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Abstract
Background  The nexus plant-microbe-environment is essential to understand the ecosystem processes shaping 
plant health and fitness. Within this triangle, soils and associated microflora are among the key ecosystem’s 
drivers, underpinning plant productivity and evolution. In this study, we conducted a comprehensive analysis 
(physicochemical properties, enzyme activities, and taxonomic diversity) of soils under the canopy projection of 
Coffea arabica trees along a gradient of elevation (600, 800, and 900 m) and shade (0, 50, 100%).

Results  While shade had no influence on most parameters, altitude shaped the dynamics of microbial communities. 
Available phosphorus, soil organic carbon, and nitrate were significantly higher at 800 m, likely due to the higher 
activities of β-glucosidase and phosphatases at this altitude. Microbial biomass (carbon and nitrogen) and moisture 
were significantly higher at 600 and 900 m, which might be attributed to the abundance and richness of soil 
microorganisms. Indeed, metabarcoding analysis revealed a complex pattern of microbial consortia (bacteria, archaea, 
fungi) at the three altitudes, with the lowest index of richness recorded at 800 m. The highest number of Amplicon 
Sequence Variants was observed in bacteria, whose functional analysis revealed distinct metabolic adaptations across 
different altitudes. At 900 m, the main functional attributes favored the responses to environmental stimuli and 
microbial interactions; at 800 m, the predominant metabolic pathways were related to organic matter, fermentation, 
and bioremediation; and at the lower 600 m, the pathways shifted towards the breakdown of plant-derived 
compounds (e.g. geraniol, limonene, and pinene degradation).

Conclusion  Overall, the results indicate a higher effectiveness of the microbial consortium at 800 m, which might 
result in better nutrient cycling. The study highlights the importance of canopy shade species and elevation for the 
composition of microbial consortia in C. arabica, unveiling ecological functions beyond plant health, with implications 
for bio-based solutions and biotechnology.
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Background
The Coffea genus comprises 130 species, from which only 
Coffea arabica L. (Arabica coffee) and Coffea canephora 
Pierre ex A. Froehner (Robusta coffee) are commercially 
significant [1]. These account for approximately 57% and 
43% of the global coffee production, respectively [2]. Cof-
fee is a leading commodity worldwide, involving around 
100 million workers throughout its value chain [3]. How-
ever, the sustainability of the coffee sector is increasingly 
at risk due to climate change impacts, notably global 
warming and drought [4, 5]. To counteract this impact, 
the implementation of climate-smart strategies, such 
as agroforestry, is undeniably the most straight forward 
approach [5–7].

Theoretically, effective shaded coffee agroforestry sys-
tems (AFS) mitigate high temperatures and minimize 
evapotranspiration [7–9]. However, the success depends 
on the effective embedding of crop management prac-
tices (including soil, water, as well as compatible shade 
trees and coffee cultivars) within specific agro-ecological 
contexts [10, 11]. For example, the incidence of natural 
enemies of coffee biotic stressors may be either boosted 
or reduced depending on the vegetation structure and 
composition [12–16]. Another relevant aspect is the 
impact of shade which may have a negative [17], posi-
tive [18], or neutral [6] impact, depending on the interac-
tion between genotype and environment, as well as the 
intensity of shade or irradiation [10, 11]. Altitude is also 
a crucial factor in coffee cultivation, driving the physical 
and chemical characteristics of coffee beans [6, 19–21]. 
Finally, the coffee microbiome emerges as a core compo-
nent of the system [22–26], due to its preponderant role 
in plant evolution, health and productivity [27, 28].

Soils are among the most important reservoirs of bio-
diversity, hosting ca. 1/4 of living organisms in terres-
trial ecosystems [29, 30]. These include bacteria, archaea, 
fungi, protists, and many other eukaryotes (e.g. nema-
todes, mites, ants, beetles, earthworms), which provide 
a set of supporting services (soil formation, and nutri-
ent cycling), provision services (food, freshwater, fuel, 
fiber, biochemicals, genetic resources), and regulating 
services (climate regulation, pest and disease regulation, 
water regulation, remediation, and pollination) [31, 32]. 
Therefore, research on soil biodiversity is giving a step 
forward, envisioning the maximization of ecosystem 
goods and services, as well as the elucidation of biologi-
cal, ecological and evolutionary processes [30]. In coffee, 
Caldwell et al. [22] reported high microbial diversity in 
soils from intensive, organic, and transition farms in Bra-
zil, highlighting the potential of plant growth-promoting 
bacteria to improve coffee production and counteract 
environmental constraints. Tran [33] published a data 
set of the rhizosphere microbiome of C. canephora in the 
Central Highlands region of Vietnam, the second largest 

coffee producer in the world after Brazil. The reported 
taxonomical diversity was also considerably high, and 
reflected in the associated functions, particularly regard-
ing biosynthetic processes. More recently [24], analyzed 
the effect of altitude on the diversity of microbial com-
munities in the rhizosphere of C. arabica in Yunnan, the 
most expressive center of coffee production and trading 
in China. In line with the previous studies, the authors 
observed that microbial diversity and richness was high, 
and essentially driven by soil pH and altitude.

In this study, we conducted a comprehensive analy-
sis of the soil physicochemical properties and microbial 
communities of C. arabica cultivated under AFS in the 
evergreen rainforest of Gorongosa Mountain, part of the 
Gorongosa National Park (GNP), Mozambique. GNP is 
one of the most interesting and valuable case studies for 
the development of climate mitigation and/or adapta-
tion strategies [34, 35], owing to its exclusive biodiversity 
and anthropo-climate vulnerability [36, 37]. Specifically, 
we aimed to unveil the influence of elevation and canopy 
shade in bacteria, archaea, and fungi communities.

