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Abstract

Protein translation is a foundational attribute of all living cells. The translation
function carried out by the ribosome critically depends on an assortment of
protein interaction partners, collectively referred to as the translation machin-
ery. Various studies suggest that the diversification of the translation machin-
ery occurred prior to the last universal common ancestor, yet it is unclear
whether the predecessors of the extant translation machinery factors were
functionally distinct from their modern counterparts. Here we reconstructed
the shared ancestral trajectory and subsequent evolution of essential transla-
tion factor GTPases, elongation factor EF-Tu (aEF-1A/eEF-1A), and initiation
factor IF2 (alF5B/elF5B). Based upon their similar functions and structural
homologies, it has been proposed that EF-Tu and IF2 emerged from an ancient
common ancestor. We generated the phylogenetic tree of IF2 and EF-Tu pro-
teins and reconstructed ancestral sequences corresponding to the deepest
nodes in their shared evolutionary history, including the last common IF2 and
EF-Tu ancestor. By identifying the residue and domain substitutions, as well
as structural changes along the phylogenetic history, we developed an evolu-
tionary scenario for the origins, divergence and functional refinement of EF-
Tu and IF2 proteins. Our analyses suggest that the common ancestor of IF2
and EF-Tu was an IF2-like GTPase protein. Given the central importance of
the translation machinery to all cellular life, its earliest evolutionary con-
straints and trajectories are key to characterizing the universal constraints and
capabilities of cellular evolution.
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1 | INTRODUCTION
The translation machinery is a network composed of pro-
teins and RNA polymers that interact to read and decode
nucleotide triplet codons into polypeptide outputs.’
Thought to have evolved over ~3.8 billion years ago, the
origin of the translation machinery represents an “evolu-
tionary shockwave”,” a key innovation and transition in
the origin and early evolution of life.>” Deciphering the
key steps in the emergence of translation is considered to
be one of the hardest problems in biology.>®

Extant protein synthesis proceeds through four pri-
mary steps: initiation, elongation, termination, and ribo-
some recycling."”® Each primary step of translation is
carried out by largely universal protein factors: initiation
factors (IF), elongation factors (EF), and termination or
release factors (RF)." Among the steps in protein transla-
tion, the process of initiation, with the IF proteins as
facilitators, is regarded as the most divergent across bac-
teria, eukaryotes, and archaea.’ For instance, while bac-
teria require three IF proteins (IF1, IF2, IF3) to mediate
translation initiation, archaea—and especially
eukaryotic—translation initiation require more.”'® Of
the IF proteins, initiation factor IF2 (IF2 in bacteria,
alF5B in archaea and eIF5B in eukaryotes; bacterial ter-
minology used from here on)'" is an essential and univer-
sal GTPase protein with a unique and crucial function in
translation.'” IF2 promotes the entire translation process
by catalyzing the formation of a pre-initiation complex
through its role in aligning the initiator tRNA—charged
with a formylated methionine (fMet-tRNA)—to the start
codon located at the P-site of the complex.'*'* Further-
more, IF2 promotes the formation of a mature initiation

complex by mediating the assembly of the small and
large ribosomal subunits.'*'* Following ribosomal subu-
nit assembly, IF2 hydrolyzes GTP to GDP, thereby cata-
lyzing IF2 disassociation. This permits the beginning of
the elongation step in translation,'® setting the stage for
another multi-domain GTPase protein, elongation factor
EF-Tu (EF-Tu in bacteria, aEF-1A in archaea and eEF-
1A in eukaryotes; bacterial terminology used from here
on).®1® EF-Tu is another essential and universal GTPase
protein which shuttles the amino-acylated tRNAs to the
A-site of the ribosome by binding to the aminoacylated
elongator tRNAs and forming a tertiary complex.'” EF-
Tu is crucial for controlling elongation rate and
accuracy.'®

The IF2 and EF-Tu proteins from GTPase family
harbor distinct functional sequence domains and
motifs. IF2 is composed of three main domains: N-ter-
minus, G-domain, and C-terminus, which are further
divided into subdomains (Figure 1)."° The N-terminal
domain is not essential for IF2 protein function.”®
While its exact function is not clearly known, it is
thought that the N-terminus assists in ribosomal subu-
nit association.’*?! The G2 and C2 subdomains of the
G- and C-domains are crucial for GTP-binding and
tRNA-binding, respectively.'®?* EF-Tu is divided into
three domains as well: G, D-II and D-III (Figure 1),!”**
all of which interact with the elongator tRNAs.'”*
The G-domain of EF-Tu is essential for GTP hydrolysis
and protein function.”**> The D-II domain is crucial
for tRNA-binding via interaction with the acceptor
stem of the tRNA as well as the amino acid.'”** EF-Tu
D-II domain shares significant structural similarity
with the IF2 C2-subdomain.*®">®
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FIGURE 1

