
����������
�������

Citation: Wang, F.; Chandler, P.D.;

Zeleznik, O.A.; Wu, K.; Wu, Y.; Yin,

K.; Song, R.; Avila-Pacheco, J.; Clish,

C.B.; Meyerhardt, J.A.; et al. Plasma

Metabolite Profiles of Red Meat,

Poultry, and Fish Consumption, and

Their Associations with Colorectal

Cancer Risk. Nutrients 2022, 14, 978.

https://doi.org/10.3390/

nu14050978

Academic Editor: Anna Kipp

Received: 18 January 2022

Accepted: 22 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Plasma Metabolite Profiles of Red Meat, Poultry, and Fish
Consumption, and Their Associations with Colorectal
Cancer Risk
Fenglei Wang 1, Paulette D. Chandler 2, Oana A. Zeleznik 3 , Kana Wu 1, You Wu 1, Kanhua Yin 4 , Rui Song 1,
Julian Avila-Pacheco 5, Clary B. Clish 5, Jeffrey A. Meyerhardt 6, Xuehong Zhang 1,3, Mingyang Song 1,4,7,8,
Shuji Ogino 4,5,9,10 , I-Min Lee 2,4 , A. Heather Eliassen 3,4 , Liming Liang 4,11,†,
Stephanie A. Smith-Warner 1,4,†, Walter C. Willett 1,3,4,† and Edward L. Giovannucci 1,4,*

1 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
fengleiwang@g.harvard.edu (F.W.); hpkwu@channing.harvard.edu (K.W.); yow728@g.harvard.edu (Y.W.);
ruisong@g.harvard.edu (R.S.); poxue@channing.harvard.edu (X.Z.); mis911@mail.harvard.edu (M.S.);
swarner@hsph.harvard.edu (S.A.S.-W.); wwillett@hsph.harvard.edu (W.C.W.)

2 Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA 02115, USA; pchandler@bwh.harvard.edu (P.D.C.);
ilee@rics.bwh.harvard.edu (I.-M.L.)

3 Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School,
Boston, MA 02115, USA; nhotz@channing.harvard.edu (O.A.Z.); nhahe@channing.harvard.edu (A.H.E.)

4 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
yinkanhua@gmail.com (K.Y.); sogino@bwh.harvard.edu (S.O.); lliang@hsph.harvard.edu (L.L.)

5 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; jravilap@broadinstitute.org (J.A.-P.);
clary@broadinstitute.org (C.B.C.)

6 Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA;
jeffrey_meyerhardt@dfci.harvard.edu

7 Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School,
Boston, MA 02114, USA

8 Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
9 Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s

Hospital and Harvard Medical School, Boston, MA 02115, USA
10 Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA 02215, USA
11 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
* Correspondence: egiovann@hsph.harvard.edu; Tel.: +1-(617)-432-4648
† Theses authors contributed equally to this work.

Abstract: Background: Red and processed meat consumption has been consistently associated with
increased risk of colorectal cancer (CRC), but the association for fish intake is unclear. Evidence using
objective dietary assessment approaches to evaluate these associations is sparse. Objectives: We
aim to investigate the plasma metabolite profiles related to red meat, poultry, and fish consumption
and examine their associations with CRC risk. Methods: We measured plasma metabolites among
5269 participants from the Nurses’ Health Study (NHS), NHSII, and Health Professionals Follow-
Up study (HPFS). We calculated partial Spearman correlations between each metabolite and self-
reported intake of seven red meat, poultry, and fish groups. Metabolite profile scores correlated
to self-reported dietary intakes were developed using elastic net regression. Associations between
self-reported intakes, metabolite profile scores, and subsequent CRC risk were further evaluated
using conditional logistic regression among 559 matched (1:1) case-control pairs in NHS/HPFS and
replicated among 266 pairs in Women’s Health Study. Results: Plasma metabolites, especially highly
unsaturated lipids, were differentially associated with red meat and fish groups. Metabolite profile
scores for each food group were significantly correlated with the corresponding self-reported dietary
intake. A higher dietary intake of processed red meat was associated with a higher risk of CRC
(pooled OR per 1 SD, 1.15; 95% CI: 1.03, 1.29). In contrast, higher metabolite profile scores for all
fish groups, not dietary intakes, were consistently associated with a lower CRC risk: the pooled OR
per 1 SD was 0.86 (95% CI: 0.78, 0.96) for total fish, 0.86 (95% CI: 0.77, 0.96) for dark meat fish, and
0.87 (95% CI: 0.78, 0.97) for canned tuna fish. No significant associations were found for other food
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groups. Conclusions: Red meat and fish intake exhibited systematically different plasma metabolite
profiles. Plasma metabolite profile of fish intake was inversely associated with CRC risk.

