

During the biochemical study of THUMPa, we observed
the presence of an additional discrete band on SDS-PAGE at
22 kDa under non-reducing conditions, migrating slightly fas-
ter than the main protein band (See Supplementary Data). This
additional band was not detected when the sample was treated
with DTT prior to electrophoresis. This indicates that an intra-
polypeptide disulfide bridge can be formed in THUMPa.
Hence, the two cysteines (Cys96 and Cysl131) present in
THUMPa are likely to be close in the 3D structure. These
two cysteines are conserved among the four TrMet(m2,2G10)
sequences from Thermococcales (See Figure 1). As disulfide
bridges are often present in hyperthermophilic proteins
because of their stabilizing effects (42,43), the disulfide bridge
is probably formed in PAB1283.

Identification of the THUMPa model that minimizes the
violation of experimental constraints

The accessibility characteristics of several amino acids deter-
mined by NHS-biotin labeling as well as the predicted close
distance of Cys96 and Cys131 (CP atoms <7 A) were used as
constraints to select between 100 alternative models. How-
ever, no model was found to fully agree with all data. Only one
constraint was violated in all models: the €-amino group of
Lys101 was always exposed to the solvent, despite it was
never found to be labeled. Besides, in all but two models
(very similar to each other, RMSD only 1 A), the e-amino
group of Lys90 was buried in the protein core, despite we
found that it can be labeled. Figure 5 shows one of the two
best models. Its RMSD to the template structures 1vbk and
2¢5s is 1.8 and 3.9 A over all alignable pairs or residues. The
larger value of RMSD to 2c5s results from a slightly different
angle between the NFLD and THUMP domains in 1vbk and
2c¢5s. Inspection of these two models reveals that the side-
chain of Lys101 is close to the side-chain of Glul04 (and in
fact, the orientation of these residues is very similar in all
models). Perhaps the formation of a salt bridge between
these residues prevents the labeling of Lys101 (44,45). In
the immediate neighborhood of these residues, the side-
chains of Lys90 and Lys105 are partially solvent-exposed,
and do not form any salt bridges, in agreement with
their labeling. In the rejected models, Lys90 was found at
the same position, but with the side-chain inserted into the
hydrophobic core. Finally, it is satisfying to find that the
distance constraint is respected as the side-chains of Cys96
and Cysl31 are close to each other (CP atoms at 4.9 A)
allowing them to form an intramolecular disulfide bridge.
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Table 1. Monoisotopic [M+H]" labeled THUMPo, peptides generated by trypsin®

NHS-Biotin NHS-LC-Biotin NHS-LC-LC-Biotin Theoretical peptides and labeling assignment
m/z AMass mlz AMass m/z AMass mlz Sequence Position Number of Modified
observed observed observed expected start-end labels residues
532255  —34 645312 14 758.446  —55 306.159 MR =2 1 M
548.226 11 661.257 89 774.401 —1 322.154 1-2% 1 M'
2504.071  —10 2617.219  —34 2730249  —13 2277.967  GSHHHHHHGMASM 3-23 1 S* or S
TGGQQMGR
2520.045 -2 2633.081 16 2746.209 0 2293.962 3-23*% 1 S* or S
2730.079 16 2956.306 -5 3182497 12 2277.967 3-23 2 S* and S™
2746.050 24 2972.168 39 3198.465 —4 2293.962 3-23% 2 S* and S'
2260.004 21 2259.950 3 2259.939 8 2277.967 3-23 oP s* or S
2486.037 —1 2599.077 16 2712.221 -7 2277.967 3-23 i S* and S™
1043.523 7 1156.590 21 1269.630 54 817.453  NGTIKER 26-32 1 K
1341737  —10 1454.720 60 1567.765 80 1115.646  GLEWKEIIK 75-83 1 K”
1359773  —21 1472.800 20 1585.807 67 1133.668  EIIKGTFAVR 80-89 1 K%
1487.839 1 1600.878 29 1713.901 62 1261.763  EIIKGTFAVRK 80-90 1 K33
1612781  —11 1725.792 32 1838.844 48 1386.687  KEVMVNCAHEVK 90-101 1 K
1974.137  —21 2087.169 5 2200.258 2 1748.018  NLEKIIGGIIHSQGLR  102-117 1 K!%
1453.784 17 1566.795 62 1679.840 81 1227731  VNLSKPDTIIK 118-128 1 K'??
823.291 83 936.386 61 1049.486 39 597281  VYCGR 129-133 1 30
nd® — 1224.705 19 1337.740 54 885567  KLWIGIR 134-140 1 K'3
1106.504  —10 1219.560 14 1332.590 53 880416  GKEFDER 146-152 1 K7
nd® — nd® — 785.431 —11 333.177 KAD 153-155 1 K!'3

“Reagent/polypeptide molar ratio: 26:1; NHS-biotin label (+226.078 a.m.u.); NHS-LC-biotin label (+339.162 a.m.u.); NHS-LC-LC-biotin label (+452.246 a.m.u.);
m/z and mass tolerance are expressed in a.m.u. and p.p.m., respectively. Only assignments with Amass tolerance below 100 p.p.m. are shown; peptide positions refer
to PAB1283 sequence except for the 6HIS-Xpress-tag shown in grey shading.

bLabeling on serine removed (—18 a.m.u.).
“nd’” denotes peptides not detected in one of the samples.
*0Oxydized methionine.