Methodology to investigate IF2/EF-Tu common ancestral traits. The domain representation of Escherichia coli (E. coli) IF2

(890 amino acids) and E. coli EF-Tu (394 amino acids) (left). Shown are the last common ancestor of IF2 (LCA IF2); the last common
ancestor of EF-Tu (LCA EF-Tu); the last common ancestor of IF2 and EF-Tu (LCA IF2/EF-Tu). The GTP-binding domain of IF2/EF-Tu
common ancestor was inferred using whole sequences of the extant IF2 and EF-Tu proteins. For the ancestral tRNA-binding domain, C2

and D-II fragments from extant IF2 and EF-Tu proteins were used. The analysis was performed as follows: multiple sequence alignment,

phylogenetic reconstruction, ancestral sequence reconstruction (ASR), structural modeling, and structural alignment. IF2 and EF-Tu whole

sequences were also used for relative substitution rate analysis. G and G2 indicate GTP-binding domains of EF-Tu and IF2.
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It has been hypothesized that IF2 and EF-Tu evolved
from an EF-Tu like common ancestor based on
sequence® and structural homology of their extant coun-
terparts.’® The shared key features include GTPase activ-
ity and tRNA binding in both IF2 and EF-Tu proteins,
leading to a parsimonious explanation that these two pro-
teins descended from an ancient, common ancestral pro-
tein. Other studies have shed light on the ancestry of EF-
Tu?'* as well as its diverse role in extant cells.'® Intrigu-
ingly, EF-Tu was suggested to be the first GTPase in early
translation machinery.'” However, the origins, early
divergence and evolution of IF2 and EF-Tu proteins are
not known with certainty.

In the present study, we utilized phylogenetic model-
ing, ancestral sequence reconstruction, structural and
functional predictions to better understand the evolution-
ary origins and history of IF2 and EF-Tu, building on the
hypothesis that the two evolved from a common ancestor
in the last universal common ancestor (LUCA).**** We
reconstructed a shared IF2/EF-Tu phylogeny using bacte-
rial and archaeal sequences and inferred sequences of
IF2 and EF-Tu ancestors using different tree rooting

(a) MAD Rooting

MV Rooting

2.0 aa. subrsite 2.0 aa. sub/site
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methods. We further predicted ancient protein structures
at target nodes using homology modeling, determined
the site-specific evolutionary rates of IF2 and EF-Tu
sequences, and comparatively interpreted the GTP and
tRNA-binding functions of IF2 and EF-Tu proteins along
their shared evolutionary timeline (Figure 1). Finally, we
assessed the evolution of protein domain fragments for
each of these factors by following the same analysis pipe-
line. We present an evolutionary scenario for the early
origins and divergence of the initiation and elongation
factors and discuss the implications for the characteristics
of life's early translation machinery.

2 | RESULTS

2.1 | Reconstruction of the IF2/EF-Tu
phylogeny

We reconstructed an IF2/EF-Tu phylogenetic tree by
aligning the extant IF2 and EF-Tu sequence data
(Figure 2a). Our dataset represents homolog sequences
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FIGURE 2 Phylogenetic and sequence analyses of the ancestral GTP-binding domain. (a) IF2 and EF-Tu joint tree (IF2/EF-Tu Tree-1,
Table S2) constructed using different rooting methods. Branch supports are shown for the ancestral nodes. (b) Sequence alignment of
ancestral and Escherichia coli IF2 and EF-Tu proteins GTP-binding regions. Gray columns highlight 100% conserved residues across all
sequences. The G1/P-loop, Switch-1, Switch-II, G2, G3, and G4 motifs in the GTPase domain are shown with red bars. In the last common
ancestor of IF2 and EF-Tu (LCA IF2/EF-Tu), sites identical to the last common ancestor of IF2 (LCA IF2) are shown with ‘“*”; sites that are
identical to the last common ancestor of EF-Tu (LCA EF-Tu) are shown with “+”.
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from bacterial and archaeal phyla (Table S1). We tested
the IF2/EF-Tu joint tree robustness to alignment uncer-
tainty and evolutionary model misspecification, resulting
in four alternate trees (Table S2). Each resulting tree has
a similar overall topology and IF2 and EF-Tu proteins are
consistently separated into two major clades (Figure S1).
In all trees, the support values for the IF2 and EF-Tu
clades range between 98% and 100%. Each IF2 and EF-Tu
major clade is further subdivided into bacterial and
archaeal clades, except the tree constructed with MAFFT
L-INS-i** alignment combined with the LG + F + G4
evolutionary model (IF2/EF-Tu Tree-2), in which
archaeal IF2 sequences branch within bacterial IF2 with
a support value of ~50% (Figure S1D-F). Ultimately, we
selected the IF2/EF-Tu phylogeny (IF2/EF-Tu Tree-1)
represented by the highest likelihood score calculated by
IQTREE* for subsequent analyses (Figure 2a,
Figure S1A-C, Table S2). The highest likelihood IF2/EF-
Tu tree constructed using MAFFT is in accordance with
Vialle et al., who previously demonstrated that MAFFT
alignments outperformed many other alignment methods
in accuracy of ancestral sequences when using large,
difficult-to-align datasets.>” We rooted the IF2/EF-Tu tree
using minimal ancestor deviation (MAD),*® midpoint