Keywords: red meat; fish; plasma metabolomics; colorectal cancer

1. Introduction

Colorectal cancer (CRC) remains the second most commonly occurring cancer in
women and the third in men worldwide [1]. CRC incidence is largely affected by screen-
ing and modifiable dietary and lifestyle factors [2]. Among these factors, meat and fish
consumption has been the subject of many investigations. The consumption of red meat,
especially processed red meat, is consistently associated with an increased risk of CRC [3].
However, there is still uncertainty regarding the association between fish intake and
CRC risk. The World Cancer Research Fund and American Institute for Cancer Research
(WCRF/AICR) concluded that there was only “limited evidence” for the beneficial effect of
fish intake in CRC prevention [4]. Recent studies of fish intake and CRC risk also generated
inconsistent results [5–8].

Previous epidemiological studies examining the association of meat and fish intake
with CRC risk mainly used self-reported dietary data. Rapid developments in high-
throughput metabolomics are leading to a new era in nutritional epidemiological research.
By measuring the small-molecule metabolites in biological samples, metabolomics may
provide an objective picture of food intake and its related biological consequences [9].
Feeding trials and observational studies have demonstrated that plasma and urinary
metabolites differed between meat and fish consumption [10–14]. However, it is unknown
whether the metabolite profiles related to meat and fish intake are associated with CRC
risk and whether these profiles could be used as a complementary approach to evaluate
the association between meat and fish intake and CRC risk.

Therefore, we examined the associations of red meat, poultry, and fish consumption
with plasma metabolite profiles among participants from the Nurses’ Health Study (NHS),
NHSII, and Health Professionals Follow-up Study (HPFS). We also developed metabolite
profile scores that were correlated to the intakes of these meat and fish groups and evaluated
the prospective associations of metabolite profile scores with CRC risk. The results for
metabolite profile scores were further replicated in an external validation cohort (Women’s
Health Study, WHS).

2. Methods
Study Population

Our primary analyses were based on three prospective cohorts: NHS, NHSII, and
HPFS. The NHS started in 1976 among 121,700 female registered nurses aged 30–55 years,
and the NHSII began in 1989 among 116,429 younger female registered nurses aged
25–42 years [15]. The HPFS was initiated in 1986 and enrolled 51,529 male health pro-
fessionals aged 40–75 years [16]. Blood samples were collected from subsamples of the
NHS between 1989 and 1990, NHSII between 1996 and 1999, and HPFS between 1993 and
1995 [17,18]. We included participants who provided blood samples and were previously
selected for metabolomics sub-studies of breast cancer and CRC (all diagnosed after blood
collection). After excluding participants with missing dietary data, 5269 participants (2627
from NHS, 2096 from NHSII, and 546 from HPFS) were included in the final analyses.
Among them, we included 559 case-control pairs (404 pairs for colon cancer and 122 pairs
for rectal cancer) in the analysis of CRC risk. Each CRC case was matched to one control by
age, month, and fasting status at blood collection.

The external replication analysis was performed in WHS, a completed randomized
controlled trial originally designed to examine the role of aspirin and Vitamin E in the
prevention of cancer and cardiovascular disease [19]. From 1992 to 1995, 39,876 healthy
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women aged 45 years or older were recruited. Blood samples were provided by 71%
of participants before randomization. The trial ended in 2004, but annual observational
follow-up continued. We included samples from 266 CRC cases (diagnosed after blood
collection) and matched controls with available dietary and metabolomics data. Each
case was matched to a control by age, ethnicity, month, and fasting status at the time of
blood collection and added follow-up time [20]. The study protocol was approved by the
institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan
School of Public Health and those of participating registries as required.

3. Dietary Assessment

Validated semi-quantitative food frequency questionnaires (FFQs) were adminis-
tered to assess long-term intake of foods and nutrients in NHS/NHSII/HPFS every
four years [21–23]. Participants were asked to report how often, on average, they con-
sumed a standard portion size of each food in the past year. To better reflect dietary
consumption at the time of blood draw, we calculated the average intakes from the two
FFQs closest to the blood collection date for each cohort (1986 and 1990 in NHS, 1995 and
1999 in NHSII, and 1990 and 1994 in HPFS). We included seven meat and fish groups in
the analyses: total red meat, unprocessed red meat, processed red meat, poultry, total
fish, dark meat fish, and canned tuna fish. Consistent with previous studies from the
same cohorts [24], unprocessed red meat included hamburgers; beef, pork, or lamb as
a sandwich or mixed dish; and beef, pork, or lamb as a main dish. Processed red meat
included bacon; hot dogs; and sausage, salami, bologna, or other processed meat. Total
red meat was derived by summing consumption of unprocessed and processed red meat.
Poultry included chicken or turkey with or without skin; chicken or turkey sandwiches; and
chicken or turkey hot dogs. Total fish included dark meat fish (e.g., salmon); canned tuna
fish; breaded fish cakes, pieces, or fish sticks; and other fish. In WHS, dietary information
was collected using the same validated FFQ at trial baseline. The serving sizes for each
food group are shown in Supplementary Table S1.