Materials and methods
Experimental design
The study was conducted in the Gorongosa Moun-
tain, belonging to the Gorongosa National Park, Sofala 
province, Mozambique (Lat. 18º 24’ 14’’S, Long. 34º 06’ 
31.5’’E). Coffea arabica plants were implanted 1.5 m apart 
within a row and 3 m between rows, at a density of ca. 
2222 plants ha− 1. The split-plot design of [6] was used 
to assess the impact of altitude and/or light conditions 
on the coffee soil properties. This included three differ-
ent altitudes (main plots): ca. 600 m (18º 30’ 53’’ S, 34º 
03’ 05’’ E), ca. 800 m (18’ 30’’ 04’’ S, 34º 02’ 58’’ E), and 
ca. 900 m (18º 28’ 54’’ S, 34º 02’ 43” E) above sea level 
(a.s.l.); and three levels of light (sub-plots) per altitude: 
deep shade (DS, average diurnal PPFD of 127 ± 28 µmol 
m− 2 s− 1), moderate shade (MS, 725 ± 48 µmol m− 2 s− 1), 
and full Sun (FS, 1268 ± 52 µmol m− 2 s− 1). The main can-
opy forest trees were Khaya anthotheca (Welw.) C. DC., 
Erythrina lysistemon Hutch., and Albizia adianthifolia 
(Schumach.) W.F.Wight.

Soil sampling
At each altitude and shade level, three coffee plants were 
randomly selected and soil samples were collected with 
an auger at a depth of 0–10 cm and 10–20 cm. One sub-
set was air-dried, ground, sieved (2 mm particle size) and 
used for physicochemical analysis. The other part was 
used to prepare composite samples from the two depths, 
stored on ice during the field collection and once in the 
lab kept at − 80 °C until DNA extraction.
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Chemical and enzymatic analyses
Soil samples were characterized in terms of Olsen 
extractable phosphorus (P-Olsen), pH (in a suspension 
1:2.5 with H2O), soil organic carbon (SOC), and micro-
bial biomass carbon and nitrogen (MBC and MBN, 
respectively), electric conductivity, extractable potassium 
(Egner Rhiem K), mineral nitrogen (NO3

− and NH4
+) and 

moisture using standard protocols [38–40]. MBC and 
MBN were determined with the fumigation-extraction 
method using calibration values of KEC = 0.45 for C and 
KEN = 0.54 for N [41, 42]. The quantification of C and N 
based on K2SO4 extraction was conducted using a near-
infrared detector for carbon, and chemiluminescence 
for nitrogen. In both cases, samples underwent com-
bustion at 950 ºC in a Formac analyzer (Skalar, Breda, 
Netherlands).

The activities of β-glucosidase, acid phosphatase and 
alkaline phosphatase (phosphomonoesterases) were 
determined according to the protocol of [43], using 
p-nitrophenyl-β-D-glucopyranoside (pNG) as substrate 
for β-glucosidase, and p-nitrophenyl phosphate (pNP) as 
substrate for both phosphomonoesterases. Urease activ-
ity was determined as described by [44] without buffer-
ing. For all enzymatic activities, the absorbance values of 
the extracts were determined in a segmented flow ana-
lyzer system with a preliminary dialysis step to remove 
color and microparticle interferences. β-glucosidase, 
acid- and alkaline phosphatase activities were expressed 
in µg p-nitrophenol h− 1 g− 1 dry soil, while urease activity 
was expressed in mg N-NH4

+ 2 h− 1 kg− 1 dry soil.
Descriptive statistics and statistical analyses for soil 

properties were performed using RStudio version 4.1.1 
[45]. The heterogeneity of the variance was first tested, 
and the original data were normalized by log-transforma-
tion when necessary. A GLM analysis was used to analyze 
the effects of altitude, shade, and their interactions on the 
soil properties.

DNA extraction and amplicon sequencing
Microbial DNA was extracted from soil samples using 
the DNeasy PowerSoil Pro Soil DNA Isolation Kit (Qia-
gen, Germany City, MD, USA) following the manufac-
turer instructions. DNA integrity and concentration were 
determined by 1% agarose gel electrophoresis and fluo-
rometric quantification using a fluorometer (Qubit 2.0, 
Invitrogen, CA, USA), respectively. Amplicon libraries 
targeting the V4 hypervariable region of the 16 S rRNA 
for bacteria (Bakt_341F: CCTACGGGNGGCWGCAG 
and Bakt_805R: GACTACHVGGGTATCTAATCC) and 
archaea (Bakt_341F: CCTACGGGNGGCWGCAG and 
Bakt_805R: GACTACHVGGGTATCTAATCC) and the 
ITS2 region for fungi (3  F: ​G​C​A​T​C​G​A​T​G​A​A​G​A​A​C​G​
C​A​G​C and 4R: ​T​C​C​T​C​C​G​C​T​T​A​T​T​G​A​T​A​T​G​C) were 
used following the Amplicon Metagenomic Sequencing 

Library Preparation guide (http://emea.support.illumina.
com) [46]. Sequencing libraries were generated using 
the TruSEq DNA PCR-free sample preparation kit (Illu-
mina, San Diego, CA, USA) following the manufacturer’s 
instructions. The final libraries were sequenced using 
the Illumina Miseq300 PE to generate 300 bp paired-end 
reads through Macrogen sequencing services (Macrogen, 
Seul, Korea).

