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Abstract: In the process of rehabilitation, the objectivity and the accuracy of rehabilitation assessment
have an obvious impact on the follow-up training. To improve this problem, using a multi-sensor
source, this paper attempts to establish a comprehensive assessment method of the finger reha-
bilitation effect, including three indicators of finger muscle strength, muscle fatigue degree, and
range of motion. Firstly, on the basis of the fingertip pressure sensor of the End-Effector Finger
Rehabilitation Robot, a mathematical model of finger muscle strength estimation was established,
and the estimated muscle strength was scored using the entropy weight method. Secondly, using
an sEMG signal sensor, a fatigue monitoring system was designed in the training process, and the
fatigue degree was determined on the basis of the change trend of the eigenvalues of MAV and RMS.
Lastly, a human–machine motion coupling model was established, and the joint range of motion
acquisition and scoring model were obtained on the basis of the motor encoder. According to the
above three indicators, using the AHP assessment method to establish a comprehensive rehabilitation
assessment method, the effectiveness of the method was verified by experiments. This paper provides
a potential new idea and method for objective, accurate, and convenient assessment of finger function
rehabilitation, which is of positive significance for alleviating the burden on rehabilitation doctors
and improving rehabilitation efficiency.

Keywords: End-Effector Finger Rehabilitation Robot; rehabilitation assessment; finger muscle
strength; muscle fatigue degree; range of motion; the AHP method

1. Introduction

Rehabilitation assessment is conducted to determine the nature, location, severity,
development trend, scope, and prognosis of dysfunction in patients with disabilities [1,2].
It can reflect the situation of dysfunction in patients and lay a scientific foundation for the
formulation and implementation of a rehabilitation treatment plan [3,4]. Therefore, it is
necessary to conduct an objective, accurate, and convenient assessment in the process of
rehabilitation training.

In the field of rehabilitation medicine, the focus of rehabilitation assessment is the
assessment of limb motion function [5,6]. At present, the assessment method is usually
evaluated by therapists using a clinical assessment scale, including the are Brunnstrom
assessment method, Fugl-Meyer assessment (FMA) scale, and Barthel index [7,8]. The FMA
method is recognized as one of the most widely used rehabilitation assessment methods.
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The FMA method has the advantages of detailed content, as well as high assessment
reliability and sensitivity [9], but a single assessment of patients takes a long time, and it is
mainly subjectively evaluated by rehabilitation doctors, which cannot ensure objective and
unified results [10].

Robot-derived measurement technology adds a new dimension to the assessment of
motion function [11]. Through the sensor hardware and control system software on the
rehabilitation robot, quantitative analysis can be realized, rehabilitation efficiency can be
improved, cost can be reduced, and an accurate, objective, and real-time rehabilitation
assessment method has become a possibility and a trend [12,13].

In recent years, it has become an active topic to seek more excellent rehabilitation
assessment methods based on rehabilitation robots [14,15]. Some assessment methods
have been developed. Wu [16] designed two tasks of “following the circle” and “crossing
the tunnel” to evaluate and classify healthy people and stroke patients in Brunnstrom
phase VI using a neural network, but this method is more suitable for patients at the
later stage of rehabilitation. Kurillo [17] predicted the three-dimensional (3D) reachable
spatial surface area using Kinect-captured data to evaluate the upper-limb function of
patients with facial shoulder brachial muscular dystrophy. Bai [18] collected the upper-limb
movement information through Kinect, calculated the upper-limb reachable space, and
used the adaptive network fuzzy inference system to evaluate the patient’s upper-limb
rehabilitation training results; however, once the camera of the motion capture system
in the above two methods is calibrated successfully, it cannot be moved casually; thus,
they are not portable and efficient. Gao [19] studied a three-degree-of-freedom upper-limb
exoskeleton real-time rehabilitation training system based on a surface electromyography
(sEMG) signal. After collecting the sEMG signal, four elbow movements can be identified
and evaluated by decision tree algorithm. Compared with the traditional rehabilitation
assessment methods, this method has more specific assessment results, but relying only
on the sEMG signal which is easil disturbed can lead to poor stability. Su [20] combined
sEMG and inertia information with clinical rehabilitation assessment indices to realize a
comprehensive and quantitative upper-limb rehabilitation state assessment and database
system. However, the assessment system has a small number of test patients and needs
to be further improved for clinical practice. Antonella [21] proposed a multi-parameter
method to evaluate the rehabilitation of patients, including sEMG, electroencephalogram
(EEG), kinematics, and clinical scale. This multisource method can better characterize the
rehabilitation of patients, but it is highly complex and requires the assistance of profession-
als. All these measurement methods have their own advantages; however, at present, most
robot rehabilitation assessment technologies still need the assistance of professionals, and
there is a lack of large samples and high-quality long-term clinical studies proving their
accuracy and reliability [22,23].