4. Metabolomics Measurement

Profiles of plasma metabolites in all four studies (NHS, NHSII, HPFS, and WHS) were
obtained using high-throughput liquid chromatography-mass spectrometry techniques at
the Broad Institute of MIT and Harvard [25]. Hydrophilic interaction liquid chromatog-
raphy with positive ion mode mass spectrometry detection was used to separate polar
metabolites, and C8 chromatography with positive ion mode detection was used to profile
lipids. Raw data were processed using TraceFinder software (Thermo Fisher Scientific,
Waltham, MA, USA) and Progenesis QI (Nonlinear Dynamics, Newcastle upon Tyne, UK).
Known metabolite identities were confirmed using authentic reference standards or refer-
ence samples. Unknown metabolites were aligned using an in-house alignment algorithm,
m2Aligner. This tool identifies unambiguous shared peaks in datasets to be aligned and
uses them as alignment vectors adjusting for deviations in retention time (RT), mass to
charge ratio (m/z), and abundance for all the peaks in the datasets. The adjusted m/z
and RTs are subsequently used to match peaks using a scoring system that takes into
consideration their mass accuracy and their retention time deviation (the corresponding
methodology manuscript is in preparation).

We excluded known or unknown metabolites whose intraclass correlation coefficient
(ICC) across blinded quality control replicates (10% of study sample) were <0.4, had no
between-person variation, or detection rate <75%. Metabolites that were not stable with
the processing delay inherent in our cohort study blood collections were also excluded
(n = 38) [26]. Metabolite levels were reported as measured LC-MS peak areas, which are
proportional to metabolite concentration. Metabolite peak areas were then log-transformed
and converted to z-scores with a mean of 0 and a standard deviation of 1 within each
sub-study. A total of 287 known and 2561 unknown metabolites were included in the
present analyses. Among these metabolites, 58 known metabolites had missing data,
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with a missing proportion ranging from 0.02% to 13.5%; 1206 unknown metabolites had
missing data, with a missing proportion ranging from 0.02% to 22.1%. The missing-
ness was imputed using 1

2 minimum value. The 287 known metabolites were primarily
lipids (n = 206, including 85 glycerolipids, 31 glycerophospholipids, 22 plasmalogens,
21 carnitines, 21 lysophospholipids, 13 cholesterol & cholesterol esters, 5 sphingolipids,
4 steroids, and 4 ceramides), but also included amino acids related metabolites (n = 41) and
other metabolites (n = 40) (Supplementary Figure S1A). The lipid metabolites were highly
correlated with each other within categories (Supplementary Figure S1B). A majority of
the known metabolites (254 out of 287) were qualified for replication analysis in WHS.
Metabolite data were log-transformed and converted to z-scores within each sub-study.

5. Nondietary Covariates

In NHS/NHSII/HPFS, we collected information on lifestyle factors, including smok-
ing, physical activity, multivitamin use, aspirin use, history of previous endoscopy, and
family history of CRC using the biennial follow-up questionnaires. BMI (in kg/m2) was
calculated using height reported at baseline and body weight reported closest to the blood
draw. Age and fasting status were collected via questionnaires completed at blood col-
lection. In WHS, participants provided information on age, weight, height, and lifestyle
factors at baseline.

Statistical Analyses

We examined the associations between intake of the seven meat and fish groups and
each known and unknown metabolite in NHS/NHSII/HPFS, using partial Spearman
correlation analysis adjusting for age and fasting status at blood draw, endpoint, and
case/control status in the original sub-study, smoking, BMI, physical activity, total energy
intake, alcohol intake, and modified Alternate Healthy Eating Index (AHEI, a measure of
diet quality; intakes of red meat, alcohol, trans fat, long-chain n-3 fats, and polyunsaturated
fats were not included in the calculation). Intakes of red meat, poultry, and fish were
mutually adjusted. The Benjamini-Hochberg false discovery rate (FDR) and Bonferroni
correction were used to account for multiple testing.

To develop metabolite profile scores that are correlated to the consumption of seven
meat and fish groups, NHS/NHSII/HPFS participants were randomized to either the
training set (n = 3688) or the testing set (n = 1581) in a 7 to 3 fashion (Figure 1). The dietary
consumption data were inverse normal transformed to improve normality. We used an
elastic net [27] with 10-fold cross-validation to regress the consumption of each meat and
fish group on the 287 known metabolites in the training set. The trained model was then
applied to calculate the metabolite profile score for the testing set and participants in WHS.
The metabolomic score was calculated as the weighted sum of the selected metabolites with
weights equal to coefficients from the elastic net regression. Metabolite profile scores in the
training set were obtained using a leave-one-out approach to avoid overfitting. Pearson
correlation coefficient between self-reported dietary consumption and the corresponding
metabolite profile score was calculated to evaluate how well the score was correlated to the
dietary consumption. Apart from the selected known metabolites in the metabolite profile
scores, we added unknown metabolites into the elastic net model and developed a new
score that included the unknown ones (Figure 1). The new metabolomic scores were applied
to the testing set, and their Pearson correlation coefficients with the corresponding dietary
consumption were calculated as well. We then compared the Pearson correlation coefficients
before and after including unknown metabolites to assess the contribution of unknown
metabolites to the correlation between metabolomic score and dietary consumption [28].