prediction of the IF2/EF-Tu common ancestor
(Figure 2a). Ancestral sequences for the last common
ancestor of IF2/EF-Tu, as well as the last common ances-
tors for both IF2 (LCA IF2) and EF-Tu (LCA EF-Tu)
major clades were inferred from each rooted IF2/EF-Tu
tree (Figure 2a). The mean posterior probabilities of the
IF2 and EF-Tu ancestors are ~64.9% and ~66.9% across
each tree, respectively, and the posterior probability of
the common ancestor sequence composition is robust to
the rooting method. The mean posterior probabilities of
the IF2/EF-Tu last common ancestor vary by ~10%
across differently rooted IF2/EF-Tu trees (Table S2). The
sequence of the common ancestor of IF2/EF-Tu has
~42.6% mean identity to the Escherichia coli (E. coli) IF2
and shares only ~28.4% mean identity with E. coli EF-Tu
across all trees (Figure S2A).

2.2 | Evolution of the GTP- and tRNA-
binding domains of IF2 and EF-Tu

GTP-binding domains of E. coli IF2 and EF-Tu share 26%
sequence identity (Figure S2B). The reconstructed GTP-
binding domain of the IF2/EF-Tu common ancestor

(MP),* and minimum variance (MV)* to test to what  shares high sequence identity with the IF2 ancestor
egree e rooting method affects e sequence ~85% mean identity across all trees, ~43% mean identi
degree th ting method affects the seq 85% dent It 43% dent
TABLE 1 The list of residues and domains in IF2 and EF-Tu proteins that interact with GTP and tRNA—and are assumed to be
homologous—and the likely state of that position (including posterior probabilities, post. prob.) for the IF2/EF-Tu common ancestor (LCA
IF2/EF-Tu)
Residue Domain Associated function
IF2 EF-Tu LCAIF2/EF-Tu IF2 EF-Tu IF2 EF-Tu
V400 V20 V13 (94.9%) G2 G In G1/P-loop. Essential for a- and -phosphate binding***°
H448 H84 H61 (99.7%) In G2/switch II. Essential for GTP-hydrolysis-induced conformational shift**~*°
D501 D138 D115 (98.8%) In G3 motif. Essential for guanine nucleotide recognition***°
F804 F219  F15(99.8%) C2 DI Within lining of fMet binding-pocket*”*® Within lining of amino acid
pocket'”?
A813 V228 V24 (82.1%) Interaction with acceptor arm of fMet- Unknown
tRNA™
G814 T229  G25(74.5%) Within lining of fMet binding-pocket™* Within lining of amino acid
pocket'”?’
R847 M261  H57 (32.2%) Within lining of fMet binding-pocket®®>*>° Unknown
K849 R263 K59 (48.0%) Interaction with formyl group and lining of Interaction with acceptor arm of
fMet binding-pocket?”**34>° tRNA3*°
E860 N274  E70(68.3%) Within lining of fMet binding-pocket®”?***°>  Within lining of amino acid
pocket**>°
C861 V275 V71 (53.4%) Stabilization of amino acid pocket by Unknown
forming di-sulfide bond*”?%*>°
G862 G276  G72(93.2%) Within lining of fMet binding-pocket**>*> Unknown

