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a b s t r a c t

A non-smooth SIR Filippov system is proposed to investigate the impacts of three control strategies
(media coverage, vaccination and treatment) on the spread of an infectious disease. We synthetically
consider both the number of infected population and its changing rate as the switching condition to
implement the curing measures. By using the properties of the Lambert W function, we convert the
proposed switching condition to a threshold value related to the susceptible population. The classical
epidemic model involving media coverage, linear functions describing injecting vaccine and treatment
strategies is examined when the susceptible population exceeds the threshold value. In addition, we
consider another SIR model accompanied with the vaccination and treatment strategies represented by
saturation functions when the susceptible population is smaller than the threshold value. The dynamics
of these two subsystems and the sliding domain are discussed in detail. Four types of local sliding
bifurcation are investigated, including boundary focus, boundary node, boundary saddle and boundary
saddle-node bifurcations. In the meantime, the global bifurcation involving the appearance of limit cycles
is examined, including touching bifurcation, homoclinic bifurcation to the pseudo-saddle and crossing
bifurcation. Furthermore, the influence of some key parameters related to the three treatment strategies
is explored. We also validate our model by the epidemic data sets of A/H1N1 and COVID-19, which can be
employed to reveal the effects of media report and existing strategy related to the control of emerging
infectious diseases on the variations of confirmed cases.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The infectious diseases have been a worldwide threat to public
health for many years. The emerging disease outbreaks such as
sever acute respiratory syndrome (SARS) in 2003 (Seto et al.,
2003; He and Peng, 2004), the A/H1N1 influenza epidemic in
2009 (Khan and Arino, 2009; Jones and Salathe, 2009; Tang et al.,
2010), the Ebola virus disease in 2014 (Aylward and Barboza,
2014; Baize and Pannetier, 2014) and the COVID-19 in 2019
(Huang and Wang, 2020; Tang et al., 2020; Chintalapudi et al.,
2020) have made strong impacts on human health, global econ-
omy, and social behaviors. It is thus extremely important to take
timely actions and implement the treatment strategies to relieve
and eliminate the risk of these diseases. During the spread of an
infectious disease, there are three main therapeutic schedules:
reducing the contact rate of the susceptible population with the
infected population; injecting vaccine for the susceptible popula-
tion; and implementing the recovery treatment for the infected
population as early as possible (Cui et al., 2008; Tchuenche et al.,
2011; Wang and Xiao, 2013; Zhou and Fan, 2012; Huang and Li,
2019).

Most infectious diseases can spread through human contact.
Hence, reducing contact rate with the infected individuals will help
to prevent the people from getting infected and reduce the risk of
epidemic outbreaks. If the disease can spread via air droplets,
implementing stay-at-home policy and enforcing the public to
wear facial masks in the crowd could be very effective to reduce
the rate of infection. In general, if one obtains the latest disease
information from the media such as TV or internet, and learns that
the outbreak is very serious, she/he may strengthen the self-
protection awareness and take actions to reduce the risk of infec-
tion. Thus, media coverage plays a significant role in containing
the spread of infectious diseases. This motivates us to investigate
the impact of the media coverage on the disease transmission. In
recent years, many researchers have studied the media coverage
impact by establishing and analyzing the corresponding mathe-
matical models (Cui et al., 2008; Cui et al., 2017; Chen et al.,
2018; Xiao et al., 2013; Wang and Xiao, 2014; Tchuenche et al.,
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2011). To describe the reduction of contact rate, the term
b1 � b2I=ðmI þ IÞ in Tchuenche et al. (2011) or the saturation inci-
dence rate bSI=ð1þ aIÞ in Cui et al. (2017) are formulated to inves-
tigate the media impact on the epidemic spread, while the
exponentially decay functions le�mI (Cui et al., 2008), be�aI

(Wang and Xiao, 2014) and be�a1E�a2 I�a3H (Liu et al., 2007) (with
E; I;H denoting the exposed, infectious and hospitalized individuals
respectively) are proposed to characterize the transmission coeffi-
cient. The contact terms presented above are all related to the
number of infected population I, where the transmission intensity
will be weaken as I increases. In our model, we will adopt the novel

exponential decreasing factor be�p1 I�p2
dI
dt as the incidence rate which

depends on both I and the changing rate dI=dt. This term was first
proposed in a study of the media effect on the dynamics of a non-
smooth system (Xiao et al., 2013). Note that enhancing the media
effect will lead to a lower transmission rate during the outbreak of
an infectious disease.

In addition to the media coverage, vaccination also plays an
important role and has been an effective method to control many
infectious diseases such as smallpox, measles and parotitis. There
is a rich literature in the study of the impact of vaccine on the
spread of infectious diseases via various mathematical models
(Buonomo et al., 2008; Zhang et al., 2018; Wang and Xiao, 2013).
It has been demonstrated that sufficient vaccine doses will result
in disease elimination. However, it takes time to invent vaccine
for an emerging infectious disease, and vaccine may not be avail-
able during the beginning period of the outbreak; see for example,
SARS and A/H1N1. Therefore, it is important to seek for recovery
treatment of the infected population, which, in many cases, is the
major strategy for controlling the disease. In general, the level of
such treatment measure is constrained by the limited medical
resources, including medicines, medical workers and hospital beds.
The lack of medical resources is a critical issue in underdeveloped
regions such as remote rural areas of developing countries, where
the medical facilities are insufficient. Hence, optimal allocation of
these limited resources is a significant problem for curbing the epi-
demic spread. In the past decades, there are many studies on the
effectiveness of taking recovery treatments (Wang, 2006; Cui
et al., 2008; Huang and Li, 2019; Zhou and Fan, 2012; Li et al.,
2017; Zhang and Liu, 2008), and it has been shown that the treat-
ment rate indeed relies on the medical resources available for the
public health. To describe the limitation of medical resources,
Wang (2006) has introduced a piecewise treatment function

TðIÞ ¼ rI; if 0 6 I 6 I0
rI0; if I > I0

�

which assumes that the number of treated patients is proportional
to the number of infected population before the capacity of medical
resource is reached, and a constant thereafter. The work in Cui et al.
(2008) put forward the recovery form

hðIÞ ¼ cI
bþ I

where c P 0 denotes the maximum recovery rate, and b > 0 is a
half-saturation constant. Such function is used to detect the impact
of limited medical resources on the epidemic controlling (Zhou and
Fan, 2012). In Zhang and Liu (2008), a saturation treatment term

hðIÞ ¼ rI
1þ aI

is proposed to represent the delayed efficiency of the infected cases
for being cured. Bifurcation and stability analyses for specific epi-
demic models involving such a treatment term are explored in
Huang and Li (2019) and Li et al. (2017). In this paper, we will
2

employ the same treatment function to describe the limited
medical resources.

Hybrid dynamic systems including impulsive system, non-
smooth continuous system and Filippov system have been con-
structed to investigate the impacts of various treatment strategies
on the dynamical behaviour of the epidemic models; see Zhang
et al. (2018), Xiao et al. (2013), Chen et al. (2018), Mu et al.
(2019), Wang and Xiao (2014). In this paper, we will propose a
Filippov SIR model to incorporate the aforementioned three control
strategies, analyze the model dynamics and explore the biological
significance. Our main purpose is to maintain the infected popula-
tion at a desired level by choosing appropriate implementation
time and strength for the above three protection measures. We will
find effective switching containment strategies for the infectious
diseases.

The rest of our paper is organized as follows. In Section 2, we
propose an epidemic Filippov model with two subsystems and pre-
sent some preliminaries related to the proposed system. In Sec-
tion 3, we explore the dynamics of two subsystems in detail. In
Section 4, we examine the dynamics on the sliding domain of the
Filippov system. In Section 5, we conduct local and global sliding
bifurcation analysis, and investigate the global stability of the pro-
posed model. In Section 6, some key parameters involving the con-
trol measures are chosen to examine the effect of threshold policy
on the disease transmission. Our model is also validated by the epi-
demic data of A/HAN1 and COVID-19 outbreaks. The conclusion
and discussion on the biological significance of the proposed model
will be given in the last section.