Taxonomic diversity
Paired-end sequence reads were demultiplexed using the 
MiSeq reporter software (Illumina Inc., CA, USA) and 
checked for quality using FastQC v.0.11.9 (Babraham 
Institute, Cambridge, UK). Paired-reads were trimmed at 
both 5´ and 3’ ends eliminating poor quality nucleotides, 
denoised, merged, and chimeric sequences using the 
DADA2 denoiser [47] and then incorporated into QIIME 
2 [48]. The resulting Amplicon Sequence Variant (ASV) 
count table was depleted of singletons, and representa-
tive sequences taxonomically classified using a trained 
classifier of the SILVA reference (Release 132) [49]. Alpha 
diversity analysis was conducted based on observed 
ASVs, Shannon entropy and Pielou’s evenness indices, 
while community dissimilarity was assessed using Bray-
Curtis distance, which was visualized through non-
metric multidimensional scaling (NMDS) ordination. 
Permutational multivariate analysis of variance (PER-
MANAOVA) was used to test for the significance of the 
microbial community dissimilarity across the different 
gradients of altitude and shades investigated. Canonical 
correspondence analysis (CCA) was also performed to 
determine the relationship of the microbial communities 
to soil physicochemical parameters along the shade and 
altitudinal gradients. Prior to computation of microbial 
diversity, the counts were normalized to 11,786 (bacte-
ria), 2,414 (archaea) and 67,302 (fungi) ASV. The detec-
tion of biomarkers across gradients of altitude and shade 
was performed using Linear discriminant analysis Effect 
Size (LEfSe) [50]. Phylotypes with an LDA score ≥ 3.0 and 
a False Discovery Rate (FDR)-adjusted P-value ≤ 1.0 were 
considered to be differentially abundant. Except stated 
otherwise, data analysis and visualization were per-
formed using R software v.4.1.1 [45].

Functional prediction
Prediction of bacterial community functions was done 
using Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States - PICRUSt2 [51]. 
The functional prediction was done by aligning the 
16  S rRNA marker gene representative sequences to a 
reference multiple-sequence alignment and reference 
phylogeny utilizing HMMER [52], EPA-NG [53] and 
GAPPA [54]. Subsequently, gene families were predicted 
using a hidden state prediction tool – Castor [55], after 

http://emea.support.illumina.com
http://emea.support.illumina.com
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a normalization of the 16 S rRNA gene copies. The pre-
dicted gene families were thereafter collapsed into KEGG 
pathways using MinPath [56]. Differentially abundant 
pathways across the different altitudes were afterward 
determined using LefSe (LDA score ≥ 2.0; P-value ≤ 0.05).

Results
Chemical characteristics and enzymatic activities of soils
The level of shade only affected available phospho-
rus (P-Olsen; P = 0.014), MBN (P = 0.014) and the level 
of moisture (P = 0.006) (Table S1). In contrast, altitude 
exhibited a more pronounced effect on soil characteris-
tics, influencing nearly all parameters except for pH and 
urease activity, i.e. P-Olsen (P = 0.008), SOC (P = 0.009), 
MBC (P = 0.0001), MBN (P = 0.0001), electrical con-
ductivity (P = 0.002), Egner Rhiem K (P = 0.025), NO3

− 
(P = 0.0001), NH4

+ (P = 0.0001), moisture (P = 0.0001), 
β-glucosidase (P = 0.008), acid phosphatase (P = 0.0001), 
and alkaline phosphatase (P = 0.0001) (Table S1). Overall, 
at 800 m there were significantly higher levels of P-Olsen, 
SOC, and nitrate (NO3

−), when compared to the 600 m 
and 900 m. MBC and MBN, as well as moisture content, 
were found to be lower at 800 m, highlighting a distinct 
environmental profile at this altitude (Table 1). Electrical 
conductivity and NH4

+ increased with altitude, while the 
opposite was found for Egner Rhiem K (Table 1). Apart 
from urease, soil enzymatic activities also exhibited sen-
sitivity to altitude changes (Table S1), with significantly 
higher activities of β-glucosidase and phosphatases (acid 
and alkaline) at 800 m (Table 1).

Coffea alpha diversity between different altitudes and 
shade trees
A total of 89,590 high quality reads were obtained for 
bacteria, 91,977 for archaea and 93,507 for fungi with 
high Q values and adequate GC contents (Table S2). For 
bacteria, the observed number of Operational Taxonomic 
Units (OTUs), Shannon entropy and Pielou’s evenness 
revealed high species richness in all locations, although 
no significant differences were detected between the dif-
ferent levels of canopy shade (Fig. 1; Table S3). However, 
altitude had a strong influence on the bacterial richness 
with significantly lower values observed at the interme-
diate elevation of 800 m (Fig. 1; Table S4), while archaea 
richness increased with altitude (Fig.  1; Table S5; Table 
S6). In contrast, neither shade (Table S7) nor altitude 
(Table S8) had an impact on fungi richness, whether 
considering the observed number of OTUs, Shannon 
entropy, or Pielou’s evenness (Fig. 1).