Note: Sequence site numbers are based on E. coli: accession AIS23657.1 (IF2) and WP_000031784.1 (EF-Tu). Where relevant, associated function lists references
to publications describing the role of individual residues in the associated protein family.
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with EF-Tu ancestor) (Figure S2B). The IF2 and EF-Tu
G-domain, like all GTPases, contains consensus motifs
important for GTPase activity, such as the “GHVDHGK”
(G1 motif/P-loop), “DXPGH” (G2 motif) in Switch-II
region, “NKXD” (G3 motif),™* and others**
(Figure 2b). Specifically, Val-400 in G1/P-loop, His-448 in
G2 motif, and Asp-501 in G3 motif in E. coli IF2 are
essential for a- and f-phosphate binding, GTP-hydrolysis-
induced conformational shift, and guanine nucleotide
recognition, respectively*>*>~** (Table 1). All the consen-
sus GTPase motifs are conserved in the ancestral
sequences (Figure 2b). Especially, residues of functional
importance—Val-400, His-448 and Asp-501 (Table 1)—
exhibit high posterior probabilities in the IF2/EF-Tu
common ancestor (94-99%, Table 1, Figure 2b). The
GTP-binding domain Switch-II region in the IF2/EF-Tu
common ancestor is completely identical to Switch-II
region in the ancestral IF2, whereas 5 out of 20 residues
that compose Switch-II differ from modern IF2
(Figure 2b). On the other hand, almost half of the
Switch-II region in IF2/EF-Tu common ancestor is differ-
ent from ancestral and E. coli EF-Tu (Figure 2b).

Consistently, the GTP-binding domain of extant IF2
and EF-Tu proteins exhibits the slowest substitution rates
across each respective protein—indicating higher
sequence conservation (Figure 3). Comparing across the
protein families, the mean relative substitution rates of
the EF-Tu GTP-binding domain is ~3.7-fold higher than
the IF2 GTP-binding domain (Figure 3, Table S3). Also,
the relative substitution rate in the tRNA-binding domain
is ~2-fold higher for EF-Tu compared to IF2 (Figure 3,
Table S3).

Shared function and structure are often thought to be
an indicator of shared history, despite low sequence simi-
larity.®! IF2 C2 and EF-Tu D-II domains are crucial for
tRNA binding,'”**** are structural homologs, and have
the same domain folding (OB-fold) despite shared
sequence identity of only 13%.?”*® Tracking the origin of
IF2 C2 and EF-Tu D-II domains may provide clues about
the establishment of tRNA specificity and the evolution
of the binding envelope. This is particularly important
because what distinguishes IF2 and EF-Tu is the type of
tRNA they bind to, a fact that has also garnered interest
from early life studies focusing on possible links between
tRNA emergence and amino acid availability implicated
in RNA world scenarios.>

We thus explicitly focused on the C2 and D-II
domains to study the likely origin and divergence of the
tRNA binding domain and generated a C2/D-II phylog-
eny. We tested various alignment methods and evolution-
ary models (Table S4), resulting in four trees (Figure S3).
In all trees, except the tree constructed with MUSCLE
alignment and the LG + R8 model, EF-Tu bacterial and

@ EF-Tu
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D-lli
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//’ b
0 /
/
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/
\__/
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Site Index

[[] GTP-binding domain [ tRNA-binding domain
FIGURE 3 Relative sitewise substitution rates across IF2 and
EF-Tu proteins. (a) IF2 recruits initiator-tRNA to the P-site of the
ribosome. EF-Tu brings elongator-tRNAs to the A-site of the
ribosome. (b) Relative substitution rates in IF2 protein. A value less
than 1 indicates more slowly evolving than the average site, and a
value more than 1 indicates more rapidly evolving than the average
site. The domain names are given at the top (N1: 1-157, N2: 158-
294, G1: 295-387, G2: 388-561, G3: 562-658, C1: 659-793, C2: 794—
890; the residue numbers are based on Escherichia coli IF2).

(c) Relative substitution rates in EF-Tu. The domain names are
given at the top (G: 1-208, D-II: 209-298, D-III: 299-394; the
residue numbers are based on E. coli EF-Tu). Blue and gray shades
represent the GTP-binding and tRNA-binding regions in IF2 and
EF-Tu proteins, respectively.