2. A Filippov SIR model with media coverage, vaccination and
treatment

Filippov epidemic model is widely used to describe when and
how to take control measures to inhibit disease transmission. In
many cases, the prevention measures are implemented once the
size of infected population exceeds a certain critical value (Chen
et al., 2018; Mu et al., 2019; Wang and Xiao, 2014). However, dur-
ing a disease outbreak, not only does the number of infected pop-
ulation play an important role, but also the changing rate of
infected population is also a significant factor. A small size of
infected population with a rapid growth rate presents a strong
threat to public health and should trigger a serious reaction. It is
thus important to consider both factors in the switching condition
of the Filippov model (Xiao et al., 2013). We propose the threshold
value MðtÞ ¼ a1I þ a2

_IjS2 for our Filippov system; namely, the con-
trol measures for the infectious diseases involving media coverage,
the maximum vaccination rate for susceptible individuals and the
maximum recovery treatment rate for infected population are
implemented once MðtÞ > 0, otherwise, the natural state with only
vaccination and treatment presented by the saturation functions is
introduced; see more details in the following content.

First, we divide the population into three classes: susceptible
(S), infected (I) and recovered (R). To consider the joint impacts
of media coverage, vaccination and treatment, we propose the
following Filippov epidemic system

dS
dt ¼ K� e��MðtÞbSI � lS� c1S

1þð1��Þx1S

dI
dt ¼ e��MðtÞbSI � lI � dI � c2 I

1þð1��Þx2 I

dR
dt ¼ c1S

1þð1��Þx1S
þ c2 I

1þð1��Þx2I
� lR

8>>><
>>>:

ð1Þ

with

� ¼ 0; MðtÞ < 0
1; MðtÞ > 0

�
ð2Þ



J. Deng, S. Tang and H. Shu Journal of Theoretical Biology 523 (2021) 110698
and

MðtÞ ¼ a1I þ a2 _IjS2 ð3Þ
where K represents the recruitment rate, b is the basic transmission
rate, l denotes the natural death rate, d stands for the disease-
induced death rate. The saturation function G1ðSÞ ¼ c1S=ð1þx1SÞ
represents the vaccination treatment, c1 denotes the maximal vac-
cination rate andx1 describes the effect of the delay when injecting
the vaccine. Moreover, G2ðIÞ ¼ c2I=ð1þx2IÞ represents the recovery
treatment term, c2 denotes the maximal recovery rate and x2

describes the effect of medical resource limitation on the treatment.
In addition, _IjS2 is the changing rate of infected population for

subsystem S2 (see more details about the definitions of subsystems
in later discussion). The term be�MðtÞ indicates the media coverage
may reduce the contact rate, and the non-negative constants a1

and a2 characterize the dependence of media impact on the size
of infected population and its changing rate, respectively. The
implicit equation MðtÞ ¼ 0 defines the switching manifold (de-
noted by R) for the Filippov model (1) with (2). In general, this
equation is difficult to solve. Using a similar method as in Xiao
et al. (2013), we rewrite MðtÞ as
MðtÞ ¼ Wðeða2ðmþc2Þ�a1ÞI � a2bSIÞ þ a1 � a2ðmþ c2Þð ÞI ð4Þ
in terms of Lambert W function (Corless et al., 1996), here m ¼ lþ d.
Now, the switching condition MðtÞ ¼ 0 is equivalent to the switch-
ing line

S ¼ a2ðmþ c2Þ � a1
a2b

_¼Sc ð5Þ

Moreover, it can be shown that MðtÞ > 0 (MðtÞ < 0) is equivalent to
S > Sc (S < Sc). To ensure the positivity of Sc , we assume
a2ðmþ c2Þ > a1 throughout this paper. Note that the recovered pop-
ulation does not affect the variation of susceptible and infected,
then system (1) can be transformed into the following equations

dS
dt ¼ K� e��MðtÞbSI � lS� c1S

1þð1��Þx1S

dI
dt ¼ e��MðtÞbSI � mI � c2 I

1þð1��Þx2 I

8>><
>>: ð6Þ

with

� ¼ 0; S < Sc
1; S > Sc

�
ð7Þ

where MðtÞ and Sc are defined in Eqs. (4) and (5). System (6) with
(7) describes a SIR Filippov model where the vaccination and recov-
ery treatment strategies are saturation functions when S < Sc and
linear functions when S > Sc .

For convenience, we denote Z ¼ ðS; IÞT and define

F1ðZÞ ¼ ðK� bSI � lS� c1S
1þx1S

;bSI � mI � c2I
1þx2I

ÞT

F2ðZÞ ¼ ðK� e�MðtÞbSI � lS� c1S; e�MðtÞbSI � mI � c2IÞ
T

8<
:
Hence system (6) with (7) can be rewritten as the following Filippov
system (Filippov, 1988)

_Z ¼ F1ðZÞ; Z 2 G1

F2ðZÞ; Z 2 G2

�
ð8Þ

Define HðZÞ ¼ S� Sc . Then the switching manifold becomes
R ¼ fZjHðZÞ ¼ 0; Z 2 R2

þg and it divides R2
þ into two separate regions

G1 ¼ fZjHðZÞ < 0; Z 2 R2
þg

G2 ¼ fZjHðZÞ > 0; Z 2 R2
þg

(
ð9Þ
3

For each i ¼ 1;2, we denote by Si the subsystem of (8) in region Gi. It
is easily seen that X ¼ fZjSþ I 6 K=l; Z 2 R2

þg is an attractive region
of system (8). We adopt the following definitions of three types of
equilibria and the tangent point of Filippov systems (Kuznetsov
et al., 2003; di Bernardo et al., 2008).

Definition 1. An equilibrium Z� of Filippov system (8) is called real
if it is an equilibrium of subsystem Si (i ¼ 1;2) and lies in the region
Gi; i.e., a real equilibrium of S1 (S2) satisfies F1ðZ�Þ ¼ 0;HðZ�Þ < 0
(F2ðZ�Þ ¼ 0;HðZ�Þ > 0). On the other hand, an equilibrium of
subsystem Si which belongs to another region is defined as virtual;
i.e., a virtual equilibrium of S1 (S2) satisfies F1ðZ�Þ ¼ 0;HðZ�Þ > 0
(F2ðZ�Þ ¼ 0;HðZ�Þ < 0). We use Zr

� and Zv� to denote the real
equilibrium and virtual equilibrium, respectively.
Definition 2. An equilibrium Z� of Filippov system (8) is defined as
a boundary equilibrium if it is an equilibrium of subsystem Si and
lies in the switching boundary R; i.e., it satisfies
F1ðZ�Þ ¼ 0;HðZ�Þ ¼ 0 (or F2ðZ�Þ ¼ 0;HðZ�Þ ¼ 0).

Denote

rðZÞ ¼ hF1ðZÞ;HZðZÞi � hF2ðZÞ;HZðZÞi _¼F1HðZÞ � F2HðZÞ
where h�i denotes the standard scalar product, and
FiHðZÞ ¼ hFiðZÞ;HZðZÞi (with i ¼ 1;2) is the Lie derivative of H with
respect to the vector field Fi at the point Z. Hence the sliding domain
of system (8) can be defined as Rs ¼ fZjZ 2 R;rðZÞ � 0g, while the
crossing domain is Rc ¼ fZjZ 2 R;rðZÞ > 0g. Moreover, we define
the sliding mode differential equation on Rs as

GðZÞ ¼ kF1ðZÞ þ ð1� kÞF2ðZÞ
with

k ¼ F2HðZÞ
ðF2 � F1ÞHðZÞ

Definition 3. An equilibrium Z� of Filippov system (8) is called a
pseudo-equilibrium if it is an equilibrium on the sliding domain;
i.e., it satisfies GðZ�Þ ¼ 0; Z� 2 Rs.
Definition 4. A point Z� of Filippov system (8) is called a tangent
point if the orbit initiating from this point is tangent to Rs; i.e., it
satisfies FiHðZ�Þ ¼ 0; Z� 2 Rs. Further, the tangent point is visible
if the orbit of _Z ¼ FiðZÞ (i ¼ 1;2) initiating from the tangent point
Z� belongs to region Gi for all sufficiently small neighbourhood of
Z�, otherwise it is called invisible.
3. Dynamics of two subsystems

In this section, we will examine the dynamical behaviour of two
subsystems Siði ¼ 1;2Þ, including all possible equilibria and their
stabilities. For subsystem S1, only one disease-free equilibrium
exists, denoted by E10ðS10; 0Þ, where

S10 ¼
Kx1 � l� c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKx1 � l� c1Þ2 þ 4Klx1

q
2lx1

ð10Þ

According to Definition 1, E10 is a real (virtual) equilibrium if
S10 < Sc (S10 > Sc). The basic reproduction number of S1 can be
defined as R10 ¼ bS10=ðmþ c2Þ and the Jacobian matrix of S1 lin-
earized about an equilibrium is
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J1ðS; IÞ ¼
�bI � l� c1

ð1þx1SÞ2
�bS

bI bS� m� c2
ð1þx2 IÞ2

0
@

1
A ð11Þ

Denote

/1ðS; IÞ ¼ ðtrðJ1ðS; IÞÞÞ2 � 4detðJ1ðS; IÞÞ

Theorem 1. For subsystem S1, the disease-free equilibrium E10 is a
locally asymptotically stable node for R10 < 1 and a saddle for R10 > 1.
Proof. The Jacobian matrix at E10 is

J1ðE10Þ ¼
�l� c1

ð1þx1S10Þ2
�bS10

0 bS10 � m� c2

 !