Coffea beta diversity between different altitudes and 
shade levels
Nonmetric multidimensional scaling analysis revealed 
a strong bacteria differentiation between altitude fields 
(Fig.  2A). These differences in the multivariate space 
were significant when considering the effect of alti-
tude (PERMANOVA R2 = 0.493, P = 0.001), but not 
when considering the effect of shade (PERMANOVA 
R2 = 0.052, P = 0.797). The same was observed in the 
multivariate space of archaea (Fig.  2B) where altitude 
had a strong effect on the community structure (PER-
MANOVA R2 = 0.373, P = 0.001), whereas no significant 
effect was detected when considering the level of shade 

Table 1  Summary of the chemical properties and enzymatic activities of Coffea arabica soils. Mean values ± SD (n = 9) are indicated. 
Different superscripts indicate significant differences between altitudes, for each variable (ANOVA followed by Tukey-HSD, both for a 
95% of confidence)

600 m 800 m 900 m
Soil variables
P-Olsen (mg kg− 1) 5.40 ± 2.02 a 8.34 ± 2.37 b 5.94 ± 5.43 a

pH (H2O) 5.41 ± 0.33 a 5.17 ± 0.33 a 5.67 ± 0.25 a

SOC (g kg− 1) 64.60 ± 9.47 a 74.50 ± 12.56 b 66.37 ± 14.54 a

MBC (mg C kg− 1) 146.32 ± 37.07 b 85.15 ± 21.53 a 138.28 ± 33.94 b

MBN (mg N kg− 1) 18.65 ± 6.16 b 12.65 ± 4.21 a 21.64 ± 5.21 b

Electrical conductivity (µS cm− 1) 84.92 ± 25.36 a 113.40 ± 61.08 b 149.17 ± 62.43 c

Egner Rhiem K (mg kg− 1) 158.91 ± 20.78 c 140.46 ± 50.89 b 119.54 ± 47.91 a

N-NO3
− (mg kg-1) 9.35 ± 3.54 a 15.50 ± 7.04 a 8.21 ± 3.59 a

N-NH4
+ (mg kg− 1) 19.42 ± 2.68 a 27.22 ± 8.56 b 30.14 ± 8.63 c

Moisture (g kg− 1) 68.31 ± 4.30 b 57.20 ± 4.55 a 66.68 ± 6.36 b

Enzymatic activities
Urease (µg N-NH4

+ g−1 h− 1) 39.25 ± 10.67 a 32.54 ± 9.31 a 35.53 ± 7.53 a

β-glucosidase (µg p-nitrophenol g− 1 h− 1) 58.20 ± 12.81 a 65.73 ± 10.87 b 54.03 ± 12.85 a

Acid phosphatase (µg p-nitrophenol g− 1 h− 1) 310.98 ± 64.91 a 686.61 ± 149.97 c 530.51 ± 123.39 b

Alkaline phosphatase (µg p-nitrophenol g− 1 h− 1) 122.43 ± 42.42 a 189.96 ± 42.47 b 139.04 ± 28.15 a

P-Olsen: available phosphorous; SOC: soil organic carbon; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen; Egner Rhiem K: extractable potassium; 
NO3

−: nitrate; NH4
+: ammonium
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(PERMANOVA R2 = 0.047, P = 0.745). Altitude also influ-
enced fungi beta diversity (Fig. 2C), as significant differ-
ences were found between altitude levels (PERMANOVA 
R2 = 0.177, P = 0.001), but not when considering the effect 
of shade (PERMANOVA R2 = 0.110, P = 0.068).

Altitude alone accounted for 46% of the bacterial com-
munity variation (R² = 0.02; P = 0.001). However, the 
effect of shade on the bacterial community was not sig-
nificant (R² = 0.01; P = 0.113). In the case of the archaeal 
community, altitude played an even more prominent 
role, explaining 61% of its variation (R² = 0.01; P = 0.001), 
while the impact of shade remained insignificant (R² = 
0.01; P = 0.277). Regarding the fungal community, altitu-
dinal changes significantly affected its composition (R² 
= 0.158; P = 0.001). Additionally, canopy cover had some 
influence on the fungal community, though to a lesser 
extent (R² = 0.038; P = 0.016). Notably, there was still 81% 

of the variation in the fungal community that remained 
unexplained by either altitude or canopy cover.

To further determine the microbial community – soil 
physicochemical relationship, we performed a canonical 
correspondence analysis (CCA). The results indicated 
that the model for bacteria explained 33% of the commu-
nity variation (adjusted R2 = 0.33; P = 0.001). Both altitude 
(f = 6.87; P = 0.001) and shade (f = 1.53; P = 0.05) signifi-
cantly influenced the community assembly. Also, several 
soil physiochemical parameters, including NH4

+, pH, EC, 
MBN, MBC and moisture significantly influenced the 
dissimilarities of the bacterial community along the alti-
tudinal and shade gradients. Accordingly, there was high 
relative abundance of the bacterial families Flavobacte-
riaceae and Ligionellaceae at 900 m altitude, while Strep-
tomycetaceae and Shingobacteriaceae were dominant at 
600 m altitude (Fig. 3B).

Fig. 1  Observed ASVs, Shannon–Wiener index of diversity and Pielou’s evenness in soil samples of C. arabica grown under different altitudes (600 m, 
800 m, and 900 m) and under different levels of canopy shading (0%, 50% and 100%) considering Bacteria, Archaea, and Fungi. Black-filled dots on the 
boxplots depict mean values. Comparisons between altitude and shade levels are based on Kruskal-Wallis (Bonferroni adjusted P < 0.05)
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The CCA model for the archaeal community explained 
34% (adjusted R2 = 0.34; P = 0.001) of the community dis-
similarities along the shade and altitudinal gradients, 
though only altitude (shade: f = 1.55, P = 0.09; altitude: 
f = 6.83; P = 0.001) had a significant influence on the 
archaeal community. The dominance of Methanobac-
teriaceae at 800  m correlated with the concentration of 
NO3

−. Other parameters that influenced the archaeal 
community were similar to those influencing the bacte-
rial community. The CCA analysis further revealed that 
a significantly smaller variation of the fungal community 
dissimilarities was explained by the constrained variables 
compared to bacteria and archaea (adjusted R2 = 0.16; 
P = 0.001). However, contrary to the archaeal commu-
nity, both altitude (f = 3.04; P = 0.001) and shade (f = 1.54; 
P = 0.001) significantly influenced the fungal community 
assembly, while the influence of N-NH4

+, pH, EC, MBN, 
MBC and moisture were consistent, regardless of micro-
bial domain.