Generally speaking, there are no perfect and standardized assessment methods, and
this also applies to the rehabilitation assessment of finger function [24]. Using the in-
novative design of the End-Effector Finger Rehabilitation Robot (EFRR), combined with
multisource information such as finger contact pressure, sEMG signal, and finger joint
range of motion, this paper formulates a comprehensive rehabilitation assessment method
suitable for this system, which has the characteristics of miniaturization and home use
without a physician’s assistance. It provides a new idea and possibility for the objective
and real-time automatic rehabilitation assessment of finger motion function.

2. Materials and Methods
2.1. Mechanism Design of EFRR

To meet the rehabilitation needs of patients with finger dysfunction, a finger reha-
bilitation robot was designed on the basis of the physiological structure and movement
characteristics of fingers. The rehabilitation robot mainly includes four parts: four-finger
flexion/extension assembly, four-finger adduction/abduction assembly, thumb movement
assembly, and frame. It can realize the flexion/extension and adduction/abduction training
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of left or right fingers [25]; the action decompositions of the training process are shown in
Figure 1.
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As shown in Figure 2, the four-finger flexion/extension motion component comprises
four identical single-finger flexion/extension motion components with modular thinking.
Considering the natural trajectory of finger flexion/extension, the circular arc trajectory
constraint board was designed to realize the finger movement constraint. The finger-cot
assembly is driven to move back and forth through a linear motion module composed
of a lead screw and a linear slider. Force-sensing resistor (FSR) pressure sensors are also
installed in the finger-cot to detect fingertip pressure during movement. In addition, the
motion track constraint module can change according to the human percentile to meet the
needs of people with different finger sizes.
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2.2. Function Composition of EFRR

According to the function of EFRR, the electrical control system of the robot mainly
includes the central control unit, human–machine interaction unit, patient and doctor
operation terminal, and data acquisition unit, as shown in Figure 3.
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Figure 3. Functional block diagram of EFRR.

During the rehabilitation training of the human–machine interaction unit, the data
acquisition units collect the information from the sEMG, force sensors, and motor encoders,
and the central control unit processes the information. The display interface reflects the
rehabilitation evaluation on the touch screen. Patients and rehabilitation doctors can adjust
the parameters to set the corresponding training strategy so as to realize the closed-loop
rehabilitation training of EFRR.

3. Results
3.1. Muscle Strength Assessment Based on Fingertip Pressure
3.1.1. Pressure Detection of the Fingertip

The rehabilitation effect of patients is an important index to evaluate the treatment
plan [26]. Therefore, this paper proposes a rehabilitation assessment method based on
fingertip pressure. A finger strength estimation model based on fingertip pressure was
established. Using this model, the muscle strength of people can be estimated.

After rehabilitation treatment, the rehabilitation effect of patients is significant for
the formulation and adjustment of the follow-up rehabilitation treatment plan [27]. Using
this model, people’s muscle strength can be estimated, and the estimated muscle strength
can be scored by the entropy weight method. Finally, the finger can be graded according
to the score value to realize the assessment of the rehabilitation effect [28]. An FSR thin-
film pressure sensor was used to collect fingertip pressure, and its shape and detailed
parameters are shown in Figure 4.
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During the experiment, the acquisition equipment needs to first be calibrated. When
the finger is in a natural state in the finger cot, the zero coordinates of the sensors on the up-
per and lower sides will be inconsistent due to the influence of gravity. The pressure sensor
on the lower side will have a smaller force signal; hence, it needs to first be compensated
for in a positive direction. At the same time, since the output of the piezoelectric signal is a
voltage signal, it also needs to be converted into a force signal. Therefore, calibration is
required before collecting signals. When a single finger is at rest and there is an extension
movement, the pressure information on the upper side of the finger-cot is as shown in
Figure 5. When a single finger is at rest and there is a flexion movement, the pressure
information on the lower side of the finger-cot is as shown in Figure 6.
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As can be seen from Figures 5 and 6, with the extension and flexion movements, the
pressure signals converted from the piezoelectric signals on the upper and lower sides
gradually decrease with time.