It is easy to calculate that

trðJ1ðE10ÞÞ ¼ ð�l� c1=ð1þx1S10Þ2Þ þ ðbS10 � m� c2Þ;detðJ1ðE10ÞÞ
¼ ð�l� c1=ð1þx1S10Þ2Þ � ðbS10 � m� c2Þ

. If R10 > 1, we have detðJ1ðE10ÞÞ < 0 which indicates that E10 is a
saddle. On the other hand, since trðJ1ðE10ÞÞ < 0 and
detðJ1ðE10ÞÞ > 0 for R10 < 1, and

/1ðE10Þ ¼ ðtrðJ1ðE10ÞÞÞ2 � 4detðJ1ðE10ÞÞ

¼ ð�l� c1=ð1þx1S10Þ2 � bS10 þ mþ c2Þ
2
> 0

, it follows that E10 is a stable node.

For subsystem S1, an endemic equilibrium satisfies the follow-
ing equations

b3I
3 þ b2I

2 þ b1I þ b0 ¼ 0
S ¼ mþc2þmx2 I

bð1þx2 IÞ

(
ð12Þ

where

b3¼�ðmx1þbÞmx2
2b

b2¼ðKx2�c2�2mÞx2b
2þ½x1ðKx2�2c2�2mÞ�x2ðc1þlÞ�mx2b�lm2x1x2

2

b1¼ð2Kx2�c2�mÞb2þ½ðKx1x2�c1x2�lx2�c2x1Þðc2þ2mÞ�m2x1�b�2lmx1x2ðc2þmÞ
b0¼Kb2þðKx1�c1�lÞðc2þmÞb�lx1ðc2þmÞ2

ð13Þ

Since there exist at most three positive roots for the first equation in
(12), there are at most three endemic equilibria for S1. Denote
f ðIÞ ¼ b3I

3 þ b2I
2 þ b1I þ b0, and let I11; I12; I13 be the three roots

(counting multiplicity) of f ðIÞ ¼ 0. It follows from Vieta theorem
that
Fig. 1. Eight categories illustrate the appearance of th

4

I11 þ I12 þ I13 ¼ � b2
b3

I11 � I12 � I13 ¼ � b0
b3

8<
: ð14Þ

If b2
2 � 3b3b1 > 0, then the derivative function

f 0ðIÞ ¼ 3b3I
2 þ 2b2I þ b1 has two distinct real roots

I0 ¼
�b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 � 3b1b3

q
3b3

; I00 ¼
�b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 � 3b1b3

q
3b3

ð15Þ

Denote

n1 ¼ b1

b3
� b2

2

3b2
3

; n2 ¼ b0

b3
þ 2b3

2

27b3
3

� b1b2

3b2
3

; N ¼ ðn1

3
Þ
3
þ ðn2

2
Þ
2

ð16Þ

On account of Cardano’s formula (Cardano, 1968), there are three
cases for the roots of f ðIÞ ¼ 0: (A) three distinct real roots when
N < 0; (B) three real roots and at least two of them are equal when
N ¼ 0; (C) one real root and two imaginary roots when N > 0. We
will investigate these three cases respectively.

Case (A): N < 0.
In order to investigate the sign of three distinct real roots of

f ðIÞ ¼ 0, the parameters sets b2; b0 are established to explore the
positivity of I1i (i ¼ 1;2;3), which yields four subcases: (A1) one
positive root and two negative roots or three positive roots for
b2 > 0; b0 > 0; (A2) one positive root and two negative roots for
b2 < 0; b0 > 0; (A3) two positive roots and one negative root for
b2 > 0; b0 < 0; (A4) two positive roots and one negative root or
three negative roots for b2 < 0; b0 < 0. Denote
bi _¼biðbÞ ¼ bi2b

2 þ bi1bþ bi0; ði ¼ 1;2;3Þ, then two roots b0
bi
; b00

bi
of

biðbÞ ¼ 0 may appear with

b0
bi
¼

�bi1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
i1 � 4bi2bi0

q
2bi2

; b00
bi
¼

�bi1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
i1 � 4bi2bi0

q
2bi2

ð17Þ

where bi1; bi2 and bi3 are presented in (13). What we concern is the
appearance of positive roots for f ðIÞ ¼ 0. Hence, three cases will be
focused: (i) one positive real root; (ii) two positive real roots; (iii)
three positive real roots. Note that two subcases (A1) and (A2)
involve one positive real root, and the difference between the occur-
rence of one positive root and three positive roots in (A1) is the sign
of I0, as shown in Fig. 1(a)–(b). By elaborate analyses for the signs of
b2 and b0, we can conclude that the inequalities (18)–(20) are set to
ensure the existence of one positive real root.

b22 < 0; b > b00
b0

ð18Þ

b22 > 0; b00
b0

< b < b00
b2

ð19Þ
e positive real roots for f ðIÞ ¼ 0 in Cases (A)–(C).
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b22 > 0; b > maxfb00
b2
;b00

b1
; b00

b0
g ð20Þ

Two positive real roots exist under subcases (A3) and (A4), and the
difference between the existence of two positive roots and none
positive root in (A4) is the sign of I00 depicted in Fig. 1(c)–(d), fur-
thermore inequalities (21)–(23) can assure case (ii) hold.

b22 > 0; b00
b2

< b < b00
b0

ð21Þ

b22 < 0; b12 > 0; b00
b1

< b < b00
b0

ð22Þ

b22 > 0; b00
b1

< b < minfb00
b2
; b00

b0
g ð23Þ

Only in subcase (A1) may three positive real roots occur, which
demands b2 > 0; b0 > 0 and b1 < 0. Thus, the following inequalities
can be obtained.

b22 > 0; maxfb00
b2
; b00

b0
g < b < b00

b1
ð24Þ

Hence, there exist at most three endemic equilibria for S1 (denoted
by E1iðS1i; I1iÞ; i ¼ 1;2;3, if two endemic equilibria appear, then we
denote them as E11 and E12, further E11 is set for only one endemic
equilibrium existing), moreover E1i is real (virtual) if S1i < Sc
(S1i > Sc). Consider the stability of endemic equilibrium E1i, which
is locally asymptotically stable if
trðJ1ðS1i; I1iÞÞ < 0;detðJ1ðS1i; I1iÞÞ > 0, and a stable node for
/1ðS1i; I1iÞ P 0 while a stable focus for /1ðS1i; I1iÞ < 0.

Case (B): N ¼ 0.
It can be found that two real roots (one of them is a double root)

or one real root (which is a triple root) of f ðIÞ ¼ 0 will occur for

N ¼ 0, in addition, the double root (Ib1� or Ia1�) and triple root
(I1 � �) are presented in Fig. 1(e)–(g). Only n1 ¼ 0 and n2 ¼ 0 in
(16) can assure the triple root exist for f ðIÞ ¼ 0, otherwise a double
root occurs. Thus the positive triple root happens only when the
formula (24) and ni ¼ 0 (i ¼ 1;2) hold true. For the double root,
denote the corresponding endemic equilibrium as Ea

1�ðSa1�; Ia1�Þ (the
collision of E11 and E12) or Eb

1�ðSb1�; Ib1�Þ (the collision of E12 and
E13), while E1 � �ðS1 � �; I1 � �Þ is set for the triple root.