archaea sequences form a monophyletic group
(Figure S3). We selected the C2/D-II phylogeny (CD/D-II
Tree-1) represented by the highest likelihood score calcu-
lated by IQTREE*® (Table S4). The selected C2/D-II tree
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uses LG + R8 model and shows support values greater
than 97% for separation of C2 and D-II (Figure 4a). We
tested different rooting methods (i.e., MAD, MP, and
MV) to assess the degree to which rooting may impact
our inference of ancestral sequences from the C2/D-II
phylogeny as well (Figure 4a). Different rooting methods
do not substantially affect mean ancestral sequence pos-
terior probabilities, which range between ~46 and 49%
for the C2/D-II common ancestor (Table S4). E. coli IF2
C2 and E. coli EF-Tu D-II domains have 18% sequence
identity. The sequence of the common ancestor of C2/D-
IT has ~32% identity to both E. coli IF2 C2 and E. coli EF-
Tu D-II (Figure 4b). We further calculated the posterior
probability of functionally distinct sites—defined as the
sites impacting tRNA interaction (Table 1). Specifically,
five distinct residues in the common ancestor, Phe-15,
Val-24, Gly-25, Glu-70, and Gly-72 (corresponding to
Phe-804, Ala-813, Gly-814, Glu-860, and Gly-862 in IF2
sites) are constructed with low ambiguity (Figure 4b)—
the likelihood of the second best residue at these sites
does not exceed the 20% posterior probability threshold.>
While only Gly-814 and Gly-862 are conserved in bacte-
rial IF2 (Table S5), all five corresponding residues help
form the binding pocket for fMet.?”**>*>> Gly-814 and
Gly-862 correspond to Thr-229 and Asn-274 in EF-Tu,
respectively. EF-Tu's Thr-229 and Asn-274 (conserved in

(a) MAD Rooting MV Rooting

95.7/31 95.7/31

98.7/100) 98.7/100

79.4/80

97.6/60

76.2/83

0.5 aa sub./site 0.5 aa sub./site

bacteria; Table S6) help form the binding pocket for
amino acids on tRNA.?%>

2.3 | Predicted structure of the IF2/
EF-Tu common ancestor

We modeled and predicted the structure of the IF2/EF-
Tu common ancestor as well as IF2 and EF-Tu ancestors
from the selected IF2/EF-Tu and C2/D-II trees (see
Section 4; Table S2, S4). For each ancestor, five structures
were predicted using the five best templates found from
the PDB database by trRosetta®’ (see Section 4). The qual-
ity of each predicted structure was assessed via
QMeanDisCo,”® where a quality score greater than 0.6
indicates a high-confidence structure. The mean quality
scores for the predicted structures of each IF2 ancestor,
EF-Tu ancestor, and the IF2/EF-Tu common ancestor
from IF2/EF-Tu tree are ~0.69, ~0.79, and ~0.57, respec-
tively. The predicted structures from C2/D-II tree have
mean quality scores of ~0.68 for C2 ancestor, ~0.85 for
D-II ancestor, and ~0.75 for C2/D-II common ancestor.
The predicted ancestral EF-Tu structure shares ~68%
sequence similarity with the previously crystallized
ancient EF-Tu (PDB: 5W76)** and ~64% sequence simi-
larity with the extant EF-Tu structure (PDB: 1EFC).*
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FIGURE 4

Phylogenetic and sequence analyses of the ancestral tRNA-binding domain. (a) IF2-C2 and EF-Tu D-II joint trees (C2-D-II

Tree-1, Table S4), constructed using different rooting methods. (b) Sequence alignment of Escherichia coli IF2 C2 and EF-Tu D-II domains

and ancestral tRNA-binding regions. Gray columns highlight 100% conserved residues across all sequences. Purple columns highlight

functionally distinct residues having high posterior probabilities (Table 1). Minimal ancestor deviation (MAD), minimum variance (MV),

and midpoint (MP) rooting. The circles show the ancestral nodes for LCA IF2 as green, LCA EF-Tu as orange LCA IF2/EF-Tu as purple.

Branch supports are shown for the ancestral nodes
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FIGURE 5

Ancestral protein structure homology modeling. (a) The superimposition of G, D-II, and D-IIT domains of Escherichia coli

EF-Tu (dark gray) to the predicted structure of IF2/EF-Tu common ancestor (LCA IF2/EF-Tu; purple). The GTP-binding domain is enlarged
in the top inset and conserved functional residues Val-13, His-61, and Asp-115 (site numbers in the ancestral sequence) are shown. The GTP
molecule is represented in yellow. Mg2+ ion is shown in green. (b) RMSD values calculated from the structural alignment of GTP-binding
domains between IF2/EF-Tu common ancestor and IF2 last common ancestor (LCA IF2), EF-Tu last common ancestor (LCA EF-Tu), E. coli
IF2 (PDB ID: 3JCJ) and E. coli EF-Tu (PDB ID: 1EFC). (c) The tRNA-binding sequence of the common ancestor from C2/D-II joint tree is
structurally modeled. The tRNA-binding domain is focused and conserved functional residues Phe-15, Val-24, Gly-25, Glu-70, and Gly-72
(site numbers in the ancestral sequence) are shown. A representative fMet-tRNA is shown with blue. (d) RMSD values from structural
alignment of tRNA-binding domains between C2/D-II common ancestor and C2 last common ancestor (LCA C2), D-II last common
ancestor (LCA D-II), E. coli C2 (PDB: 3JCI)*® and E. coli D-II (PDB: 1EFC).*® “*” signs indicate statistical significance tested by Student's -

test with Bonferroni adjustment.