Coffea dominant and differentially abundant phylotypes
The composition of the microbial communities was 
dominated by several distinct phyla (Fig. 4). For bacterial 
communities, four predominant phyla were identified: 
Proteobacteria (24%), Verrucomicrobia (23%), Actino-
bacteria (19%), and Acidobacteria (15%). In contrast, the 
archaeal community was overwhelmingly dominated by 
Thaumarchaeota, which constituted 98% of its popu-
lation. Among the fungi, Mucoromycota was the most 
prevalent (54%), followed closely by Ascomycota (40%) 
(Fig.  4). At this taxonomic rank, there were no differ-
entially abundant archaea or fungi across the different 
altitudes and shades, but for bacteria, some phyla had 
distinct patterns across altitudes. For instance, higher 
altitudes increased the relative abundance of Acido-
bacteria (LDA = 5.57; adjusted P = 0.005), Proteobacte-
ria (LDA = 5.46; adjusted P = 0.006) and Planctomycetes 
(LDA = 4.97; adjusted P = 0.001). At the lowest altitude 
of 600  m, the abundance of Bacteroidetes, Chloroflexi, 
Nitrospirae, and Synegistetes were significantly higher, 

Fig. 2  Nonmetric multidimensional scaling (NMDS) analysis of Bacteria (A), Archaea (B) and Fungi (C) community differences in soil samples of C. arabica 
grown under different altitudes (600 m, 800 m, and 900 m)
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while the biomarkers of the mid-level altitude (800  m) 
included Verrucomicrobia and Actinobacteria (Fig. 4).

At the genus level, bacterial communities showed a 
predominance of Chthoniobacter (22%), followed by Rho-
doplanes (8%), Acidobacterium (6%) and Arthrobacter 
(5%) (Fig.  5). Nitrososphaera was the dominant archaea 
(85%), especially at an altitude of 600 m while the abun-
dance of Nitrosopumilus (13%) increased at higher alti-
tudes (Fig.  5). In the case of fungi, Linnemannia (41%) 
was predominant in all altitudes, followed by Mortierella 
(10%), Fusarium (7%) and Penicillium (5%) (Fig. 5).

At the genus taxonomic rank, 103 bacterial phylotypes 
were differentially abundant across altitudinal levels 
(Fig. 6). In the case of bacteria, Gaiella (LDA 5.45; FDR-
adjusted P < 0.01) and Natranaerobaculum Natranaero-
baculum (LDA 5.06; FDR-adjusted P = 0.03) were among 
the most predominant biomarker phylotypes at the low-
est altitude of 600  m, Chthoniobacter (LDA 5.80; FDR-
adjusted P < 0.01) and Stella (LDA 4.89; FDR-adjusted 
P < 0.01) were predominant biomarkers at 800  m, while 
Occallatibacter (LDA 5.30; FDR-adjusted P = 0.01) and 
Paludibaculum (LDA 4.89; FDR-adjusted P < 0.02) were 

Fig. 3  Bacterial, archaea and fungal community differentiation explained by shade and altitude based on variation partitioning analysis (A). Canonical 
correspondence analysis (CCA) explaining bacterial (B), archaeal (C), and fungal (D) communities relationship to soil physicochemical parameters along a 
shade and altitudinal gradient. The ellipses represent a 95% confidence interval in multivariate space according to each group’s centroid
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predominant biomarkers at 900  m. Only four archaea 
phylotypes were differentially abundant at the differ-
ent altitudinal levels: Nitrososphaera (LDA 6.11; FDR-
adjusted P < 0.01) and Methanomassiliicoccus (LDA 5.12; 
FDR-adjusted P = 0.60) at 600  m and Nitrosopumilus 
(LDA 6.15; FDR-adjusted P < 0.01) and Methanocaldococ-
cus (LDA 3.60; FDR-adjusted P = 0.20) at 900 m (Fig. 6). 

Additionally, among the classified fungal phylotypes, 
30 genera were differentially abundant across altitudi-
nal levels. Of these, Exophiala (LDA 4.27; FDR-adjusted 
P = 0.05) and Cladophialophora (LDA 4.21; FDR-adjusted 
P = 0.04) were among the predominant biomarker phylo-
types at 600 m, Gliocladiopsis (LDA 4.44; FDR-adjusted 
P = 0.05) and Cystofilobasidium (LDA 4.12; FDR-adjusted 

Fig. 5  Genus level taxonomic profile of the microbial communities of C. arabica grown under different altitudes (600 m, 800 m, and 900 m) and differ-
ent levels of shade from native trees (0%, 50% and 100%). Only phylotypes with a relative abundance of at least 1% in any of the samples are presented

 

Fig. 4  Phylum rank taxonomic profile of the microbial communities of C. arabica grown under different altitudes (600 m, 800 m, and 900 m) and under 
different levels of shade from native trees (0%, 50% and 100%)

 



Page 9 of 17Tapaça et al. Environmental Microbiome           (2024) 19:75 

P < 0.01) at 800  m and Podila (LDA 5.58; FDR-adjusted 
P = 0.01) and Cutaneotrichosporon (LDA 4.05; FDR-
adjusted P < 0.01) at 900 m (Fig. 6).