Case (C): N > 0.
Only one real root of f ðIÞ ¼ 0 arises in such case, and two types

of one positive root existing are depicted in Fig. 1(h). For conve-
nience to discuss, denote both positive roots of these two curves
as I11. Then it is crucial to analyse the sign of I11, and we can yield
that I11 > 0 for b0 > 0 while I11 < 0 for b0 < 0. Hence, one positive
equilibrium E11 occurs if b > b00

b0
. Based on the elaborate discussion

in the above three Cases (A)-(C), the existence of the endemic equi-
libria for subsystem S1 are addressed in Table 1.

The subsystem S2 reads

dS
dt ¼ K� e�MðtÞbSI �u1S
dI
dt ¼ e�MðtÞbSI �u2I

8><
>: ð25Þ

where u1 ¼ lþ c1;u2 ¼ mþ c2. The disease-free equilibrium of S2
is E20ðS20; 0Þ with S20 ¼ K=u1. The basic reproduction number of
S2 is defined as R20 ¼ bK=ðu1u2Þ. It is readily seen that E20 is stable
if R20 < 1 and unstable if R20 > 1. In addition, E20 is a real (virtual)
Table 1
Conditions for the number of endemic equilibria for S1.

One

N < 0 Eq. (18) or (19) or (20)
N ¼ 0 Eq. (24), ni ¼ 0ði ¼ 1;2Þ

Eq. (21) or (22) or (23), f ðI00Þ ¼ 0
N > 0 b > b00b0
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equilibrium if Sc < S20 (Sc > S20). The endemic equilibrium of S2 (if
exists) is denoted by E21ðS21; I21Þ, where

S21 ¼ u2

a1u1
W

a1u1

b
expða1K

u2
Þ

� �
;

I21 ¼ K
u2

� 1
a1

W
a1u1

b
expða1K

u2
Þ

� �
ð26Þ

Note that R20 > 1 is a necessary condition for the existence of E21,
and E21 (if exists) is always a real equilibrium because S21 > Sc .
The following two lemmas are coming from Xiao et al. (2013).

Lemma 2. No limit cycle occurs for subsystem S2.
Lemma 3. For subsystem S2, the disease-free equilibrium E20 is glob-
ally asymptotically stable if R20 < 1, while the endemic equilibrium E21

is globally asymptotically stable if R20 > 1.

The aforementioned discussions reveal the complex dynamical
behaviour of two subsystems in Filippov system (8). Since
S20 < S10, the two disease-free equilibria E10 and E20 can not be both
real. Note that the endemic equilibrium E21 is real once it exists.
Hence, we only consider the real and virtual equilibrium bifurca-
tions for S1. Here, we choose a1 and b as the bifurcation parameters
and assume a1 þ a2 ¼ 1 to investigate how different parameter val-
ues of ai (i ¼ 1;2) affect existence of the equilibria for S1. See more
details in Fig. 2 and Table 2.

Based on the dynamical analysis for subsystem S1, there are
supposed to exist fourteen cases to explain the real and virtual
equilibrium bifurcations for S1. The two cases not presenting in
Table 2 are: (i) Er

1i (i ¼ 0;1) coexist; and (ii) Er
1i (i ¼ 0;1;2;3) coex-

ist. Consider the appearance of E11 and E10 without other endemic
equilibrium of S1, it can be classified into two kinds as shown in
Fig. 2(c)–(d) by exploring the null-isoclines of S1. The star point
denotes E11, the solid circle point stands for E10, and the black
(dashed) curve is the vertical (horizonal) isocline of S1.

Denote the intersection point of horizonal isocline and S-axis by
E1hðS1h;0Þ with S1h ¼ ðmþ c2Þ=b. Note that ai (i ¼ 1;2) are irrelevant
to S1. Thus, we can examine the real or virtual properties of E11; E10

by varying a1. Letting Sc¼: Scða1Þ, then the maximum switching
value Sc follows Smax

c ¼ ðmþ c2Þ=b for a1 ¼ 0, i.e., Smax
c ¼ S1h. Hence

Smax
c < S10 holds under the case described in Fig. 2(c), which implies
E10 is virtual invariably. For another category in Fig. 2(d), where the
endemic equilibrium is Ea

1� discussed above in Case (B) and
S10 < S1h. Then the two equilibria Er

1i (i ¼ 0;1) can be both real
when the value Sc belongs to the interval (S10; S

max
c ). Consequently,

the case Er
1i (i ¼ 0;1) coexisting occurs only when the parameters

satisfy the condition in Fig. 2(d). Consider the second case Er
1i

(i ¼ 0;1;2;3) coexisting, a similar analysis shows that Smax
c < S10.

Therefore, the four equilibria (three endemic equilibria and one
disease-free equilibrium) of subsystem S1 can not be all real.

4. Sliding domain and pseudo-equilibrium

By Definition 4, the tangent point of two subsystems for system
(8) satisfies
Two Three

Eq. (21) or (22) or (23) Eq. (24)
Eq. (24), n1 – 0 or n2 – 0 None

None None



Fig. 2. (a) Real and virtual equilibrium bifurcations for subsystem S1. Here, we select a1 and b as the bifurcation parameters and fix all other parameters as follows:
K ¼ 5;l ¼ 0:2; c1 ¼ 5;x1 ¼ 0:75; m ¼ 0:47; c2 ¼ 2;x2 ¼ 1:45. (b) The magnification for the interval a1 2 ð0;1Þ and b 2 ð0:88;0:94Þ in Fig. 2(a). (c)–(d) Two categories for the
occurrence of E11 and E10.

Table 2
Illustration of real and virtual equilibrium characteristics in Fig. 2(b).

Region (1) Ev10 and Er11 coexist Region (2) Ev10 and Ev11 coexist

Region (3) Ev10 and Er1i
(i ¼ 1;2;3) coexist

Region (4) Ev1i (i ¼ 0;3) and Er1j
(j ¼ 1;2) coexist

Region (5) Ev1i (i ¼ 0;2;3) and
Er11 coexist

Region (6) Ev1i (i ¼ 0;1;2;3) coexist

Region (7) Er1i (i ¼ 0;1;2) coexist Region (8) Ev10 and Er1i (i ¼ 1;2)
coexist

Region (9) Ev1i (i ¼ 0;2) and
Er11 coexist

Region (10) Ev1i (i ¼ 0;1;2) coexist

Region (11) Er10 exists Region (12) Ev10 exists
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K� bScI � lSc � c1Sc
1þx1Sc

¼ 0

K� bScI � lSc � c1Sc ¼ 0

(
ð27Þ

Then we have the tangent points of Si (i ¼ 1;2) as Ei
tðSc; IitÞ, where

I1t ¼ �lx1S
2
c þ ðKx1 � c1 � lÞSc þK

bScð1þx1ScÞ ; I2t ¼ K� ðlþ c1ÞSc
bSc

ð28Þ

Note that I1t > I2t . The condition Sc < K=ðlþ c1Þ guarantees the exis-

tence and positivity of two tangent points Ei
t . The sliding domain

satisfies rðZÞ � 0 and

rðZÞ ¼ ðK� bScI � lSc � c1Sc
1þx1Sc

Þ � ðK� bScI � lSc � c1ScÞ; Z

2 R

It is easily seen that rðZÞ � 0 is equivalent to I2t 6 I 6 I1t , which cor-
responds to the sliding domain

Rs ¼ fZ 2 RjI2t 6 I 6 I1t ; S ¼ Scg ð29Þ
The sliding mode differential equation follows

_IjRs
¼

_SjS2 � _IjS1 � _SjS1 � _IjS2
_SjS2 � _SjS1

; S ¼ Sc ð30Þ
6

Substituting the formulas of _SjSi and _IjSi ði ¼ 1;2Þ into Eq. (30) and

letting _IjRs
¼ 0, we obtain

sgnf_IjRs
g ¼ sgnfp2I

2 þ p1I þ p0g

where p2 ¼ a2bc2x2Scð1þx1ScÞ;p1 ¼ a2c2x2ðlSc þ c1Sc �KÞð1þ
x1ScÞ � a1c1x1x2S

2
c ; p0 ¼ �a1c1x1S

2
c . Since p2 � p0 < 0, the equation

p2I
2 þ p1I þ p0 ¼ 0 has a positive root

Ip ¼
�p1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 � 4p2p0

q
2p2

ð31Þ

Hence the pseudo-equilibrium EpðSc; IpÞ occurs if I2t 6 Ip 6 I1t . It can

be demonstrated that sgnf_IjRs
g > 0 for I > Ip while sgnf_IjRs

g < 0
for I < Ip, which implies that Ep is unstable. For the two tangent

points Ei
t in (28), we have

sgnf_I1t jRs
g ¼ sgnfbSc � m� c2

1þx2 I
1
t
g

sgnf_I2t jRs
g ¼ sgnfbSc � m� c2g

8<
: ð32Þ

It follows from Eq. (5) that bSc � m� c2 ¼ �a1=a2, which implies

I2t 6 Ip due to sgnf_I2t jRs
g < 0. Hence, Ep exists only if sgnf_I1t jRs

g > 0.
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Note that sgnfbSc � m� c2=ð1þx2IÞg is equal to the sign of _IjS1 ,
where _IjS1 ¼ 0 is the horizonal isocline of S1. Furthermore, such
curve is monotonic decreasing with S in the first quadrant. Thus
sgnf_I1t jRs

g > 0 will hold only if the tangent point E1
t lies above the

curve _IjS1 ¼ 0. According to (27), E1
t lies in the curve _SjS1 ¼ 0 (the ver-

tical null-isoclinic curve of S1), which is also monotonic decreasing
with S for Z 2 R2