Associations of meat and fish consumption and their metabolite profile scores with
CRC were assessed among 559 pairs of CRC cases and matched controls from NHS/HPFS
and 266 pairs from WHS (Figure 1). Conditional logistic regression adjusting for BMI,
family history of CRC, history of endoscopy, multivitamin use, aspirin use, smoking,
physical activity, alcohol intake, total energy intake, and modified AHEI was used to
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estimate the odds ratios (OR) and 95% confidence intervals (CI) for one SD increase in
dietary intake or metabolite profile score. These covariates for adjustment were selected
based on our subjective knowledge and previous analysis results in the cohorts. Results
from NHS/HPFS and WHS were then pooled using a fixed-effect model. All statistical
analyses were performed in R version 4.1.
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Figure 1. Schematic of the study design for the metabolome wide association analysis, development
and evaluation of the metabolite profile scores, and analysis of CRC risk. CRC, colorectal cancer;
HPFS, Health Professionals Follow-up Study; NHS, Nurses’ Health Study; NHSII, Nurses’ Health
Study II; WHS, Women’s Health Study.

6. Results

In NHS/NHSII/HPFS, participants were predominately white and middle-aged
(mean age 53 years), with an average BMI of 25.4 kg/m2 (Table 1). The percentage energy in-
take from protein was 18%, and animal protein was 13%. Participants with a higher total red
meat intake were slightly more likely to have a lower total fish intake (Pearson r = −0.07).
In the analysis of CRC, participants had similar demographic characteristics but were a
little older (mean age 61 years) and had a lower proportion of females. Compared to control
participants, CRC cases were less likely to use multivitamins and aspirin, receive endoscopy
screening, and be physically active, but were more likely to smoke and have a family history
of CRC. They also had a somewhat higher intake of total red meat (mainly processed red
meat) and a lower fish intake. Similarly, CRC cases in WHS were less likely to be physically
active and more likely to smoke and have a family history of CRC. However, they had a
lower intake of total red meat (mainly unprocessed red meat) than control participants.
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Table 1. Characteristics of the study participants in NHS, NHSII, and HPFS, and external replication
participants in WHS.

NHS, NHSII, and HPFS
WHS (Included in the Nested

Case-Control Analysis of CRC)
Overall

(n = 5269)

Included in the Nested
Case-Control Analysis of CRC

Cases
(n = 559)

Controls
(n = 559)

Cases
(n = 266)

Controls
(n = 266)

Age at blood draw, years 53 (9) 61 (8) 61 (8) 59 (8) 59 (8)
Female, % 90 65 65 100 100

White race, % 98 97 99 98 98
BMI, kg/m2 25.4 (4.9) 25.9 (4.4) 25.5 (4.2) 26.7 (5.5) 26.2 (5.0)

Participants selected as cases in
sub-studies, % 50 100 0 100 0

Fasting at blood collection, % 69 65 65 73 73
Multivitamin use, % 68 62 64 29 28

Regular aspirin use, % 42 47 49 10 13
Endoscopy, % 28 43 47 4 a 3 a

Family history of CRC, % 11 18 14 14 11
Smoking, %

Never 54 45 46 45 54
Former 36 45 46 43 36
Current 10 10 8 12 10

Physical activity,
MET-hours/week 18.4 (22.2) 19.9 (21.6) 21.2 (24.7) 14.4 (20.8) 16.5 (27.6)

Alternate Healthy Eating Index b 24.7 (6.6) 25.3 (6.7) 25.5 (7.0) / /
Assigned to aspirin group

(for WHS), % / / / 43 49

Assigned to vitamin E group
(for WHS), % / / / 45 50

Dietary intake
Total energy intake, kcal/day 1830 (506) 1873 (552) 1910 (543) 1692 (530) 1752 (538)

Alcohol intake, g/day 5.8 (10.4) 8.7 (14.5) 8.4 (12.9) 5.0 (9.9) 4.2 (7.6)
Total red meat intake,

servings/week 6.6 (4.2) 7.1 (5.2) 6.8 (4.4) 6.1 (5.2) 6.5 (5.4)

Unprocessed red meat,
servings/week 4.9 (3.2) 5.1 (3.8) 5.0 (3.3) 4.7 (3.7) 5.2 (3.9)

Processed red meat,
servings/week 1.6 (1.8) 2.0 (2.3) 1.7 (1.9) 1.3 (1.8) 1.3 (1.8)

Poultry, servings/week 4.3 (2.6) 4.2 (2.9) 4.2 (2.3) 2.7 (1.8) 2.8 (1.8)
Total fish, servings/week 1.8 (1.6) 2.0 (1.5) 2.3 (2.1) 1.5 (1.4) 1.5 (1.4)