The prediction of bacterial community functions 
revealed significant variations across different alti-
tudes, highlighting distinct metabolic adaptations that 
potentially support plant growth and productivity. As 
detailed in Fig.  7, several ecologically relevant KEGG 
pathways were identified as differentially abundant at 
900  m, 800  m, and 600  m, each corresponding to spe-
cific environmental stimuli and microbial interactions, 
organic matter decomposition and fermentation, and 
the breakdown of plant-derived compounds, respec-
tively. The LDA scores and FDR-adjusted P-values for 
these pathways are presented in Table S10. At the high-
est elevation of 900 m, bacterial communities showed a 
predominance of pathways associated with the response 

to environmental stimuli and microbial interactions. 
Key pathways included those related to oxidative stress 
response, bacterial chemotaxis, and biofilm formation.

At the mid-level elevation of 800 m, the bacterial com-
munity was enriched in pathways involved in the decom-
position of organic matter, fermentation processes, and 
bioremediation. Notable pathways included those related 
to amino acid and carbohydrate metabolism, butanoate 
and propanoate metabolism, and the degradation of aro-
matic compounds and chlorocyclohexane.

At the lowest elevation of 600  m, the bacterial com-
munity function was characterized by pathways related 
to the breakdown of complex plant-derived compounds. 
Pathways such as cellulose and lignin degradation, starch 
and sucrose metabolism, and phenylpropanoid biosyn-
thesis were significantly represented.

Fig. 6  Differentially abundant Bacteria, Archaea and Fungi at the genus rank, across altitudes (600 m, 800 m, and 900 m). The differentially abundant data 
for bacteria and fungi (LDA ≥ 2.0; FDR-adjusted P ≤ 1.0) are a subset that was sorted according to adjusted p-values, LDA scores and altitudinal groupings. 
The complete list of differentially abundant genera is presented in Tables S9 and SS10
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Discussion
The soil microbiome encompasses diverse microorgan-
isms residing near plant roots, playing a pivotal role in 
ecosystem functioning. It not only shapes the structure 
and composition of biodiversity but also critically influ-
ences plant health and fitness. Its interactions with plants 
significantly contribute to various ecosystem processes, 
including nutrient cycling, soil fertility, and plant disease 
resistance, thereby underpinning the overall health and 
resilience of ecosystems. Recent research has devoted 
special attention to the nexus plants-microbes-envi-
ronment, as an essential component of climate-smart, 

resilient, and sustainable agriculture [57–59]. In this 
study, a comprehensive analysis of the soils under the 
canopy projection of Coffea arabica was conducted to 
evaluate the shifts in microbial composition and asso-
ciated functions along a gradient of elevation (600  m, 
800 m, and 900 m) and shade (0%, 50%, 100%). A set of 
soil variables (organic carbon, microbial biomass car-
bon and nitrogen, available phosphorus, extractable 
potassium, nitrate, ammonium, moisture, pH, electrical 
conductivity), and microbial enzyme activities (urease, 
β-glucosidase, acid- and alkaline phosphatases) were 
analysed. In addition, metabarcoding was performed 

Fig. 7  PICRUSt2 predicted differentially abundant KEGG pathways along the altitudinal gradient (P ≤ 0.01; LDA ≥ 2.0)
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to study microbial communities (bacteria, archaea, and 
fungi), and their putative functions.

Most soil parameters were highly variable (high stan-
dard deviation) and only influenced by altitude, with a 
particularly differentiated pattern at 800 m, where avail-
able phosphorus (P-Olsen), soil organic carbon (SOC) 
and nitrate (NO3

−) were significantly higher, and micro-
bial biomass carbon and nitrogen (MBC and MBN, 
respectively) and moisture were significantly lower 
when compared to 600 m and 900 m (Table 1). Consid-
ering that soil elementary composition along the eleva-
tion and shade gradients was quite homogeneous (fine 
clay, acidic, non-saline, non-calcareous, 8–14% organic 
matter; Table S11), this pattern might be driven by the 
vegetation composition, i.e. C. arabica, shade tree spe-
cies and other natural vegetation [60, 61], which in turn 
shapes the microbial communities [62]. Gota et al. [63] 
reported that the influence of agroforestry species on soil 
chemical properties is specific to each species and is not 
altered by altitude changes. Accordingly [60], reported 
that shade trees were the main drivers of soil composi-
tion in cocoa agroforestry systems (AFS), improving pH, 
NH4

+, NO3
−, total C and N, biomass and P-Olsen con-

tents. However, soil function improvement varied across 
AFS, being low with fruit species (Canarium and Dac-
ryodes), moderate with tree legumes (Albizia), and high 
with timber trees (Milicia and Ceiba). In the present 
study, the canopy shade trees in the experimental plots 
located at 800 m were mostly legumes (Albizia adianthi-
folia and Erythrina lysistemon), both included on the top 
list of N2-fixing fertilizers [64], while at 600 m and 900 m, 
non-legume trees were also dominant. In addition, the 
differences observed between the three altitudes might 
also be associated with climate variations, particularly 
rainfall and temperature, which shape vegetation compo-
sition and structure, implying differences in the amount 
and composition of litter [65, 66]. This hypothesis is 
corroborated by the enzyme activity assays, particularly 
β-glucosidase, and phosphatases, which presented higher 
activities at 800  m, i.e. 65.73 ± 10.87, 686.61 ± 149.97, 
and 189.96 ± 42.47  µg p-nitrophenol g− 1 h− 1. Enzymatic 
activities in soils are important for the decomposition of 
organic matter and mineralization of nutrients, and are 
useful indicators of soil biological activity and deduc-
tively of soil health [67, 68].