3.1.2. The Calculation of Finger Muscle Strength

The anatomical structure of the finger is shown in Figure 7. The main muscle groups
are the flexor digitorum profundus tendon (FDP), flexor digitorum superficialis tendon
(FDS), long extensor tendon (LE), and interosseous muscles [29]. Therefore, the muscle
strength of the finger is actually the muscle strength of the driving muscle groups. This
calculation estimates the muscle strength, and there is a certain error [30]. The existing
calculation methods generally estimate the finger muscle strength by measuring other
parameters [31].
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Figure 7. Finger anatomy [32].

In this paper, a mathematical model of finger muscle strength was established by mea-
suring the contact force of the fingertip. When the fingers are conducting flexion/extension
exercises, they can be set as a plane motion [33]. The joints (distal phalanx (DIP), proxi-
mal phalanx (PIP), and metacarpophalangeal phalanx (MCP)) and angles of a finger are
shown in Figure 8 [34]. The biomechanical relationship of each finger joint is shown in
Figure 9 [35]. The finger muscle strength estimated in this paper is the muscle strength
of six muscle groups: LE, ulnar interosseous (UI), radial interosseous (RI), lumbricales
muscle (LU), FDS, and FDP. The balanced equation of fingers can be established, which is
the force/torque balance equation of three joints.
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where Fi represents the muscle strength of each joint, θi represents the angle between the
joint and the Z direction, Ri represents the moment arm at the joint, and PZ represents the
contact force of the fingertips.
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To estimate muscle strength, the force arm needs to be solved. The force arm of
RLE−MCP, RES−PIP, and RTE−DIP can be solved using the following formula:

R = ±dr · θc

dθc
= ±r, (4)

where r represents the rotation radius of a certain joint, and θc represents the joint rota-
tion angle.

The force arm of RFDP−MCP and RFDS−PIP can be solved using the following formula:

R = ±d(θch + 2y(1− (θc/2)/ tan(θc/2)))
dθc

, (5)

where h represents the distance from the straight part of the muscle tendon to its long axis,
and y represents the distance from the end of the tendon of the muscle to the center of
the joint.

The force arm of RRI−MCP, RUI−MCP, and RUB−PIP can be solved using the following
formula:

R = ±
d
(
r0 + r1θc

)
θc

dθc
, (6)

where r0 and r1 represent joint radius coefficients.
The force arm of RLU−MCP can be solved using the following formula:

R = ±
d
[(

r0 + r1θc
)
θc − EFDP_MCP

]
dθc

, (7)

where EFDP_MCP represents the displacement of the muscle joint.
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There are 16 unknowns in the finger balance equation, but only nine sets of equations
cannot be solved directly. The problem needs to be transformed into a constraint-based op-
timal solution. The constraint equation can be constructed according to the biomechanical
relationship of fingers [32], as shown below.

FRB = 2
3 FLU + 1

6 FLE
FUB = 1

3 FUI +
1
6 FLE

FTE = FRB + FUB
FES = 1

3 FRI +
1
3 FUI +

1
3 FLU + 1

6 FLE
FLE = FES

. (8)

The optimized objective function is based on the principle of the minimum sum of
squares of muscle stress, which is expressed as follows:

J = min
k

∑
i=1

(Fi/PCSAi)
2, (9)

where Fi is the muscle strength of the muscle group, PCSA is the physiological cross-
sectional area of muscle, as shown in Table 1, and k is the number of muscle groups.

Table 1. Finger PCSA parameters (cm2).