Dark meat fish, servings/week 0.3 (0.5) 0.3 (0.5) 0.4 (0.6) 0.2 (0.3) 0.2 (0.4)
Canned tuna fish, servings/week 0.9 (0.9) 0.9 (0.9) 1.1 (1.4) 0.7 (0.8) 0.7 (0.9)

Values are means (SDs) for continuous variables and percentages for categorical variables. BMI, body mass
index; CRC, colorectal cancer; HPFS, Health Professional Follow-up Study; MET, metabolic equivalent task; NHS,
Nurses’ Health Study; NHSII, Nurses’ Health Study II; WHS, Women’s Health Study. a Information was obtained
at the first 12-month follow-up questionnaire after the trial. b Intakes of red meat, alcohol, and three types of fat
(trans fat, long-chain n-3 fats, and polyunsaturated fats) were not included in the calculation, range is 0–60.

Of the 287 known metabolites, 85 were significantly correlated with total red meat
intake, 36 with unprocessed red meat, 51 with processed red meat, 28 with poultry, 60 with
total fish, 60 with dark meat fish, and 27 with canned tuna fish after Bonferroni correc-
tion (Figure 2). Similar metabolites correlated with total red meat intake, unprocessed
red meat, and processed red meat. All three red meat groups were positively associated
with creatine, hydroxyproline, coenzyme Q10, myristoleic acid, acylcarnitines, and plas-
malogens with a number of double bonds ≤6 but were negatively associated with highly
unsaturated lipid species including triglycerides (TAGs), phosphatidylethanolamines (PEs),
phosphatidylcholines (PCs), lysophosphatidylethanolamines (LPEs), and lysophosphatidyl-
cholines (LPCs). Poultry intake was positively correlated with creatine, ectoine, a few PCs,
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TAGs, and PE plasmalogens after Bonferroni correction. In contrast to red meat intake,
total fish intake, dark meat fish, and canned tuna fish were all positively correlated with
highly unsaturated lipid species. When we restricted the analysis to fasting participants
and participants selected as controls in the original sub-studies, the correlation results were
similar (Supplementary Figures S2 and S3).
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Figure 2. Heatmap of known metabolites that are significantly associated with meat and fish intake.
Only metabolites significantly (after FDR correction) correlated with at least one meat or fish group
are shown. The intensity of the colors represents the degree of association between plasma metabolites
and consumption of total red meat, unprocessed red meat, processed red meat, poultry, total fish,
dark meat fish, and canned tuna fish, as measured by partial Spearman correlation analyses adjusting
for age at blood draw, fasting status, endpoints, and case/control status in the original sub-study,
BMI, smoking, physical activity, alcohol intake, total energy intake, and modified AHEI. These meat
and fish groups were also mutually adjusted. Metabolite with “(*)” indicate a representative name. *,
p < 0.05 after FDR correction and **, p < 0.05 after Bonferroni correction. AHEI, Alternate Healthy
Eating Index; BMI, body mass index.

Of the 2561 unknown metabolites, 702 were significantly correlated with total red
meat intake after Bonferroni correction, 222 with unprocessed red meat, 462 with processed
red meat, 65 with poultry, 284 with total fish intake, 414 with dark meat fish, and 119 with
canned tuna fish (Supplementary Table S2). Among these, the absolute partial Spearman
rho exceeded 0.3 for 11 unknown metabolites: one with total red meat intake, 10 with total
fish intake, and 5 with dark meat fish intake. Pearson correlation analysis between these
11 unknown metabolites and those known metabolites (130 in total) that were significantly
associated with total red meat, total fish, or dark meat fish consumption identified several
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unknown metabolites being strongly correlated with C38:6 PC, C40:6 PC, C40:9 PC, and
C22:6 LPC (all Pearson r > 0.8) (Supplementary Figure S4).

A total of 53 known metabolites were selected in the elastic net regression for total
red meat intake, 55 for unprocessed red meat, 36 for processed red meat, 7 for poultry,
18 for total fish, 27 for dark meat fish, and 11 for canned tuna fish (Table 2). Each metabo-
lite profile score based on the selected known metabolites was significantly correlated
with the corresponding self-reported dietary intake in both NHS/NHSII/HPFS and WHS
(r = 0.33–0.46 for total red meat; r = 0.36–0.42 for unprocessed red meat; r = 0.19–0.33 for
processed red meat; r = 0.12–0.21 for poultry; r = 0.31–0.40 for total fish; r = 0.32–0.42
for dark meat fish; and r = 0.14–0.22 for canned tuna fish) (Table 2). Adding unknown
metabolites into the metabolite profile scores did not materially improve their correlations
with the dietary intake (Supplementary Table S3). As a sensitivity analysis, we adopted
the random forest algorithm to impute the missingness and re-derived the metabolomic
profile score. The newly derived scores were highly correlated to the original scores, with a
Pearson r = 0.98 for the total red meat score, 0.98 for the unprocessed red meat, 0.96 for the
processed red meat score, 0.92 for the poultry score, 0.99 for the total fish score, 0.99 for the
dark meat fish score, and 0.97 for the canned tuna fish score.