Summarizing, the overall structure of THUMPaq in solution
is predicted to resemble the N-terminal region of PH1313 in
the crystal, i.e. to contain two closely interlinked o/ domains
with the ferredoxin-like and THUMP fold, respectively. The
interface of both subdomains includes a common hydrophobic
B-strand that spans both domains (Figure 5A). Thus, in agree-
ment with the data from the limited proteolysis experiments,
both subdomains of THUMPa. are predicted to be linked very
rigidly and to form a single independently folded unit.
Mapping of the sequence conservation onto the surface of
the THUMPa model reveals specific clustering of conserved
residues from both subdomains (e.g. GluS, Leu7 (conserved as
Ser in most members of COG1041), His54, Arg89, Lys128,
Argl52) on one side of the molecule, which we predict to be
involved in tRNA binding (Figure 5B). On the other hand,
mapping of the electrostatic potential reveals no particular
concentration of positive charge (data not shown).

Prediction of the PAB1283:tRNA complex structure

The availability of experimentally validated models of the
C-terminal catalytic domain (9) and the N-terminal domain
(this work) of PAB1283, as well as data concerning the regions
of tRNA that are involved in the enzyme recognition (21),
allows us to speculate about a reasonable model of interactions
between PAB1283 and tRNA, using as substrate the bona fide
yeast tRNA™P. This tRNA was shown to form a 1:1 complex
with the archaeal enzyme and is efficiently methylated in the
presence of S-adenosylmethionne (9). The field of computa-
tional protein—-RNA docking is in its infancy and there are no
established algorithms to carry out this type of modeling. In

particular, there are no confident methods to account for the
flexibility of the RNA molecule, as well as to precisely cal-
culate the energy of RNA-protein interactions, which are
often dominated by electrostatics. Thus, we decided to use
the GRAMM software for low-resolution docking (39) to cal-
culate independently for each domain 1000 alternative docked
models to the yeast tRNA™P structure [PDB entry 2tra, (46)]
that simply exhibit surface complementarities but no
requirement for electrostatic compatibility was imposed.
We assumed that no major conformational rearrangements
occur in the RNA or the protein, except for possible base-
flipping of G10/m>G10 or conformational changes of the
flexible linker between THUMPo. and the catalytic domain
of PAB1283. Subsequently, we screened all the models for
the following constraints, based on experimental data. (i) The
C-terminal MTase domain must be positioned in such a
way that the methylated nucleoside G10 can be accommodated
in the catalytic pocket. Thus, we screened for docking solu-
tions in which the N2 group of G10 in tRNA was within 15 A
from the C-B atom of the catalytic side-chain D254 (9),
the distance threshold being deliberately large to account
for possible base-flipping of G10). (ii) The T-arm is the key
determinant of specificity of interactions between PAB1283
and tRNA, and the amino acid acceptor stem is required for
the second round of methylation (to m?,G10) to occur (21).
Thus, we looked for such docking solutions, in which an

of the atoms from either domain of PAB1283 is within 5 A
from both any atoms of nucleosides 49—-65 (T-arm) and 1-7 or
66-72 (acceptor arm) in the tRNA™P. (iii) The C-terminus
of THUMPa is covalently joined to the N-terminus of the
catalytic domain. Thus, we looked for such combinations of
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Figure 5. THUMPao 3D-structural model. Four panels showing the THUMPa structure in different orientations (1 and 2), either (A) with the backbone shown as a
cartoon and colored by progression of sequence (from blue N-terminus, to red C-terminus), or (B) with all atoms in the space-filled representation and colored
according to the sequence conservation (from dark blue highly conserved, to red highly variable).

docking solutions that passed conditions 1 and 2, in which
aa 153 in the N-terminal domain was within 50 A from aa 167
in the C-terminal domain (the distance threshold was
deliberately large to account for the flexibility of the linker).
(iv) Last, but not least, THUMPa and the catalytic domain
must not overlap spatially.