Muscle Group FDP FDS LE LU UI RI

PCSA 10.67 8.89 4.15 0.52 1.45 4.30

The Lagrange multiplier was constructed, and then the constraint optimization was
carried out. Finally, the estimated relationship of fingertip pressure for each muscle group
could be obtained, as shown in Table 2.

Table 2. Muscle strength estimation results (N).

Muscle Group FDP FDS LE INT

Muscle strength 2.5 ∼ 3PZ 1.4 ∼ 2.8PZ 0.7 ∼ 1.8PZ 1.2 ∼ 3.7PZ
1 INT = RI + UI + LU.

It can be seen from the table that different muscle groups have muscle strength several
times the pressure of the fingertip. According to the constructed corresponding relationship
between fingertip pressure and muscle group strength, the rehabilitation assessment can
be carried out through the fingertip pressure during training.

3.1.3. Finger Strength Analysis

In this paper, the muscle strength was estimated from the collected fingertip pressure.
After that, the estimated muscle strength was scored using the entropy weight method. The
rehabilitation fingers were rated according to the score value [36]. The entire assessment
model is shown in Figure 10.



Healthcare 2021, 9, 1251 9 of 19

Healthcare 2021, 9, x FOR PEER REVIEW 9 of 19 
 

 

3.1.3. Finger Strength Analysis 
In this paper, the muscle strength was estimated from the collected fingertip pres-

sure. After that, the estimated muscle strength was scored using the entropy weight 
method. The rehabilitation fingers were rated according to the score value [36]. The entire 
assessment model is shown in Figure 10. 

Finger pressure 
signal

Estimation of 
muscle strength

Entropy weight 
rating

Muscle strength 
evaluation

results

PC monitor

Mild recovery Function 
normal

Moderate 
recovery Recover  well

Data acquisition

Data processing

Target result

 
Figure 10. Muscle strength assessment model 

The general steps of the entropy method are given below. 
Firstly, the data need to be standardized. For data { }1 2 3 4, , , , ,i nX x x x x x=  , the 

standardization method can be expressed as 

( )
( ) ( )

min

max min
ij i

ij
i i

X X
Y

X X

−
=

−
. (10) 

Then, the proportion of each item can be determined as follows: 

1

ij
ij n

ij
i

X
P

X
=

=


. (11) 

Next, the entropy values of each are calculated as follows: 

( )
1

log
n

j ij ij
i

e k P P
=

= − × , (12) 

where 
( )
1

ln
k

n
= . 

After that, the coefficient of difference is expressed as follows: 

g =1-ej j . (13) 

Then, its weights are taken as follows: 

1

j
j m

j
j

g
W

g
=

=


. 

(14) 

Finally, it can be scored as follows: 

Figure 10. Muscle strength assessment model.

The general steps of the entropy method are given below.
Firstly, the data need to be standardized. For data Xi = {x1, x2, x3, x4, · · · , xn}, the

standardization method can be expressed as

Yij =
Xij −min(Xi)

max(Xi)−min(Xi)
. (10)

Then, the proportion of each item can be determined as follows:

Pij =
Xij

n
∑

i=1
Xij

. (11)

Next, the entropy values of each are calculated as follows:

ej = −k×
n

∑
i=1

Pij log
(

Pij
)
, (12)

where k = 1
ln(n) .

After that, the coefficient of difference is expressed as follows:

gj= 1− ej. (13)

Then, its weights are taken as follows:

Wj =
gj

m
∑

j=1
gj

. (14)

Finally, it can be scored as follows:

Si =
m

∑
j=1

Wj × Pij. (15)

According to the above, flexion rehabilitation exercises were performed on the four
fingers, and the fingertip pressure of the four fingers were collected. Then, the muscle
strength was estimated on the basis of the four-finger pressure; the results are shown in
Figure 11. In the rehabilitation process, although there were systematic errors caused by
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incomplete contact between the fingertip and finger-cot, physical displacement during
movement, and finger-cot size, the entropy weight scoring method had a certain compen-
sation ability, allowing a better estimation of the muscle strength of the FDP, FDS, LE, and
INK muscle groups. Thus, the rehabilitation effect of people could be evaluated using the
established estimation model of finger muscle strength.
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The estimated muscle strength of each finger was scored using the entropy method,
and the results are shown in Figure 12. After grading the estimated muscle strength of each
finger using the entropy weight method with the boundaries of 0.005, 0.010, and 0.015, the
muscle strength level of each muscle group could be more intuitively understood.
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3.2. Fatigue Assessment Based on sEMG Signal
3.2.1. sEMG Signal Acquisition