The IF2/EF-Tu common ancestor has the same domain
organization as the predicted and modern EF-Tu struc-
ture and contains all G, D-II, and D-III domains
(Figure 5a; Figure S4A-C). To assess structural similarity,
we calculated root mean square deviation (RMSD), where
lower scores indicate more similar structures.’® Specifi-
cally, RMSD between the GTP-binding domain of
IF2/EF-Tu common ancestor from each rooted IF2/EF-
Tu tree and GTP-binding domains of E. coli IF2 (PDB:
3JCI)*® and EF-Tu (PDB: 1EFC)* were calculated. The
mean RMSD between the GTP-binding domain of the
common ancestor and the E. coli IF2 GTP-binding
domain (PDB: 3JCJ)* is ~1.1 A, while the mean RMSD
between the IF2/EF-Tu common ancestor and the E. coli
EF-Tu GTP-binding (PDB: 1EFC)* is ~0.8 A (Figure 5b).
The mean RMSD between the tRNA-binding domain of
the common ancestor and the E. coli IF2 tRNA-binding
domain (C2) (PDB: 3JCJ)*® is ~0.965 A, while mean
RMSD between the tRNA binding-domain of the com-
mon ancestor and the E. coli EF-Tu tRNA-binding
domain (D-II) (PDB: 1EFC)*’ is ~0.8 A (Figure 5d).
According to statistical tests (Student's t-test with

Bonferroni p-value adjustment), the RMSD between GTP
and tRNA-domains of the common ancestor and modern
EF-Tu are significantly lower (p-value = .01) than the
RMSD between GTP and tRNA-binding domains of the
common ancestor and modern IF2 (Figure 5b,d), indicat-
ing that GTP and tRNA-binding domain structure in the
last common ancestor are more similar to modern EF-Tu
than modern IF2.

3 | DISCUSSION

Using phylogenetics, ancestral sequence reconstruction,
as well as structural and evolutionary models, we
inferred the common ancestor of translation IF2 and EF-
Tu protein functionality. Phylogenies derived from whole
sequences from both protein families (IF2/EF-Tu tree)
(Figure 2a) as well as single protein domains (C2/D-II)
(Figure 4a) provide a robust backbone to understand the
GTP- and tRNA-binding domain ancestry of IF2 and EF-
Tu proteins. To remain as agnostic as possible about the
order of emergence of IF2 and EF-Tu, we employed


http://firstglance.jmol.org/fg.htm?mol=3JCJ
http://firstglance.jmol.org/fg.htm?mol=1EFC
http://firstglance.jmol.org/fg.htm?mol=3JCJ
http://firstglance.jmol.org/fg.htm?mol=1EFC
http://firstglance.jmol.org/fg.htm?mol=3JCJ
http://firstglance.jmol.org/fg.htm?mol=1EFC

FER ET AL.

8 of 13 PROTEIN
Wi LEY—@ SOCIETY

various rooting methods in place of an imposed out-
group. These methods consistently root the tree between
IF2 and EF-Tu (Figures 2a and 4a). Our results tracking
the GTP- and tRNA-binding domain ancestry suggest
that the common ancestor exhibited IF2-like properties.