Table 2. Pearson correlation coefficients between meat and fish intake and the corresponding metabo-
lite profile score.

NHS, NHSII, HPFS (n = 5269) WHS (n = 532)
Number of Known
Metabolites in the
Metabolite Profile

Score

r (95% CI) Number of Known
Metabolites

Available in the
Score Calculation

r (95% CI)Training a

(n = 3688)
Testing

(n = 1581)

Total red meat 53 0.44 (0.41, 0.46) 0.46 (0.42, 0.49) 50 0.33 (0.25, 0.40)
Unprocessed red meat 55 0.40 (0.38, 0.43) 0.42 (0.38, 0.46) 55 0.36 (0.28, 0.43)

Processed red meat 36 0.32 (0.29, 0.35) 0.33 (0.29, 0.38) 34 0.19 (0.12, 0.28)
Poultry 7 0.21 (0.18, 0.24) 0.18 (0.14, 0.23) 6 0.12 (0.04, 0.20)

Total fish 18 0.40 (0.38, 0.43) 0.39 (0.35, 0.43) 18 0.31 (0.23, 0.38)
Dark meat fish 27 0.42 (0.40, 0.45) 0.42 (0.38, 0.46) 25 0.32 (0.24, 0.39)

Canned tuna fish 11 0.22 (0.19, 0.25) 0.20 (0.15, 0.25) 11 0.14 (0.06, 0.22)

CI, confidence interval; HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; NHSII, Nurses’
Health Study II; WHS, Women’s Health Study. a Calculated using leave-one-out approach.

After adjusting for potential confounders, dietary intake of processed red meat was
significantly associated with CRC risk. The pooled OR for 1 SD higher intake was 1.15
(95% CI: 1.03, 1.29) (Table 3). We did not observe consistent associations for dietary intake
of three fish groups across NHS/HPFS and WHS. An inverse association for total fish
and canned tuna fish was only found in NHS/HPFS and for dark meat fish in WHS. In
contrast, metabolite profile scores for these three fish groups were inversely associated
with CRC risk in both NHS/HPFS and WHS (Table 3). The pooled OR per 1 SD higher
was 0.86 (95% CI: 0.77, 0.96) for total fish, 0.86 (95% CI: 0.77, 0.96) for dark meat fish, and
0.87 (95% CI: 0.78, 0.97) for canned tuna fish. No significant associations were observed for
other meat intakes or metabolite profile scores. The results remained similar after adjusting
for menopausal status or ethnicity in NHS/HPFS (data not shown). In the analysis by
tumor site, we observed that the above associations were stronger for rectal cancer than
those for colon cancer (Supplementary Table S4).

Among metabolites selected in metabolite profile scores of all three fish groups, five
metabolites (C22:6 LPC, C22:6 LPE, C58:9 TAG, C60:12 TAG, and C38:7 plasmalogen) were
positively correlated to fish intake but inversely associated with CRC risk; two metabolites
(C20:4 LPE and C22:5 LPC) were inversely correlated to fish intake but positively associated
with CRC risk (Supplementary Figure S5).
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Table 3. Associations of meat and fish intake and the corresponding metabolite profile score with
CRC risk.

Dietary Intake Metabolite Profile Score

NHS/HPFS
(n = 1118)

WHS
(n = 532) Pooled NHS/HPFS

(n = 1118)
WHS

(n = 532) Pooled

Total red meat
Basic model a 1.09 (0.97, 1.24) 0.94 (0.80, 1.10) 1.03 (0.94, 1.14) 1.07 (0.95, 1.21) 1.16 (0.97, 1.39) 1.10 (0.99, 1.21)

Multivariable model b 1.16 (0.99, 1.35) 0.95 (0.77, 1.16) 1.07 (0.95, 1.21) 1.02 (0.89, 1.16) 1.14 (0.95, 1.37) 1.06 (0.95, 1.18)
Unprocessed red meat

Basic model a 1.03 (0.91, 1.16) 0.91 (0.77, 1.08) 0.99 (0.89, 1.09) 1.05 (0.93, 1.18) 1.13 (0.95, 1.35) 1.08 (0.97, 1.19)
Multivariable model b 1.05 (0.91, 1.21) 0.91 (0.74, 1.12) 1.00 (0.89, 1.13) 1.00 (0.87, 1.14) 1.12 (0.93, 1.34) 1.04 (0.93, 1.15)

Processed red meat
Basic model a 1.18 (1.04, 1.34) 1.01 (0.85, 1.18) 1.11 (1.00, 1.23) 1.12 (0.99, 1.27) 1.18 (0.98, 1.41) 1.14 (1.03, 1.26)

Multivariable model b 1.23 (1.06, 1.42) 1.03 (0.85, 1.25) 1.15 (1.03, 1.29) 1.07 (0.93, 1.22) 1.16 (0.95, 1.40) 1.10 (0.98, 1.22)
Poultry