In finger rehabilitation training, muscle fatigue increases with training time, which
not only does not guarantee the rehabilitation effect, but also affects the accuracy of
rehabilitation assessment. This paper collected the sEMG signals of limb muscles to
evaluate the fatigue degree of people during training to adjust the assessment process as
a compensation factor. In this paper, the superficial flexor muscles of the forearm were
selected [37], the sEMG acquisition equipment was developed as shown in Figure 13, and
the muscle group location was as shown in Figure 14.
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In this paper, the electrode used for sEMG signal acquisition was an electrocardio-
gram(ECG) patch. During the first flexion of the four fingers, the sEMG signal was collected
once [38]. The sEMG signals collected are shown in Figure 15.

Figure 15. sEMG signals collected during flexion.
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3.2.2. Data Processing

The collected sEMG signal needed to be filtered first to improve the overall signal-
to-noise ratio of sEMG. The filtering could be processed using second-order differential
filtering, expressed as follows:

xt = yt+2 − yt+1 − yt + yt−1, (16)

where xt represents the filtered sEMG signal data, and yt represents the original sEMG
signal data.

The filtered sEMG signal is shown in Figure 16. In this paper, two eigenvalues of
mean absolute value (MAV) and root mean square (RMS) were selected, the formulas of
which are as follows [39]:

MAV =
1
N

N

∑
i=1
|xi|, (17)

RMS =

√√√√ 1
N

N

∑
i=1

x2
i , (18)

where N represents the data number of the sEMG signal in the time window, and xi
represents the amplitude of the i-th sEMG signal. Here, N was selected as 50, and the
eigenvalues of the extracted sEMG signal were as shown in Figure 17.

Figure 16. Filtered sEMG signal.
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3.2.3. Fatigue Degree Analysis

This paper selected 20 healthy volunteers (sex ratio 1:1, with ages of 20–50 and body
mass index (BMI) of 19–23) to conduct an experiment to analyze the changes in eigenvalues.
All volunteers gave their informed consent for inclusion before starting the experiment.
First, the four-finger pressure and the sEMG signal data of the volunteers before training
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were collected, and then the volunteers carried out continuous active rehabilitation training
for 20 min. After training, the finger pressure and sEMG data were collected again. Then,
filtering processing and eigenvalue extraction were applied to the two sEMG signals.

The changes between the eigenvalues before and after training were analyzed. The
extracted eigenvalues of three volunteers are shown in Figures 18 and 19.
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It can be seen that, during training, with the increase in fatigue degree, the eigenvalues
of MAV and RMS of the three volunteers showed a certain degree of decline, which
indicates that a certain relationship between fatigue degree and MAV and RMS. Therefore,
we can judge the state of muscle fatigue evaluated on a four-point scale by analyzing their
physiological signal data, corresponding to no fatigue, mild fatigue, moderate fatigue, and
heavy fatigue.
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3.3. Assessment of Range of Motion Based on Motor Encoder
3.3.1. Human–Machine Motion Coupling Model

The simplified model of the motion mechanism of the four-finger flexion/extension
motion component is shown in Figure 20. The rolling bearing B moves in the groove of
the finger track constraint plate, and its structure is similar to a moving cam. The natural
movement track of the finger can be reproduced on the finger-cot D. Firstly, the finger-end
trajectory can be obtained as a function of the size and motion coupling relationship of the
finger, and then the finger motion trajectory constraint plate trajectory can be obtained by
combining the size of the connecting rod EB.
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It is stipulated that the joints of DIP, PIP, and MCP reach the maximum angle evenly
and synchronously, i.e., the motion angles of the three joints have the following angle
relationship [40]:

θPIP = 1.57θDIP, (19)

θDIP = θMCP, (20)

where θ2 = 1.57θ3, and θ1 = θ3.
In Figure 20, the length of CD is 10 mm, the length of AD is 15 mm, the length of AE

is 11 mm, and the length of EB is 123 mm. The trajectory of the constraint board could be
obtained by translating the trajectory of point A in the plane xoz along the axis x negative
direction, i.e., the length of AE, and then along the axis z negative direction, i.e., the length
of EB.