þ. In addition, noting that the switching value Sc pos-
sesses the maximum size Smax

c ¼ ðmþ c2Þ=b for a1 ¼ 0, we obtain the
following existence criterion of Ep by examining two null-isoclinic
curves of S1.

Theorem 4. Consider the number of endemic equilibria for subsystem
S1, the existence criterion of the pseudo-equilibrium described with the
threshold value Sc for Filippov system (8) can be divided into the
following seven categories.
� [�] S11 < Sc < Smax
c for one endemic equilibrium E11 existing;

� [�] S11 < Sc < S12 for two endemic equilibria E11 and E12 existing;
� [�] S11 < Sc < S12 or S13 < Sc < Smax

c for three endemic equilibria Ei1

(i ¼ 1;2;3) existing;
� [�] S13 < Sc < Smax

c for the endemic equilibria Ea
1� and E13 existing;

� [�] S11 < Sc < Sb1� or Sb1� < Sc < Smax
c for the endemic equilibria E11

and Eb
1� existing;

� [�] S1 � � < Sc < Smax
c for the endemic equilibrium E1 � � existing;

� [�] None pseudo-equilibrium Ep happens for no one endemic equi-
librium or only the endemic equilibrium Ea

1� existing.

5. Sliding bifurcation

The bifurcation involving sliding domain is a significant prop-
erty for Filippov systems, and it can produce much complex
dynamical behaviour. In this section, we focus on the sliding bifur-
cation of system (8), including local and global sliding bifurcations.
Note that a1 is related to the threshold Sc and the media coverage
in the proposed model, here we choose a1 as the bifurcation
parameter and let a1 þ a2 ¼ 1 to examine the joint impact of such
two parameters a1; a2 on the dynamics of (8).
Fig. 3. Boundary focus bifurcation for Filippov system (8), here we select a
K ¼ 4:65;b ¼ 1;l ¼ 0:5; c1 ¼ 1:2;x1 ¼ 1; m ¼ 1:1; c2 ¼ 1:3;x2 ¼ 0:5.
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5.1. Local sliding bifurcation

Note that the local sliding bifurcation includes two types of
bifurcations: boundary equilibrium and tangency bifurcations
(Kuznetsov et al., 2003; di Bernardo et al., 2008). The tangency
bifurcation can occur only when the two tangent points (E1

t ; E
2
t ) col-

lide. Hence, no tangency bifurcation occurs for system (8) due to
It1 > It2 in (28). Consider the boundary equilibrium bifurcation,
which contains four different types, i.e., boundary focus, boundary
node, boundary saddle and boundary saddle-node bifurcations. On
account of the variety of endemic equilibria for subsystem S1, we
mainly focus on the boundary equilibrium bifurcation with respect
to E1i (i ¼ 1;2;3). It is similar to examine the bifurcation properties
of E21 and we omit the detail here.

Boundary focus (node) bifurcation: First, the boundary focus
bifurcation related to the endemic equilibrium E11 is illustrated
in Fig. 3, where the black dotted line denotes the switching mani-
fold R and the thick line stands for the sliding domain Rs. Further,
the red (blue) solid circle point is the tangent point of S1 (S2), the
red (blue) star point is the endemic equilibrium of S1 (S2) and the
black solid circle point is the pseudo-equilibrium Ep. Without loss
of generality, we will employ these notations in the rest analysis of
this paper. Note that in Fig. 3(a), two real stable endemic equilibria
Er
11 and Er

21 coexist which induce the bistable properties, accompa-

nied with two tangent points E1
t ; E

2
t and an unstable pseudo-

equilibrium Ep. Choosing a1 as 0:369; Er
11; E

1
t and Ep collide at one

point, denoted by Ef
b, which implies a boundary focus bifurcation

occurring as shown in Fig. 3(b). Moreover, Ef
b is a pseudo-focus

with incoming orbits, and E1
t becomes invisible. In this case, the

orbits reaching Rs except Ef
b all tend to Er

21 (no displaying in
Fig. 3(b)–(c)) ultimately.

It is observed in Fig. 3(c) that Ep disappears and E11 turns into
virtual (Ev11). Similarly, those orbits reaching the sliding domain
eventually run to Er

21. It can be shown that there exists only one
endemic equilibrium (E11) which is globally asymptotically stable
for S1 and the disease-free equilibrium E10 is virtual on the param-
eters space in Fig. 3. Hence Er

21 is globally asymptotically stable for
Filippov system (8) in Fig. 3(c). The variation in Fig. 3 shows how a
catastrophic disappearance of a stable equilibrium happens. Fig. 4
expresses a boundary node bifurcation, whose properties is similar
to the boundary focus bifurcation. Furthermore, En

b denotes the
1 as the bifurcation parameter and fix all other parameters as follows:



Fig. 4. Boundary node bifurcation for Filippov system (8), here we select a1 as the bifurcation parameter and fix all other parameters as follows:
K ¼ 3:4; b ¼ 0:7;l ¼ 0:15; c1 ¼ 1:05;x1 ¼ 1; m ¼ 0:5; c2 ¼ 1:3;x2 ¼ 1.
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boundary node bifurcation point induced by the collision of E1
t ; Ep

and the real node point Er
11 as shown in Fig. 4(b).

Boundary saddle bifurcation: In Fig. 5(a), a real stable saddle
Er
12 exists and the green thick line denotes the stable manifold of

Er
12 while the magenta one describes the unstable manifold. Note

that there exists no pseudo-equilibrium. Hence, the orbits reaching
the sliding domain finally run to Er

20. As a1 increases to the critical

value 0:8364 in Fig. 5(b), Er
12; E

1
t and Ep collide which results in a

boundary saddle bifurcation, denoted by Es
b. Furthermore, the

boundary saddle Es
b disappears and Ep occurs; see in the upper right

graph of Fig. 5(c). Meanwhile, the invisible tangent point E1
t turns

into visible and the real endemic equilibrium Er
12 becomes virtual

(Ev12). In such parameters space, S1 possesses one virtual disease-
free equilibrium (Ev10) and two endemic equilibria (E12 and E11).
Moreover, it can be demonstrated that E11 is unstable for S1 and
there is no limit cycle for S1. Consequently, E

r
20 attracts all orbits

except for those initiating from the stable manifold of E12; see
Fig. 5.