Metabarcoding analysis revealed high species rich-
ness in bacterial communities, with the lowest indexes 
recorded at 800 m (Fig. 1; Table S4). This might explain 
the lowest MBC and MBN values obtained at this alti-
tude. As for the soil parameters, altitude was the most 
important driver of bacterial communities, explaining 
46% of the variation (R2 = 0.493, P = 0.001), while shade 
did not produce significant changes (R2 = 0.01; P = 0.113) 
(Figs. 2A and 3). The predominant phyla (Proteobacteria, 

Verrucomicrobia, Actinobacteria, and Acidobacteria) 
and the average Shannon diversity indexes were simi-
lar to those reported previously for Coffea spp. soils, i.e. 
between 6 and 7 [22, 24–26]. Although the abundance of 
various phyla varied along the elevation gradient (Fig. 4), 
key plant growth-promoting (PGP) functions such as, 
nutrient cycling, organic matter decomposition, phos-
phate solubilization, soil aggregation, and biocontrol, 
were consistently present across all clusters, in line with 
the studies of [69, 70]. Accordingly, the predominant gen-
era, i.e. Chthoniobacter, Rhodoplanes, Acidobacterium, 
and Arthrobacter (Fig. 5), incorporated these major PGP 
attributes [71–73]. While the presence of Rhodoplanes 
and Arthrobacter in Coffea soils has been previously 
reported, the presence of Chthoniobacter and Acidobac-
terium seems to be exclusive of our agro-ecological sys-
tem [23, 26, 74, 75]. A set of 103 biomarker phylotypes 
were differentially abundant across the altitude gradient 
(Fig.  6), from which the most prominent were: Gaiella 
and Natranaerobaculum at 600  m; Chthoniobacter and 
Stella at 800  m; and Occallatibacter and Paludibacu-
lum at 900  m. All of them are included in the group of 
PGP bacteria with vital functions in forest ecosystems. 
The genus Gaiella is bound to microbe-microbe inter-
actions [76, 77], playing an important role in biocontrol, 
e.g. of Fusarium oxysporum in tomato [78] and straw-
berry [79]; some members also contribute to nitrogen 
cycling through the reduction of nitrate to nitrite [80]. 
Natranaerobaculum is typical of hypersaline soda envi-
ronments [81], but its occurrence in forest soils seems 
to be related to health biomarkers [82]. Chthoniobacter 
is involved in nutrient cycling and produces secondary 
metabolites [83, 84], associated with the control of bacte-
rial wilt [85] and growth of beneficial bacterial commu-
nities [84]. Although Stella and Paludibaculum bacteria 
are not common soil taxa, their ecological function might 
be related to organic matter decomposition [86]. Addi-
tionally, Paludibaculum may also enhance plant chloro-
phyll content [87]. Occallatibacter may play a relevant 
function in denitrification [88] as well as soil remedia-
tion [75]. Despite the fact that the basic PGP functions 
are likely maintained along the elevational gradient, 
taking into account that P-Olsen, SOC and NO3

− were 
significantly higher at 800  m, we hypothesize that the 
microbial consortium at this altitude is more effective 
in nutrient cycling. Interestingly, despite the presence of 
legume trees and unlike what has been reported in simi-
lar studies in coffee [23, 25, 26, 89], the presence of diazo-
trophs (Nitrogen-fixing bacteria) was not prominent in 
this study. However, collectively, a considerable set of 
symbiotic (Bradyrhizobium, Mezorhizobium, and Rhi-
zobium) and non-symbiotic (e.g. Agrobacterium, Azospi-
rillum, Bacillus, Burkholderia, Clostridium, Microvirga, 
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Nitrospirillum, Paraburkholderia) genera is represented 
in the bacterial pool.

The richness and diversity of archaea was consider-
ably lower than that of bacteria, and fungi. Similarly to 
the soil parameters and bacterial communities, the pat-
terns of richness and diversity also varied with altitude. 
However, in this case, the lowest values of richness and 
diversity were recorded at the lowest altitude of 600  m. 
Thaumarchaeota, typically including ammonia-oxidiz-
ing archaea (AOA), was the dominant phylum along the 
altitudinal gradient, similar to the observations of [90] 
for alpine forest soils [22], for the coffee rhizosphere, 
and [91] for the Himalayas. Additionally, this is the most 
prominent endophytic phylum in several crops, includ-
ing coffee [92]. Euryarchaeota, which is associated with 
methanogenesis [90], was detected only at 800  m and 
under full sun (0% shade) and less represented (< 1%) in 
all other comparison groups. The irregular and low abun-
dance (< 10%) of this phylum has also been reported in 
other soils, e.g. along an elevation gradient in alpine for-
est soils [90], and in the rhizosphere of full-sun coffee 
in consociation with other food crops [22]. Both phyla 
are associated with a wide range of PGP functions, e.g. 
improvement of plant growth, tolerance to biotic and 
abiotic stress, and nutrient solubilization and assimi-
lation [93]. In line with the findings of [90] and [22], in 
this study, Nitrososphaera (phylum Thaumarchaeota) 
was the most abundant genus (70–100%) in all compari-
son groups. Nitrosopumilus, another AOA belonging to 
Thaumarchaeota, was the second most abundant genus 
(< 30%), particularly at 800 m and 900 m. These two gen-
era play a crucial role in the nitrogen cycle (converting 
NH3

+ into NO2
−), i.e. bioavailability, soil fertility, and 

environmental regulation of nitrogen.
Fungi richness and diversity was considerably high 