The trajectory parameter equation of point C at the end of the finger could be expressed
as follows: {

xC = a3 cos(3.57θ3) + a2 cos(2.57θ3) + a1 cos θ3
zC = −[a3 sin(3.57θ3) + a2 sin(2.57θ3) + a1 sin θ3]

. (21)

Furthermore, the trajectory parameter equation of point B on the finger trajectory
constraint board could be expressed as follows:{

xB = (a3 + 10) cos(3.57θ3) + a2 cos(2.57θ3) + a1 cos θ3 − (a2 − 10) sin(3.57θ3)− 11
zB = −(a3 + 10) sin(3.57θ3)− a2 sin(2.57θ3)− a1 sin θ3 − (a2 − 10) cos(3.57θ3)− 123

. (22)

3.3.2. ROM Analysis

Range of motion (ROM) is the primary indicator for evaluating patients with muscle
and nerve injury [41]. The ROM was taken as R1, R2, R3, corresponding to the flex-
ion/extension of MCP (θ1), PIP (θ2), and DIP (θ3). The average activity of a healthy person
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was taken as R1, R2, R3. The assessment indicator was based on a four-point system, and
the score sheet is shown in Table 3.

Table 3. ROM rating scale of finger.

ROM 0 < Ri ≤ 0.25
¯
Ri 0.25 < Ri ≤ 0.5

¯
Ri 0.5 < Ri ≤ 0.75

¯
Ri 0.75 < Ri ≤

¯
Ri

Score SRi 1 2 3 4

The angle change value was obtained through the motor encoder, and the moving
distance of the rolling bearing B along the axis x could be calculated through conversion of
the ball screw drive. Then, θ1, θ2, θ3 could be obtained using Equations (19), (20), and (22),
respectively.

3.4. Comprehensive Assessment of Finger Rehabilitation

The comprehensive assessment model was based on the scores of ROM, muscle
strength, and fatigue degree. After using the analytic hierarchy process (AHP) assessment
method to get the weight comparison value, the maximum eigenvalue was then calculated
using column method to determine the weight of the ROM and the three indicators. The
normalized ROM weight judgement matrix and the comprehensive assessment weight
judgement matrix are shown in Tables 4 and 5 respectively.

Table 4. Weight judgment matrix of ROM.

R1 R2 R3 Weight

R1 1 1.93 3.15 0.55
R2 0.52 1 1.66 0.28
R3 0.32 0.6 1 0.17

Table 5. The comprehensive assessment weight judgement matrix.

ROM Muscle Strength Fatigue Degree Weight

ROM 1 1.44 0.23 0.45
Muscle strength 1.44 1 0.16 0.46
Fatigue degree 5 6.33 1 0.09

According to Tables 4 and 5, the total score of the comprehensive assessment of finger
motion function could be calculated as follows:

Z= 0.45× (0.55SR1 + 0.28SR2 + 0.17SR3) + 0.46SMS + 0.09SFD, (23)

where Z is the total score of the comprehensive assessment, and SRi, SMS, SFD are the scores
of joint ROM, finger muscle strength, and finger fatigue degree, respectively.

According to Equation (23), a comprehensive assessment index that can reflect the
rehabilitation level of people can be obtained from the score. The relationship between
the comprehensive assessment index and the degree at which it is located is shown in
Tables 3–6. Finally, an appropriate rehabilitation program can be assigned according to the
degree of finger rehabilitation.

Table 6. Relationship between comprehensive assessment score and the degree of finger rehabilita-
tion.