Basic model a 1.02 (0.91, 1.15) 0.91 (0.77, 1.08) 0.99 (0.90, 1.09) 0.99 (0.88, 1.12) 0.87 (0.73, 1.04) 0.95 (0.86, 1.05)
Multivariable model b 1.07 (0.94, 1.22) 0.94 (0.78, 1.12) 1.02 (0.92, 1.14) 0.99 (0.87, 1.12) 0.86 (0.72, 1.04) 0.94 (0.85, 1.05)

Total fish
Basic model a 0.82 (0.71, 0.95) 1.00 (0.84, 1.19) 0.89 (0.79, 0.99) 0.87 (0.76, 0.98) 0.85 (0.71, 1.02) 0.86 (0.78, 0.95)

Multivariable model b 0.84 (0.72, 0.98) 1.06 (0.88, 1.29) 0.92 (0.82, 1.04) 0.87 (0.77, 0.99) 0.84 (0.70, 1.02) 0.86 (0.77, 0.96)
Dark meat fish
Basic model a 0.96 (0.85, 1.09) 0.86 (0.72, 1.03) 0.93 (0.84, 1.03) 0.86 (0.76, 0.98) 0.85 (0.71, 1.02) 0.86 (0.78, 0.95)

Multivariable model b 0.98 (0.86, 1.11) 0.86 (0.71, 1.04) 0.94 (0.85, 1.05) 0.87 (0.76, 0.99) 0.84 (0.70, 1.03) 0.86 (0.77, 0.96)
Canned tuna fish

Basic model a 0.80 (0.69, 0.93) 0.98 (0.83, 1.17) 0.87 (0.78, 0.98) 0.87 (0.77, 0.99) 0.87 (0.72, 1.04) 0.87 (0.79, 0.96)
Multivariable model b 0.82 (0.70, 0.95) 1.00 (0.83, 1.20) 0.89 (0.79, 1.00) 0.88 (0.77, 1.00) 0.87 (0.72, 1.05) 0.87 (0.78, 0.97)

Odds ratio (OR) and 95% confidence interval (CI) of CRC risk per standard deviation increment in dietary intakes
or the metabolite profile scores were presented. a The basic models were conducted using conditional logistic
regression without adjusting for any covariates. b The multivariable models were further adjusted for BMI, family
history of CRC, endoscopy, multivitamin use, aspirin use, smoking, physical activity, total energy intake, alcohol
intake, and modified AHEI (in NHS/HPFS). AHEI, Alternate Healthy Eating Index; BMI, body mass index; CRC,
colorectal cancer; HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; WHS, Women’s
Health Study.

7. Discussion

Leveraging metabolomics data from four studies, we found systematic differences
in plasma metabolite profiles according to various types of meat and fish consumption.
We also developed metabolite profile scores that were correlated to the consumption of
red meat, poultry, and fish. Higher metabolite profile scores for all three fish groups (total
fish, dark meat fish, and canned tuna fish), rather than their self-reported dietary intake,
were consistently associated with a lower CRC risk in both NHS/HPFS and WHS. These
findings suggest the promising use of metabolomics in complementing traditional dietary
assessments to evaluate the association between dietary exposure and health outcomes.

Consistent with previous studies, we found that consumption of all three red meat
groups was positively correlated with several PE and PC plasmalogens, all of which have a
low degree of unsaturation and contain acid moieties derived from animal tissues [14,29]. In
contrast, total fish intake was positively correlated with highly unsaturated lipids, including
TAGs, PCs, PEs, LPCs, LPEs, CEs, and plasmalogens. Fish intake, especially marine fish, is
the principal dietary contributor of highly n-3 polyunsaturated fatty acids [30], and thus,
are dietary sources for these lipids and their downstream metabolites.

Apart from lipid metabolites, we also observed several other metabolites correlated
with meat and fish consumption. Creatine, an amino acid metabolite abundant in skele-
tal muscle [31], was positively correlated with the intake of red meat, poultry, and fish.
Hydroxyproline, an amino acid that forms part of collagen [32], was positively correlated
with red meat and poultry intake. Additionally, we found a positive correlation between
poultry intake and ectoine (an α-amino acid), in line with one previous study [14]. Ectoine
can be synthesized and released by several species in the genus Halomonas [33], the dom-
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inant microbial genus in the chicken embryo [34], which might lead to the presence of
ectoine in chicken.

Most previous metabolomic studies mainly focused on known metabolites, which
are only a small percent of the data obtained in a typical metabolomics measurement
(~10%) [35]. In the present study, we analyzed the unknown metabolites and identified a
set of unknown metabolites that were significantly correlated with meat or fish consump-
tion. Several unknown metabolites even exhibited a higher correlation with meat and fish
intake (partial Spearman rho > 0.3) compared to known metabolites. By further examining
the correlation between these unknown metabolites and the known metabolites, strong
correlations were found with C38:6 PC, C40:6 PC, C40:9 PC, and C22:6 LPC, indicating their
potential biological links. However, whether these unknown metabolites are metabolites of
the known metabolites or unrelated molecules affected by the same food is not clear. A crit-
ical next step is to structurally identify the promising and influential unknown metabolites.
It should also be noted that despite the many statistically significant correlations between
meat and fish groups and the unknown metabolites, these unknown metabolites added
minimally to the correlations between meat and fish intakes and metabolite profile score
based only on the known metabolites. The possibility remains that other metabolomics
platforms may add further independent prediction of intake.