(410.26 ± 91.32 observed ASVs and 4.29 ± 1.19 Shannon 
indexes, on average) (Fig. 1) and within the range of the 
values reported for the soil microbiome of C. arabica 
(e.g [24, 94]. Alpha-diversity of fungi was neither affected 
by shade (Table S7), nor altitude (Table S8), while beta-
diversity (Fig.  2C) was driven by altitude (R2 = 0.177, 
P = 0.001), but unaffected by shade (R2 = 0.110, P = 0.068). 
Mucoromycota and Ascomycota were the dominant 
phyla (> 90% in total) (Fig. 5). As for the other microbial 
domains, both phyla include soil mycorrhizal fungi, sap-
rotrophic decomposers and endophytes, with key func-
tions in e.g. nutrient cycling and assimilation, or plant 
protection [95, 96]. Linnemannia (Mucoromycota) was 
the predominant genus in all comparison groups. Inter-
estingly, this genus has never been reported previously in 
Coffea [22–25, 73, 97–99]. Linnemannia and Mortierella 
(the second most abundant genus in our study) have been 
reported as strong elicitors of plant growth in maize [99], 
wheat [100], and Arabidopsis [101, 102], likely driven by 

phytohormones [102]. In the Ascomycota phylum, the 
most prevalent genera were Fusarium and Penicillium. 
These genera are linked to a broad spectrum of ecologi-
cal functions, including decomposition, nutrient cycling, 
biocontrol, and bioremediation [103, 104]. Such func-
tions are visible among the 30 biomarkers differentially 
abundant across the three altitudes, from which Exo-
phiala and Cladophialophora (600 m), Gliocladiopsis and 
Cystofilobasidium (800  m), and Podila and Cutaneotri-
chosporon (900 m) were the predominant genera (Fig. 6). 
For instance, Exophiala promotes plant stress tolerance 
and growth [105]; Cladophialophora is associated with 
plant protection and productivity [106]; Gliocladiopsis 
enhances tolerance against biotic ad abiotic factors [107, 
108]; and Cysttofilobasidium is also a potential biocon-
trol agent [109]. While the ecological roles of Podila and 
Cutaneotrichosporon remain less defined, the presence of 
Podila in alpine forest soils has been documented [110], 
and Cutaneotrichosporon shows promise in biotechnol-
ogy for the food and cosmetic industries [111], as well as 
in biofuel and bioplastic production [112].

The KEGG pathway data across different altitudes 
revealed distinct metabolic adaptations of microbial 
communities to their respective environments (Fig.  7). 
Firstly, at 800  m the metabolic pathways to lipoic acid 
and benzoate degradation indicated a rich organic mat-
ter environment and a microbial ability to utilize diverse 
organic compounds [113]. This altitude also shows active 
fermentation processes, as evidenced by butanoate 
metabolism and pyruvate metabolism pathways, hint-
ing at the decomposition of organic materials. Notably, 
the atrazine degradation pathway suggests a capability 
to bioremediate certain pollutants, reflecting potential 
exposure to agricultural chemicals in this mid-altitude 
environment [114]. This observation suggests a robust 
microbial activity adapted towards organic matter turn-
over and pollutant degradation, which aligns with the 
higher levels of soil organic carbon and nitrate observed 
at this altitude, corroborating the hypothesis formulated 
above regarding the higher effectiveness of the microbial 
consortium at this altitude.

At 900  m, the high abundance of pathways such as 
bacterial chemotaxis and secretion systems (Fig. 7) sug-
gests a heightened sensitivity to environmental stimuli 
and an advanced capacity for microbial interactions, 
possibly aiding adaptation to cooler, more variable high-
altitude conditions. The biosynthesis of tetracycline and 
ubiquinone is usually related to microbial defense and 
stress response, vital for survival in a potentially chal-
lenging high-altitude environment [115]. Key pathways 
such as oxidative phosphorylation and sulfur metabo-
lism highlight the efficiency in energy production and 
nutrient cycling, crucial in nutrient-limited high-altitude 
conditions.
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At the lowest altitude of 600  m, the dominance of 
pathways related to the breakdown of plant-derived 
compounds, such as geraniol, limonene, and pinene 
degradation [116] suggests a closer interaction between 
plants and microbes, likely due to the more direct influ-
ence of vegetation at this altitude. Basic cellular processes 
are represented by pathways like D-alanine metabolism 
and steroid biosynthesis, suggesting a diverse micro-
bial community engaged in various ecological functions. 
Moreover, phosphonate and phosphinate metabolism 
pathways at this altitude underline roles in phospho-
rus cycling, essential for both plant growth and micro-
bial activity within soil ecosystems [117]. Altogether, 
the microbial community at this altitude seems highly 
adapted to decomposing plant materials, thereby facili-
tating nutrient release and availability for plant uptake.

Overall, the functional prediction analysis underscores 
the adaptive metabolic strategies employed by bacterial 
communities across different altitudes. These strategies 
are integral to supporting the growth and productivity of 
C. arabica by enhancing nutrient cycling, organic matter 
decomposition, and resilience to environmental stress-
ors. The differential abundance of these KEGG pathways 
not only reflects the unique environmental conditions at 
each altitude but also highlights the potential of utilizing 
these microbial functions for sustainable coffee cultiva-
tion and ecosystem management.

Conclusion
In summary, this study highlights the significant impact 
of elevation on the microbiome of Coffea arabica soils 
within agroforestry systems. At different elevations, par-
ticularly at 800 m with predominantly legume trees, dis-
tinct microbial communities and soil chemistry profiles 
emerged, suggesting elevation-specific microbial func-
tions likely related to nutrient cycling and plant growth. 
Despite the variations in microbial biomass and diversity, 
plant growth-promoting functions remained consistent 
across the altitudinal gradient. The study offers valuable 
insights into sustainable coffee cultivation, emphasiz-
ing the role of the soil microbiome in ecosystem health. 
Understanding these complex microbial interactions 
paves the way for developing climate-smart agricultural 
practices that leverage natural processes for improved 
crop resilience and productivity, aligning with the goals 
of sustainable agroecosystem management.
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