Among the 1000 docking models obtained for each domain
(1000000 possible combinations), only five models of the
N-terminal domain and two models of the C-terminal domain
passed all criteria. Interestingly, in the case of the C-terminal
domain, conditions 1 and 2 turned out to be mutually exclu-
sive, i.e. we found no models, which would simultaneously
bind to the T-arm and position the catalytic pocket in the
vicinity of the nucleoside to be methylated. Hence, we predict
that binding of the T-arm occurs through the N-terminal
THUMPa domain. Among the five docking solutions for
the N-terminal region, only two similar models (RMSD
5.7 A) interact with the T-arm using the conserved side of
the molecule, while the three others (dissimilar to each other)
do not make any contacts with the conserved protein residues.
Thus, we introduced a 5th, ad hoc criterion to retain only
the models that interact with the tRNA using the conserved
residues. The two selected models of the C-terminal domain
approach tRNA from the same side, albeit they are rotated
with respect to each other by nearly 180°.

We analyzed the conservation of nucleotides in Archaeal
tRNAs with the m?G10 modification in close contact with
THUMPa and found no common features except the G53—-C61
pair (which is important for the tRNA folding) and the CCA
extension. Analysis of the docking model reveals that the
THUMPo module of TrMet(m2,2G10) makes contacts with
C61 through residues from the region 145-148 (Argl45 and
Lys147 in PAB1283, see Supplementary Data). This region
is not strongly conserved on the level of the amino acid
sequence in TrMet(m2,2G10) orthologs, but always contains
at least one positively and one negatively charged residue that
may be important for binding either to the base or to the
backbone (the phosphate is exposed). The stacking of the
G53-C61 base pair over the U/T54-A58 reverse-Hoogsteen
base pair in trans induces a characteristic bulged-out con-
formation of the 59 and 60 nt (47-49) that are not found
here in contacts with the THUMPo module. As no other
conserved nucleotides belong to the tRNA region predicted
to be in contact with the THUMPo module, the conserved
geometry of the T-loop and acceptor stem may be the most
important element for recognition by the enzyme.

Figure 6 shows the superposition of tRNA”*P and the dock-
ing solutions that fulfill the imposed constraints. Together,
they form a ‘fuzzy’ model of PAB1283-tRNA interactions,
which should not be interpreted at the atomic level, but
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Figure 6. A docking model of the two domains from PAB1283 onto tRNAP,
The tRNA backbone is shown as a white tube, while the functionally important
nucleosides are shown in the wireframe representation and colored: the methy-
lation target G10 in cyan, the T-arm in yellow and the acceptor stem in violet.
The conserved G53—C61 pair is in magenta. The AdoMet molecule is shown in
white. The models of PAB1283 domains are shown in the cartoon representa-
tion, colored by the progression of sequence—from blue (N-terminus of the
N-terminal domain) to red (C-terminus of the C-terminal domain). In the
current model the C-terminus of the N-terminal domain and the N-terminus
of the C-terminal domain (in green) are not connected—this region is predicted
to be flexible and its conformation should be regarded as undefined. Only one
variant of each domain is shown for the clarity of presentation, the superposition
of all selected solutions is available as a Supplementary Data. The alternative
orientation of the THUMPo. module corresponds to a very minor rotation,
while the alternative orientation of the MTase domain corresponds to
~180° rotation around the axis defined by the methylated base and the methyl
group donor.

provides the first educated guess of the mutual localizations of
domains from the enzyme and the substrate molecule. This
docking model is compatible with the scheme that the two
structural domains of TrMet(m2,2G10) are sideways the
central 3D-core of tRNA.

DISCUSSION

The existence of a new putative RNA-binding domain, abbre-
viated THUMP, was deduced from sequence comparison
of various proteins known or predicted to be involved

in RNA metabolism (23). For a long time, the THUMP
domain remained essentially uncharacterized. Recently, new
experimental data have been collected on three different
THUMP-containing enzymes: Thil from E.coli, Tanl from
S.cerevisiae and TrMet(m2,2G10) from P.abyssi. All three
proteins are involved in tRNA modification and target
nucleosides in the central 3D-core of the tRNA molecule.
Thus, we proposed that THUMP may interact with a specific
region of tRNA and target the catalytic domains of these
various enzymes towards the common region of the substrate
(9). Recently, two structures of Thil family members have
been solved: PH1313 from P.horikoshii (without any pub-
lished analysis) and BA4899 from B.anthracis strain Ames
(28). However, none of these proteins have been bio-
chemically characterized and actually their activity remains
putative [PH1313 is even predicted to be -catalytically
inactive, (28)]. Thus, the experimental validation that
THUMP interacts with tRNA and can be called a RNA-
binding domain was needed.

In this paper, we first defined by limited proteolysis and
mass spectrometry the boundaries of domains in PAB1283, a
prototype member of the TrMet(m2,2G10) family. We then
purified the N-terminal region [1-155] of PAB1283, which
contains the THUMP domain, as a standalone protein. This
autonomously folding unit was characterized as a soluble
monomeric protein showing only a very weak affinity for
tRNA in contrast to the entire PAB1283 protein.