Boundary saddle-node bifurcation: It follows from Case (B) in
Section 3 that a saddle-node for S1 can occur for the collision of
saddle and node points happening. Denote the real saddle-node
as Er

1� presented in Fig. 6(a), and the definitions of green and
Fig. 5. Boundary saddle bifurcation for Filippov system (8), where we select
K ¼ 13:1;b ¼ 0:5;l ¼ 0:5; c1 ¼ 0:15;x1 ¼ 1; m ¼ 1:3; c2 ¼ 13;x2 ¼ 1:5.
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magenta thick lines are similar to Er
12 in Fig. 5(a). Note that Er

1�; E
1
t

and Ep collide in Fig. 6(b), which induces a boundary saddle-node
(Esn

b ) bifurcation occurring, and Er
1� converts into a virtual equilib-

rium Ev1� when a1 ¼ 0:883. There exists a real stable equilibrium
Er
20 which is not depicted in Fig. 6, in such case, Er

20 is globally
asymptotically stable for the proposed system except the orbits
initiating from the stable manifold of Er

1� in Fig. 6(a); Er
20 is globally

asymptotically stable except Esn
b in Fig. 6(b); Er

20 is globally asymp-
totically stable in Fig. 6(c).
5.2. Global sliding bifurcation

The global sliding bifurcation occurs accompanied with the
variation of non-vanishing cycles. Hence, it is significant to exam-
ine the bifurcation involving limit cycles of model (8). In general,
there are three types of periodic solutions (i.e., limit cycles) for
Filipppov systems (Kuznetsov et al., 2003), including standard,
sliding and crossing periodic solutions. Further, the standard peri-
odic solution denotes the periodic solution which entirely lies in
region G1 or G2; the sliding periodic solution refers to such periodic
solution owing a piece of sliding segment in Rs and the periodic
solution passing through the switching boundary with only iso-
a1 as the bifurcation parameter and fix all other parameters as follows:



Fig. 6. Boundary saddle-node bifurcation for Filippov system (8), where we select a1 as the bifurcation parameter and fix all other parameters as follows:
K ¼ 13:116; b ¼ 0:5;l ¼ 0:5; c1 ¼ 0:15;x1 ¼ 1; m ¼ 1:3; c2 ¼ 13;x2 ¼ 1:5.
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lated intersection points in R is defined as crossing periodic solu-
tion. Accordingly, such three kinds of periodic solutions are called
standard, sliding and crossing limit cycles. In what follows we will
address grazing (i.e., touching) bifurcation and sliding homoclinic
bifurcation to a pseudo-saddle for (8), where we still employ a1

as the bifurcation parameter.
Grazing bifurcation: It follows that once the standard limit

cycle touches the sliding domain, then it is called grazing bifurca-
tion. Note that a standard stable limit cycle (red orbit) of S1, the
unstable real endemic equilibrium Er

11 and the stable real endemic
equilibrium Er

21 coexist in Fig. 7(a). The magnification near the slid-
ing domain can be seen clearly in the upper right graph, where a
pseudo-saddle Ep emerges. For a1 ¼ 0:495, the stable limit cycle

becomes tangent to R on the tangent point E1
t seen from the upper

right in Fig. 7(b), then a grazing bifurcation occurs. Furthermore,
the orbits reaching the sliding domain above (below) Ep will run
to the limit cycle (Er

21).
Sliding homoclinic bifurcation to a pseudo-saddle: If there

exists a pseudo-saddle Ep, then the orbit initiating from and return-
ing to Ep is called a pseudo–homoclinic. In other words, the sliding
pseudo–homoclinic bifurcation can exist. When a1 reaches to 0.504
in Fig. 7(c), there occurs a sliding pseudo–homoclinic orbit with Ep

which implies a sliding homoclinic bifurcation to a pseudo-saddle
arising.

The global sliding bifurcation in Fig. 7 illustrates the variation of
a stable limit cycle of S1 to a stable sliding cycle, and finally to a
homoclinic orbit involving a pseudo-saddle, from which we can
see the bistable properties of model (8). A stable limit cycle (or
Fig. 7. Global bifurcation for Filippov system (8), where we select a1 a
K ¼ 7;b ¼ 0:5;l ¼ 0:5; c1 ¼ 0:1;x1 ¼ 1; m ¼ 1:2; c2 ¼ 4:4;x2 ¼ 1.
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stable sliding cycle) and a real stable endemic equilibrium Er
21

can coexist. The proper parameters will be chosen to investigate
the global sliding bifurcation involving crossing limit cycle, and
we still select a1 as the bifurcation parameter.

Crossing bifurcation: A stable crossing limit cycle (blue orbit)
appears in Fig. 8(a), accompanied with an unstable real equilibrium
Er
11, and the details near the sliding domain are magnified in Fig. 8

(h). It is not hard to demonstrate that there exist an endemic equi-
librium E11 and an unstable disease-free equilibrium E10 for sub-
system S1 in such parameters space. Hence the orbits initiating
from the external region of the crossing cycle will all tend to such
cycle. On the other hand, three kinds of orbits initiating form
region G1 in the interior space of the crossing cycle are exhibited
here. It can be seen from Fig. 8(h) that the mid orbit traverses
the switching line and runs into G2, then reaches the sliding
domain below EP and tends to Er

21 at last. However, the two other
orbits run to the crossing cycle eventually. In conclusion, for the
orbits initiating from the interior space of the crossing cycle, once
they transverse the switching line, then such cycle is the limit set if
the orbits reach R above the pseudo-equilibrium, while other
orbits all tend to Er

21.
As a1 increases to 0:073, a stable crossing limit cycle with an

isolated point E1
t on Rs occurs as shown in Fig. 8(b), and the stable

cycle involves a piece of sliding segment when a1 ¼ 0:12. The
orbits depicted in Fig. 8(a)–(c) illustrate the crossing bifurcation
for system (8). Enlarging a1 to 0.141 in Fig. 8(d), another sliding
homoclinic orbit to Ep comes into existence. In addition, the orbits
initiating from G1 in the interior space of the pseudo–homoclinic
s the bifurcation parameter and fix all other parameters as follows:



Fig. 8. Global bifurcation for Filippov system (8), here we select a1 as the bifurcation parameter and fix all other parameters as follows:
K ¼ 1:1; b ¼ 1:03;l ¼ 0:02; c1 ¼ 0:1;x1 ¼ 1; m ¼ 0:14; c2 ¼ 3:4;x2 ¼ 1.
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orbit will tend to Er
21 once they traverse the switching line and

enter into G2. No cycle happens for a1 ¼ 0:145, and the real equilib-
rium Er

21 is globally asymptotically stable except Ep. It can be seen

in Fig. 8(f) that the orbit starting from E1
t will not touch the switch-

ing line, which is different from the trend in Fig. 8(e). Furthermore,
the orbit possessing the same initial value (orange one) will tend to
Er
21 directly once it traverses into G2 for a1 ¼ 0:174. Fig. 8(e)–(g)

illustrate that increasing a1 properly will expedite the convergence
of infected population size to the stable state.

It follows from Figs. 3–8 that the variation of a1 could induce
rich dynamics for system (8), different values of a1 can lead the
infected population to a stable state, periodicity or even vanish,
which suggests that suitable control measures for a certain epi-
demic is very significant. See term (5) that Sc decreases with the
increase of a1, then bigger value of a1 can prolong the time to
implement containment strategies for the epidemic. Note that a1

describes the media impact. Hence, we can implement proper
media coverage to curb the disease transmission effectively.
10
6. Impacts of key parameters on the dynamics of Filippov
system (8)

Note that the model (8) involves media coverage, vaccination
for susceptible and recovery treatment for infected. Our purpose
is to find an effective strategy to regulate the infected population
less than an expectant value or to be eliminated. It is crucial to
implement the control strategy by choosing appropriate threshold
value Sc. We choose a1; c1 and c2 to be the key parameters and
investigate how these parameters affect the dynamics of (8). In this
section, we will present detailed analysis and numerical calcula-
tion into two subsections: time series analysis for the infected
cases and data fitting for the epidemics A/H1N1, COVID-19.

6.1. Time series analysis for the infected cases

Based on the purpose of model (8), without implementing con-
trol strategies, the disease transmission follows the natural status,



Fig. 9. Time series of the infected cases for Filippov system (8), the parameters are:
(a)K ¼ 1;b ¼ 0:6;l ¼ 0:23; c1 ¼ 1;x1 ¼ 0:3;m ¼ 0:53; c2 ¼ 0:51;x2 ¼ 0:2; a1 ¼ 0:15;
a2 ¼ 0:85. In (b)-(d), all the parameters are the same as presented in (a) except a1;c1
and c2, which are depicted in each subfigure orderly.
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i.e., the dynamics of uncontrolled subsystem S1, and the red dashed
curve in Fig. 9(a) denotes the variation of I with time without con-
trol measures. Furthermore, the controlled subsystem S2 is
employed for S > Sc , which implies the infected will vary following
the dynamics of S2 in the initial stage of epidemic spread. That is
because the quantity of susceptible is relatively large at the begin-
ning during the epidemic outbreak.