The GTP-binding domain is thought to be one of the
oldest protein relics®*®* and GTP activation in transla-
tional GTPases promotes changes in overall domain con-
formation and interactions in the functional domains by
the help of Switch-I and Switch-II loops.*>®* The Switch-
II region—including the “DXPGH” motif—largely con-
tributes to the conformational change that is triggered by
the exchange of GTP and GDP both in IF2 and EF-Tu.*
EF-Tu Switch-II undergoes a large conformational
change which enables EF-Tu to maintain stable interac-
tion with amino acylated tRNAs,****°° critically impact-
ing EF-Tu activation and function.”>*® Unlike EF-Tu, the
GTP-triggered conformational changes are limited in
IF2%% it was shown that GTP-conformation is not as
“critical for productive interactions between eIF5B and
its effector molecules as it is for EF-Tu”.*® Our results
show that the GTP-binding domain sequence of the
reconstructed common ancestor is more identical to mod-
ern IF2 than EF-Tu as opposed to the previous sugges-
tions for EF-Tu-like ancestry of translational GTPases."”
To be able to make a functional inference, we focused on
the residues known to impact protein activity with high
posterior probabilities in the common ancestor sequence
(Table 1). The GTP-binding domain in the IF2/EF-Tu
common ancestor still retains the conserved sequence
motifs and functional residues (i.e., Val-400, His-448, and
Asp-501 in E. coli IF2) for GTPase activity with high pos-
terior probabilities (>94%) (Figure 2b, Table 1). In the
common ancestor's GTP-binding domain sequence, the
Switch-1I region—which affects conformational changes
between GTP/GDP bound states****—is similar to IF2
(Figure 2b). This indicates that analogous to modern IF2,
the common ancestor may have a limited conformational
change between GTP bound/unbound states. Further,
crucial tRNA-binding domain fMet binding pocket resi-
dues of IF2 are identical in IF2/ EF-Tu ancestor
(Figure 4b, Table 1).

While our inferences strongly indicate that the
IF2/EF-Tu ancestor primarily exhibited IF2-like proper-
ties, we cannot overlook that one feature, namely the
structure of the binding pocket of the common ancestor,
is more comparable to modern EF-Tu. Structural predic-
tion for reconstructed ancient proteins is still in its
infancy.®*®> Nevertheless, such a possibility may have
interesting implications for the IF2/EF-Tu common
ancestor. For instance, the IF2/EF-Tu ancestor may have
capitalized on IF2-like functionality, while accumulating

mutations that would later prime its descendants for
another function. We thus submit that following gene
duplication from an IF2/EF-Tu ancestor, one of the
duplicated copies, the IF2 ancestor, acquired substitu-
tions in the tRNA-binding domain, fine-tuning IF2 recog-
nition of the initiator fMet-tRNA. These changes further
optimized the translation initiation accuracy and effi-
ciency by specializing for this role while maintaining the
original limited conformation at the GTPase domain.®®
The other copy, the EF-Tu ancestor, coevolved with
tRNAs, gaining flexible conformational function in the
GTP-binding domain, and acquired mutations to bind a
wider variety of tRNA molecules, specializing for EF-Tu
functionality. Intriguingly, it was recently shown that
ancestral EF-Tu proteins were generalists in terms of
their compatibility with ribosomes, compared to the
modern EF-Tus.>' The translation system consists of
numerous essential molecules and the complete picture
of evolutionary trajectory of translation over geologic
time will require an integrated view into other compo-
nents such as the other translation GTPases (e.g., EF-G,
RF3) and tRNAs®’ with the underlying chemical systems.
Further, ancestral tRNA-IF2 interactions may differ from
those of extant translation interaction partners. In any
case, a multitasking bifunctional factor operating within
ancestral translation machinery could suggest intriguing
possibilities for the earliest translation. Whether the
shared ancestor was able to conduct both initiation and
elongation functions efficiently as a single proto-
translation factor, whether mutations drove a tradeoff
between structural conformation versus function, and the
degree to which these traits were interrelated, are to be
studied in greater detail.

It is generally accepted that the ribosome and its pro-
tein factors were already established in LUCA.*° Expan-
sion of the translation machinery, on the other hand, is
thought to have occurred prior to LUCA®® potentially fol-
lowing the rRNA core center of the ribosome
formation,** strengthening the hypothesis that, unlike
the ribosome,”® the supporting translational factors were
not yet fully established in the early cellular era. While
we do not know if LUCA had adapted a system that is
largely similar to the extant translation machinery, or
whether translation-as-we-know-it subsequently emerged
in a stepwise fashion or through simultaneous matura-
tion of supporting components,”"”? tracing the evolution-
ary history of early translation factors will unravel the
fascinating story of life's core information processing
machinery. Further studies exploiting protein evolution
should be implemented to empirically recreate distinct,
yet extinct sequences of proteins that once operated at
the heart of an ancestral translation machinery.
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4 | METHODS
41 | Sequence curation