The human metabolome reflects a holistic biological status, which can be influenced
by various exogenous and endogenous factors, such as dietary intakes, gut microbiota,
health status, and genotype [36,37]. The metabolites selected in the metabolite profile score
for meat or fish consumption could represent, in part, the components of food, such as
the eicosapentaenoic acid/docosahexaenoic acid-containing lipids for the fish intake and
hydroxyproline for the intake of red meat and poultry. Other metabolites, for example,
C20:4 LPE and C22:5 LPC, could be related to the metabolic processes after fish intake, as
fish is one of the main sources of arachidonic acid (C20:4) [38] and docosapentaenoic acid
(C22:5) [39], but it was inversely correlated with these two lipids. Thus, metabolite profile
score can be a comprehensive way to reflect both genuine compounds from foods as well
as markers of complex metabolomic responses to dietary exposures.

Not surprisingly, we found a significant positive association between processed red
meat intake and CRC risk. However, the metabolite profile score for processed red meat
consumption was not significantly associated with CRC risk. One possible explanation
could be that the increased CRC risk associated with high processed red meat intake was
mainly due to the carcinogenic compounds [40], such as polycyclic aromatic hydrocar-
bons, heterocyclic amines, and N-nitroso compounds, which were not measured in our
metabolomics platforms. On the contrary, we did not observe a consistent inverse associa-
tion between dietary fish intake and CRC risk, but inverse associations were found for the
metabolite profile scores of all three fish groups in both NHS/HPFS and WHS. Results from
previous studies of fish intake and CRC risk were generally inconsistent, some indicating
an inverse association [7,8], but others not [5,6]. Unlike self-reported dietary intake data
widely used in previous studies, the metabolomics data objectively captures the metabolites
related to dietary exposures in the human body, which might be more directly associated
with health outcomes. The seven metabolites (C20:4 LPE, C22:5 LPC, C22:6 LPC, C22:6
LPE, C58:9 TAG, C60:12 TAG, and C38:7 plasmalogen) selected in metabolite profile scores
of all three fish groups could represent the beneficial metabolomic response to fish intake,
and this response led to a lower risk of CRC.

The main strengths of our study are the large sample size, comprehensive metabolite
profiles including both known and unknown metabolites, prospectively collected dietary
data before CRC diagnosis, and the use of the elastic net model, which performs well in
high-dimensional data where there are high correlations between predictors [41]. Moreover,
the robustness of our metabolite profile scores was validated in an independent study.
Nevertheless, our results also have several limitations. First, we did not have data on the
type of red meat. Red meat subtypes (beef, lamb, or pork) may differ in their associations
with CRC risk [42]. Second, only one metabolomics measurement was performed for each
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participant. However, our previous pilot study indicated that most metabolites were highly
stable over 1–2 years within individuals [26]. Third, the metabolites measured in our
study focused on lipids, amino acids, and amino acid derivatives and did not include all
established biomarkers of food intake. Finally, participants in our study were mainly white
women; replication of our findings in men and other racial groups is needed.

In conclusion, we identified a panel of metabolites differentially correlated with the
intake of red meat, poultry, and fish. We also developed metabolite profile scores associ-
ated with the consumption of meat and fish and observed consistent inverse associations
between metabolite profile scores of fish intake and CRC risk. Our results suggest the
potential utility of metabolomics in complementing traditional dietary assessments to
investigate the diet-disease association and disentangle the metabolomic responses linking
higher fish intake with reduced CRC risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14050978/s1, Figure S1: Categories (A) and marginal Pearson
correlation (B) of the 287 known metabolites included in the analysis; Figure S2: Heatmap of known
metabolites significantly associated with meat and fish intake, restricted to fasting participants;
Figure S3: Heatmap of known metabolites significantly associated with meat and fish intake, restricted
to control participants; Figure S4: Pearson correlations between unknown metabolites strongly
correlated to meat and fish intake and known metabolites; Figure S5: Known metabolites selected
in the metabolite profile scores and their associations with CRC; Table S1: Serving sizes for each
food group; Table S2: Number of unknown metabolites significantly associated with meat and fish
intake; Table S3: Pearson correlation coefficients between dietary consumption and metabolite profile
scores of meat and fish consumption after adding unknown metabolites into the score; Table S4:
Associations of meat and fish intake and the corresponding metabolite profile score with risk of colon
cancer and rectal cancer in the Nurses’ Health Study/Health Professional Follow-up Study.
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