The solid curve consisting of two parts in Fig. 9(a) describes the
controlled results, where the blue part follows the dynamics of S2
and the red part obeys the dynamics of S1. Comparing the two
curves in Fig. 9(a), note that once the control measures have been
implemented, the peak value of infected cases will reduce to a
lower level and tend to the disease-free state faster, which indi-
cates that the containment strategies in our model is very effective
for protecting individuals from the infectious diseases. Note that
a1; c1 and c2 describe the strengths of three control measures:
media coverage, vaccination for susceptible and recovery treat-
Fig. 10. The monotonicity of (a) the maximum infected population, (b) the final infected p
and c1 for the Filippov system (8). Here the parameters are: K ¼ 1:3;b ¼ 0:6;l ¼ 0:2
reproduction number Ri0 (i ¼ 1;2) with respect to c1 and c2, where the blue (yellow) su
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ment for infected respectively, which demands us to alter the value
of such three parameters to investigate the variation of infected
population. Enlarging a1 from 0.15 to 0.3 can reduce the peak value
of I as shown in Fig. 9(b), which implies adding more media impact
at the beginning of disease transmission can weaken the spread
outbreak. Similar tendencies appear in Fig. 9(c)–(d) for increasing
c1 and c2, which implies that strengthening the vaccination and
recovery treatment can be helpful as well.

It is necessary and crucial to investigate the joint impact of two
parameters on the variation of infected population. Here we select
a1 and c1 to examine how the infected size changes by implement-
ing the media coverage and vaccination strategies. The other
parameters can be analysed in the same way. In order to control
the disease transmission better, it is aimed to reduce the maximum
and final size of infected. Especially, the convergence of infected
population size to zero (i.e., the epidemic diseases be eliminated)
is our main focus.

Note that the maximum and final infected size will both reduce
if one enlarges the parameters a1 and c1; see Fig. 10(a)–(b) (the
blue region denotes lower level size while the yellow region repre-
sents higher level size). Moreover, it is observed from Fig. 10(b)
that the final infected population is more sensitive to c1, where
the final size tends to zero rapidly by increasing c1 when a1 keeps
fixed. Another objective is to study the elapsed time for the final
infected population reducing to zero. Hence, the interval ð0:8;1Þ
in Fig. 10(b) is selected and the details are expressed in Fig. 10
(c). It reads that enlarging the two parameters a1 and c1 can expe-
dite the infected numbers to zero. Note that the basic reproduction
numbers of two subsystems are independent of a1. Thus, two
parameters c1 and c2 are chosen to investigate the variation of
Ri0 (i ¼ 1;2); see Fig. 10(d). Note that increasing c1 and c2 can
reduce Ri0 to be less than 1, and hence eliminate the disease.
6.2. Examination of data fitting for epidemics A/H1N1 and COVID-19

The proposed system (8) can provide us an effective switching
strategy induced by the media coverage to contain the epidemic
spread. Here we validate our model by the data of the
laboratory-confirmed cases during the A/H1N1 influenza pandemic
in Shaanxi province of China. The dataset is obtained from the Pro-
vince’s Public Health Information System (Tang et al., 2010; Xiao
opulation and (c) the elapsed time to the final infected population with respect to a1

8;x1 ¼ 0:3; m ¼ 0:63; c2 ¼ 0:1;x2 ¼ 0:2; a2 ¼ 1� a1. (d) The monotonicity of basic
rface denotes the variation of R10 (R20).



Fig. 11. Fitting Filippov system (8) to the data of A/H1N1 (a) and COVID-19 (b), here the magenta circle points denote the reported daily number of hospital notifications of A/
H1N1 flu in Shaanxi Province from September 3 to October 12, 2009 in (a); the global reported daily new laboratory-confirmed COVID-19 cases from April 8 to May 17, 2020
in (b). The curve consisting of blue and red parts presents the data fitting results, and the dashed line in (a) stands the switching time.
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et al., 2015). The variation of the daily hospital notifications (the
magenta circle points) of A/H1N1 flu are depicted in Fig. 11(a),
and the least squares (LS) criterion is applied to explore the well
data fitting.

For simplicity, we assume that the total population at the out-
break period is a constant and the numbers of recruitment and nat-
ural death are ignored; i.e., K ¼ 0;l ¼ 0. Moreover, there is no
reported cases for the disease-related death before mid October
2009, and no vaccine was injected until the end of November
2009 (Xiao et al., 2015). Thus, d ¼ 0; c1 ¼ 0.

A well fitting curve is shown in Fig. 11(a), and all estimated
parameters are listed in Table 3. At the beginning of the epidemic
spread, the variation of infected population follows the dynamics
of S2 (blue curve), and the subsystem S1 is applied when it reaches
the switching time (dashed line). It is observed that the number of
infected cases continues to reduce (red curve). Our estimation
results (c2 ¼ 3:903) reveal that the recovery treatment plays an
important role in containing A/H1N1 epidemic spread. In addition,
for the media impact proposed in our model, note that the individ-
ual behaviour variations are more sensitive to the changing rate of
infected cases than the infected population size (a2 > a1).

The novel coronavirus disease (COVID-19) induced by the sev-
ere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
become a worldwide healthy concern since its outbreak. It has
spread so fast that more than ten million people around the world
are infected by July 10, 2020 and almost all countries are suffering
(World Health Organization, 2020a). WHO declared the COVID-19
as a pandemic on March 11, 2020 (World Health Organization,
2020b). In the meantime, some countries released stringent strate-
gies to contain the increasing confirmed infected cases, such as
Table 3
Estimation of initial values and parameters for Filippov system (8).

Parameters Description Estimated value fo

S0 Initial value of susceptible population 3:606� 104

I0 Initial value of infected population 1

K Recruitment rate of S 0

b Probability of transmission from I to S per contact 1:218� 10�4

l Natural death rate 0
d Disease-related rate 0
c1 Maximum vaccination rate 0
x1 Time delayed for vaccinating -
c2 Maximum recovery treatment rate 3.903
x2 Limitation of Medical resources 5:102� 10�6

a1 Weight of media effect to the number of I 6:633� 10�6

a2 Weight of media effect to the changing rate of I 0:016
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lockdown in Italy on March 9, 2020 (COVID-19 Health System
Response Monitor, 2020c). We exhibit the reported daily new
laboratory-confirmed COVID-19 cases by WHO from March 1 to
July 10 (magenta circle points) in Fig. 12(a). During this time period
the epidemic was getting worse worldwide. It seems that there
was a plateau period from April to May, where the new infected
population fluctuates around 80,000 cases. Our main purpose is
to explore the potential factors that could generate such
fluctuation period by fitting the Filippov model (8). More
accurately, the data from April 8 to May 17 (depicted by green
curve in Fig. 12(a)) are chosen for further discussion.

The daily new confirmed COVID-19 cases from April 8 to May
17 in twelve countries where the epidemic was more serious are
depicted in Fig. 12(b)–(m), revealing the variations of evolution
trends. Note that the epidemic in Spain, Italy, France and Germany
had been contained well, where the confirmed cases declined grad-
ually during this period. The infected population in the US and the
UK had been fluctuated all the time, while the situation in Brazil,
Peru, Russia, Saudi Arabia and India had been worsening. Different
from other countries, the epidemic in Iran recrudesced in early
May because of the relaxation of restricting strategies (Devi, 2020).

It can be found that the first confirmed COVID-19 case in all
twelve territories arose during the end of January to the early
March, although the time interval of the first case happening in
these countries is not too far, the trends of epidemic spread are
various. It follows from Fig. 12(f)–(i) that the infected cases in
Spain, Italy, France and Germany are prevented well, which is
induced by the effective measures implementing at the initial stage
during the epidemic spread, such as lockdown in some districts or
even the whole country, cancelling the public activities and closing
r A/H1N1 Estimated value for COVID-19

3:458� 105

8:735� 103

9:27� 104

2:438� 10�5

0.033
0.252
0
-
8.092

3:867� 10�6

6:877� 10�8

1:813� 10�6



Fig. 12. (a) The global reported daily new laboratory-confirmed COVID-19 cases (magenta circle points) fromMarch 1 to July 10, 2020, the blue curve is the fitting results and
the green part is the plateau period during April 8 to May 17. (b)–(m) The data from April 8 to May 17 in twelve typical countries.
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schools as well as non-essential stores (Chintalapudi et al., 2020;
COVID-19 Health System Response Monitor, 2020c; COVID-19
Health System Response Monitor, 2020d; COVID-19 Health
System Response Monitor, 2020a; COVID-19 Health System
Response Monitor, 2020b). Thus the peak value of new cases had
already reached before April 8th. The epidemic situation in severe
countries such as the US, Brazil, Russia is mainly caused by the lack
of attention to epidemic by the government, the unimplemented
stringent control measures timely, or the inadequacy of medical
facilities (van Dorn et al., 2020; Lancet, 2020; Lotta et al., 2020).
Hence the stringent protective polices implemented in several
countries like Italy and unenforced in other territories like the US
gave rise to the plateau period in global.