IF2 protein sequences (NCBI: AIS23657.1) were curated
from the National Center for Biotechnology Information
(NCBI) non-redundant (nr) database.”> IF2 protein
sequences from 17 different bacterial phyla
(Actinobacteria, Aquificae, Armatimonadetes, Bacteroi-
detes, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria,
Deinococcus-Thermus, Firmicutes, Fusobacteria, Planto-
mycetes, Proteobacteria, Spirochaetes, Synergistetes,
Tenericutes, Thermotogae) were retrieved using the Basic
Local Alignment Search Tool, BLASTp’* with an e-value
threshold of <le—5 (Last accessed November 2021). The
dataset with all homologous sequences and taxon-specific
insertions was filtered manually to remove partial, dupli-
cate, or non-IF2 sequences. The remaining sequences
were aligned and used to construct a maximum-
likelihood tree with FastTree v.2.1.12”° to inspect
sequence alignment and phylogeny. Sequences having
distant sequence identity (<65%) to their corresponding
phyla were manually removed. The alignment, tree
reconstruction, and sequence removing steps were iter-
ated until all the sequences were grouped in their corre-
sponding phyla. The final IF2 dataset included
268 bacterial taxa (Table S1). EF-Tu sequences from the
same taxa list were additionally retrieved from NCBI
BLASTp search using bacterial EF-Tu sequence as query
(BLASTp query: WP_000031784.1). From the BLAST out-
puts, EF-Tu sequences for the interested taxa were kept
and non-EF-Tu sequences were filtered out. To collect
archaeal IF2 and EF-Tu sequences to be used as out-
group, separate PSSMs using standalone PSI-BLAST were
performed.”® The gap-only columns in each alignment
were removed using Seaview v4.”” BLAST searches using
an IF2 query returned EF-Tu sequence hits. Sequences
were clustered with CD-HIT.”® The duplicated sequences
were removed from the dataset. The final dataset
included archaeal IF5B and EF-1A sequences from Eur-
yarchaeota, TACK, Candidatus thermoplasmata, DPANN
and Asgard phyla groups (Table S1).

4.2 | Phylogenetic analysis and ancestral
sequence reconstruction

To minimize bias of the method, different alignment
algorithms were used to generate alternative trees follow-
ing Garcia et al.”’ The combined phylogeny of IF2 and
EF-Tu was constructed using the same 408 IF2 and
408 EF-Tu sequences. In total, 816 sequences were
aligned together using MAFFT L-INS-i** and MUSCLE

v3.8 alignment.®’® The alternate four phylogenies were
reconstructed using IQTREE v1.6.11.>° Ultrafast boot-
strap (UFBoot)*' and Shimodaira-Hasegawa approximate
likelihood-rate test (SH-aLRT)** were implemented. The
reconstructed trees were rooted using (i) Minimal Ances-
tor Deviation (MAD),*® (ii) midpoint rooting (MP),*
(iii) Minimum Variance (MV) rooting methods.** The
rooted trees were visualized using FigTree v1.4.4.%>

The combined phylogeny of IF2-C2 and EF-Tu D-II
was constructed using the same C2 fragments from 405 IF2
and D-II fragments from 405 EF-Tu sequences. From the
previous dataset, IF2 and EF-Tu sequences were removed
from three archaeal taxa (Candidate M. washburnensis,
Candidate P. syntrophicum and C. tenax) since they
branched outside of archaeal clade. In total, 810 sequences
were aligned using MAFFT L-INS-i** and MUSCLE v3.8.*°
Model fitting, rooting, and visualization were performed as
described above. Each rooted IF/EF-Tu and C2/D-II maxi-
mum likelihood (Tables S2, S4) tree was used for ancestral
sequence inference by PAML.**

4.3 | Structure prediction of ancestral
proteins

The structures of ancestral proteins were modelled using
trRosetta.”” The qualities of the predicted structures were
calculated using QMeanDisCo.>® For structural alignment,
E. coli IF2 (PDB: 3JCJ)*® and E. coli EF-Tu (PDB: 1EFC)*®
crystallized structures were used. The structural alignment
scores were calculated as RMSD scores in UCSF Chimera
v1.14.% Statistical tests were performed using the Student's
t-test with “Bonferroni” p-adjustment method.

4.4 | Substitution rate analysis

The site-specific evolutionary rates per protein sites were
calculated using all extant sequences present in the align-
ments described above (Figure S5). Substitution rate per
site was calculated by IQTREE v1.6.11 using an empirical
Bayesian approach. The rates were indexed based on the
E. coli IF2 and EF-Tu protein sites. The site-specific substi-
tution rates were smoothed and represented with a curve
using non-parametric local polynomial regression fitting
(i.e., loess) method. The difference between the mean of
the site-specific rates of the domains was tested using the
pairwise t-test with “Bonferroni” p-adjustment method.
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