The Score of Comprehensive
Assessment Z 0.5 < Z ≤ 1.5 1.5 < Z ≤ 2.5 2.5 < Z ≤ 3.5 3.5 < Z ≤ 4

Degree Mild
recovery

Moderate
recovery

Good
recovery

Normal
function
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The fatigue test data of 20 volunteers were introduced into the comprehensive as-
sessment Equation (23) for correlation analysis, and the results are shown in Figure 21.
The total score of the comprehensive assessment without fatigue showed that the degree
of healthy volunteers was at the reasonable level of “normal function”; after a certain
period of training, the comprehensive score decreased without adding the indicator of
fatigue degree. After supplementing the calculation with the fatigue degree indicator,
the total score after training tended to be consistent with the total score before training,
and the error rate remained within 6.8%, proving that the assessment of comprehensive
rehabilitation can be obtained from the training process and, thus, validating the feasibility
of the assessment model.
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4. Discussion

As shown in Figure 11, the pressure of the ring finger, middle finger, and little finger
is high in the process of rehabilitation; the middle finger and ring finger are commonly
used for force, whereas the contact between the pulp of the little finger and the finger-cot is
not completely horizontal in the process of flexion. Therefore, there is a systematic error
caused by the physical displacement of the little fingertip. At the same time, the reason
for the small force of the index finger is that the finger-cot space is fixed and cannot fully
fit each finger. Therefore, the gap between the index finger and the finger-cot is large,
resulting in failure of the index finger to directly touch the pressure sensor throughout
the rehabilitation process. According to the above problems, we can see that there were
some defects in the finger-cot design of the rehabilitation robot, leading to certain errors
in fingertip pressure detection during the rehabilitation process; this will be addressed in
future generations of the robot for mechanism improvement.

Figures 18 and 19 compare the eigenvalues of the three volunteers, where it can be seen
that both MAV and RMS had a significant weakening trend before and after training. This
shows that the effect was not caused by individual differences, whereas the embodiment of
individual differences was mainly reflected in the size of their eigenvalues. The purpose
of active training was to get the muscles to a state of fatigue, thereby highlighting the
relationship between muscle fatigue and the MAV and RMS. Therefore, for the judgment
of muscle fatigue, in addition to the subjective assessment of people, we can analyze their
physiological signal data.

This paper designed a finger muscle strength estimation model based on fingertip
pressure, a fatigue monitoring system based on sEMG signal, and a joint ROM estimation
model based on a motor encoder, which provides a novel assessment method based
on multi-sensor data. Compared with the existing common assessment methods, the
comprehensive rehabilitation assessment method proposed in this paper can be completed
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automatically through multi-source data collection to help patients accurately locate their
own rehabilitation situations, which has lower requirements for experienced rehabilitation
doctors, and the collection method is simple and efficient. This has positive significance
for realizing home treatment, thereby alleviating the shortage of rehabilitation doctors,
reducing costs, and improving the efficiency of rehabilitation assessment.

5. Conclusions

In order to realize the objective, accurate, and convenient assessment of finger reha-
bilitation effect, a new finger rehabilitation assessment method was designed using the
developed End-Effector Finger Rehabilitation Robot, which integrates muscle strength,
fatigue degree, and joint ROM. Firstly, a finger muscle strength estimation model based
on fingertip pressure was established, and the estimated muscle strength was scored and
graded using the entropy weight method. Then, a fatigue monitoring system based on
sEMG signal was designed to determine the fatigue degree of people in the training pro-
cess by collecting the sEMG signals of muscles. Lastly, combined with the finger-joint
ROM indicator, a comprehensive rehabilitation assessment model of finger function was
established by using the AHP assessment method, which can achieve real-time assessment
using multi-sensor signals in the process of rehabilitation training. The effectiveness of the
rehabilitation assessment method was verified by experiment, providing the possibility
of helping patients automatically, accurately locating the rehabilitation situations, and
realizing convenient and objective finger rehabilitation assessment.

In the future, after optimizing the mechanical system and control system, the EFRR
will be applied to real patient samples instead of healthy volunteers to further verify the
feasibility of the comprehensive assessment method of finger function. Using the results of
this comprehensive rehabilitation assessment method, an online system will be designed
to realize home-based independent rehabilitation training and real-time rehabilitation
assessment of patients.
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