In order to gain insight into the structure of this domain and
understand how it functions concomitantly with the C-terminal
catalytic domain, we proposed an original modeling
approach. It is now well established that in silico modeling
can be a fast approach to predict the structure of a protein
or a macromolecular complex. However, theoretical
methods generate models that need experimental validation,
and also the number and diversity of the proposed solutions is
often considerable. A promising strategy is the use of experi-
mental data for model discrimination or refinement (50,51).
Thus, we combined the experimental and theoretical analyses
at three stages, corresponding to characterization of the prim-
ary structure (domain boundaries in the PAB1283 sequence),
tertiary structure (3D fold of the THUMPo module), and
quaternary structure (interactions between the two protein
domains and the tRNA). First, it is satisfying to find that
the experimentally determined boundaries of both domains
from PAB1283 parallel those predicted by our FR analysis.
Second, to distinguish among various threading models of
THUMPao, we determined which residues are solvent acces-
sible with a set of three labeling reagents and identified a
disulfide bridge between the two cysteines found in the
THUMPa sequence. These constraints allowed us to validate
the hypothesis that the N-terminal structural module of
PAB1283 is related to the equivalent module observed in
the structure of Thil (28), and that both proteins share not
only the easily detectable THUMP domain, but also the
strongly diverged NFLD domain (Figure 5). Therefore the
role of the NFLD domain may not be specific to Thil, as
previously suggested (28). Our model shows that THUMPa.
by itself does not present any particular concentration of
positively charged residues, although its conserved residues
map on the surface corresponding to the Thil homolog (28).
These results suggest that the THUMP domain is not



necessarily responsible per se for the affinity of
TrMet(m2,2G10) for tRNA but rather may be used to target
the catalytic domain to a particular region of the tRNA struc-
ture. The results of our experiments show that the linker
between THUMPa and the catalytic domain of PAB1283 is
flexible. As it is highly basic, it may participate in nucleic acid
binding.

Finally, we constructed a docking model of the two domains
of PAB1283 onto the tRNA substrate (Figure 6 and Supple-
mentary Data), based on experimental restraints from interac-
tions between different elements of both molecules. This
docking model confidently places the catalytic MTase domain
of PAB1283 near the G10 nucleoside, at the junction between
the anticodon stem and the D-stem, and the THUMPo domain
at the co-axially stacked helices of the T-arm and the acceptor
stem. Most of the interactions between the THUMPa domain
and the tRNA occur through the phosphate backbone, suggest-
ing that it is the RNA structure rather than the sequence that is
recognized by THUMPo. Recently, it was found that the
T-arm is an essential specificity determinant for PAB1283
(21). Likewise, the minimal substrate for the tRNA:s*U8 syn-
thase Thil from E.coli is an RNA mini-helix comprising the
acceptor and T-stems (26). Thus, the specificity determinants
of E.coli Thil and TrMet(m2,2G10) appear to be strikingly
similar, despite the fact that these enzymes use unrelated
catalytic domains to carry out completely different reactions.
If the C-terminal domain is removed from our docking
model of PAB1283, the site of U8 is relatively exposed, so
that the catalytic domain of the thiouridine synthase could
be modeled to bind tRNA in a similar manner to that predicted
for the MTase domain of PAB1283. In order that both
enzymes carry out their respective reactions, some conform-
ational rearrangement, such as base flipping (52) in the
substrate tRNA must occur, to expose the target nucleoside
and place it in the active site. Likewise, the Tanl protein
required for N*-acetylcytidine formation at position 12 appears
to contain not only the THUMP domain, but also the
N-terminal extension that exhibits a similar structure to the
NFLD domain (J. M. Bujnicki, unpublished data). Thus, we
postulate that Thil thiolase, TrMet(m2,2G10) and the enzymes
responsible for N*-acetylcytidine formation at position 12 pos-
sess a common THUMPo module [comprising the NFLD and
THUMP (sub)domains] that should bind tRNA in a very
similar manner.

In conclusion, our docking model provides a useful platform
for future studies and can be tested experimentally. In particu-
lar, footprinting and cross-linking analyses could provide
specific restraints for inter-residue distances that could be
used to refine the current model. THUMP-domain containing
protein Tanl from S.cerevisiae is required for the formation of
N4-acetylcytidine at position 12 (27), a nucleoside, which is
located just between G10 and US. It is of interest to determine
what could be the minimal substrate for this enzyme.
Interestingly, it remains to be determined if other tRNA-
modifying enzymes that contain the THUMP domain interact
with the substrate in a similar way as TrMet(m2,2G10),
i.e. structured tRNA as target and the co-axially stacked
helices of the T-arm and the acceptor stem as unmodified
support. Such hypothesis may be the basis of original strat-
egies to search for the function of these still uncharacterized
THUMP-containing proteins.
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