To examine the applicability of system (8) to the COVID-19 epi-
demic, we still employ the least squares method to detect the fit-
ting results for the data belonging to the plateau. Note that the
vaccine of COVID-19 has been researched all the time and not
put into use formally yet (Leidy and Garca, 2020), which indicates
that c1 ¼ 0. It follows from the fitting curve in Fig. 11(b) that the
13
controlled system (S2 with the blue curve) and the uncontrolled
system (S1 with the red curve) play an alternate role in the disease
transmission, such curve is well fitted to the real data (magenta
circle points). The estimated values in Table 3 show that the num-
ber of initial susceptible cases (S0 ¼ 3:458� 105) holds a small pro-
portion in the world’s total population, however, the large
recruitment rate for susceptible (K ¼ 9:27� 104) will induce the
exacerbation of this epidemic. During the therapeutic process for
COVID-19, the recovery treatment for confirmed cases is the main
strategy to implement, which is in accordance with our fitted
parameter (c2 ¼ 8:092). Compared to the number of confirmed
cases, its changing rate possesses a bigger effect on the variation
of individuals (a2 > a1). The fitting results reveal that the control
measures implemented once in a while can generate the fluctua-
tion of infected cases, which is consistent with the aforementioned
discussion. It is because the prevention strategies can not be
enforced sternly so that the outbreak of COVID-19 epidemic hap-
pened repeatedly. The successful experience like that in Italy alerts
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us that the stringent strategies implemented timely and sus-
tainedly is very vital to contain the disease transmission.

The well fitness depicted in Fig. 11 indicates that the proposed
model (8) can be applicable to describe the existing strategies for
each country, then we can analyse the impact of such strategies
on the epidemic fluctuation as well as the second outbreak. The
successful prevention like that in Italy implies that the control
measures should be implemented as soon as possible, which
accords exactly with the intention of our model. It can be found
that the controlled system S2 is employed at the initial stage of
epidemic outbreak, where the susceptible cases are very large.
Furthermore, the main aim of the stringent strategies in the early
phase is to reduce the contact rate from infected to susceptible
cases, which demands the government for enhancing the media
impact to warn people to make much account of the disease sever-
ity and take self-protection.
7. Conclusion and discussion

Media coverage, vaccination for susceptible population, and
treatment for infected population are three main control strategies
to protect human from the infectious diseases. It has been investi-
gated via various mathematical models that implementing these
three measures could be effective in controlling epidemic out-
breaks (Chen et al., 2018; Wang and Xiao, 2013; Zhang et al.,
2018). However, these works focused only on one type of the three
control strategies and explored its effect on the transmission of an
infectious disease. In this paper, we propose a novel Filippov SIR
model (8) which takes into consideration all of these three control
strategies. We use an implicit formula related to the number of
infected cases and its changing rate to address the switching con-
dition (Xiao et al., 2013). Moreover, this formula can be converted
into an explicit equation which is a straight line (S ¼ Sc) and repre-
sents the switching manifold for the proposed model. For our pro-
posed epidemic Filippov model, if S < Sc , the natural growing
status for the individuals describing with two saturation functions
related to vaccination for susceptible and recovery treatment for
infected is presented in the uncontrolled subsystem S1; on the
other hand, if the susceptible cases exceed the threshold value
(S > Sc), the media coverage, linear functions involving vaccination
and recovery treatment control strategies are implemented to
decide the controlled subsystem S2.

Compared to the smooth systems, Filippov systems can exhibit
very rich dynamics (Kuznetsov et al., 2003; di Bernardo et al.,
2008) due to its non-smooth and discontinuous properties. Our
proposed Filippov model involves exponential and non-linear
functions, which induce many difficulties for theoretical analysis.
We also present some interesting and illustrative numerical simu-
lations as depicted in each figure. In comparison to the models
which only focus on one type of control measures such as media
coverage, vaccination for susceptible population, or recovery treat-
ment for infected population (Buonomo et al., 2008; Wang and
Xiao, 2013; Zhang and Liu, 2008), our model has much richer
dynamical behaviour and indicates more biological significance
for the joint effects of these three strategies. To investigate the
dynamics of the proposed model, we study the properties of two
subsystems and the bifurcations involving the sliding domain.
We also examine how the three strategies presented in our model
affect the epidemic spread, and whether our threshold policy is
effective in disease control. Our results suggest that it is necessary
and effective to implement control strategies as soon as possible at
the early stage of a disease outbreak. It is also demonstrated that,
by choosing the switching policy properly, one could reduce the
infected size to a very low level or even close to zero.
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In this paper, we first incorporate the Filippov system (1) with
(2) and the implicit threshold policy (3). We use the Lambert W
function to convert (3) into an explicit formula (5), which results
in the main Filippov system (8). Note that the two non-linear func-
tions presented in S1 induce complex dynamics. It is observed that
the subsystem S1 possesses only one disease-free equilibrium
which is stable when R10 < 1 and unstable when R10 > 1. More-
over, there are at most three endemic equilibria of S1, and the exis-
tence theory of theses three equilibria is given in Cases (A)-(C) and
displayed in Table 1. The parameters a1 and b are chosen to exam-
ine the real and virtual equilibrium bifurcations for S1; see Fig. 2.
The dynamics of subsystem S2 has been studied in Xiao et al.
(2013), and we state their main conclusions in Lemmas 2 and 3.
A further analysis for the sliding domain of the proposed model
is given in Section 4. It is demonstrated that only one sliding seg-
ment appears and I1t > I2t holds all the time. Hence, the tangent

point E1
t is above E2

t . Only one pseudo-equilibrium may appear on
the sliding segment and it is unstable; see Theorem 4.

Note that the sliding bifurcation including local and global slid-
ing bifurcations exhibits very rich dynamics as shown in Figs. 3–8.
In addition, the local sliding bifurcation related to the boundary
equilibrium bifurcation is explored for four types: boundary focus,
boundary node, boundary saddle and boundary saddle-node bifur-
cations; see Figs. 3–6 respectively. The global sliding bifurcation
involving limit cycle shows some interesting dynamics. The graz-
ing (touching) bifurcation, sliding homoclinic bifurcation to the
pseudo-saddle and crossing bifurcation are presented in Figs. 7
and 8.

We also examine the impact of the key parameters a1; c1 and c2
related to the aforementioned three control strategies respectively
on the dynamics of the model (8). Time series analysis for the
infected cases reveals that enlarging theses three parameters are
very effective to control the infectious disease transmission. Fur-
thermore, implementing the containment measures can reduce
the peak value of infected population and elapsed time to the final
state. The joint impact for a1 and c1 on the dynamics of the pro-
posed system has also been examined, where the maximum and
final infected sizes as well as the elapsed time to the final state
are chosen as indexes. The monotone decreasing of these three
indexes with increasing a1 and c1 can be seen in Fig. 10(a)–(c). Fur-
thermore, the basic reproduction numbers of two subsystems
related to the parameters c1 and c2 are examined in Fig. 10(d),
which indicates that increasing such two parameters may elimi-
nate the infectious diseases. To validate our model by the real data,
we fit the Filippov model (8) to the daily number of hospital noti-
fications of A/H1N1 flu in Shaanxi Province from September 3 to
October 12, 2009 and the global reported daily new laboratory-
confirmed COVID-19 cases from April 8 to May 17, 2020 respec-
tively. The well fitting results in Fig. 11 indicate that our proposed
model can be applicable to describe the epidemic spread trend, and
the switching strategy induced by the media coverage reflects that
reinforcing the media report as early as possible can suppress the
epidemic outbreak effectively. In addition, the treatment of
infected individuals plays an important role in controlling an epi-
demic outbreak.

To address the multiple prevention and control measures for
the infectious diseases, we have proposed a novel epidemic Filip-
pov model. A detailed theoretical analysis together with numerical
simulations reveal how the switching strategies in the proposed
system affect the epidemic spread. This provides an effective treat-
ment policy to protect individuals from infection. The results con-
cluded in our work imply that the final outbreak size can be
confined in a desired level if the control strategies are imple-
mented appropriately.
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