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A rare variant analysis framework using
public genotype summary counts to prioritize
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Sequencing cases without matched healthy controls hinders prioritization of germline

disease-predisposition genes. To circumvent this problem, genotype summary counts from

public data sets can serve as controls. However, systematic inflation and false positives can

arise if confounding factors are not controlled. We propose a framework, consistent summary

counts based rare variant burden test (CoCoRV), to address these challenges. CoCoRV

implements consistent variant quality control and filtering, ethnicity-stratified rare variant

association test, accurate estimation of inflation factors, powerful FDR control, and detection

of rare variant pairs in high linkage disequilibrium. When we applied CoCoRV to pediatric

cancer cohorts, the top genes identified were cancer-predisposition genes. We also applied

CoCoRV to identify disease-predisposition genes in adult brain tumors and amyotrophic

lateral sclerosis. Given that potential confounding factors were well controlled after applying

the framework, CoCoRV provides a cost-effective solution to prioritizing disease-risk genes

enriched with rare pathogenic variants.
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To identify genetic variants, especially rare variants, that are
associated with various human diseases, scientists have
generated whole-exome sequencing (WES) and whole-

genome sequencing (WGS) data, such as the Genome Aggrega-
tion Database (gnomAD)1, the Trans-Omics for Precision Med-
icine (TOPMed) program2, and the 100,000 Genomes Project3.
Detecting causative rare variants typically requires a much larger
sample size. Such a study should include at least thousands of
cases and matched controls to ensure statistical power. However,
most sequencing studies focused on a specific disease or trait
include relatively few cases and very few (if any) matched healthy
controls. Although many large cancer genomics studies have
characterized the landscape of somatic mutations by sequencing
germline and somatic samples from each patient, these studies do
not include independent controls because germline samples from
the same individuals are used as paired normal controls. There-
fore, most cancer genomics sequencing studies cannot be used
directly to perform germline-based case-control association ana-
lyses for the discovery of novel cancer predisposition genes.

Combining the cases under scrutiny with external controls for
prioritizing disease-predisposition genes is one solution. The best
approach to controlling for confounding batch effects caused by
the heterogeneity of exome-capture protocols, sequencing plat-
forms, and bioinformatics-processing pipelines would be to re-
map all raw sequencing data and then jointly call the genotypes of
cases and controls. However, this approach is expensive and
requires a lot of storage and a long processing time, which might
not be feasible for some research groups. Another solution would
be to download jointly called control genotype matrices (if
available), merge with case genotype matrices, and apply variant
quality control (QC) and filtering to account for batch effects.
Alternatively, when the full-genotype data are not available and
assuming the pipelines have negligible effects on the association
analyses after QC and filtering, one can use publicly available
summary counts for case–control association analyses4. Here the
summary counts refer to the allele or genotype counts of each
variant within a cohort. If confounding factors are well-con-
trolled, the summary counts–based strategy is the least expensive
and can dramatically increase the sample size of the controls. For
instance, gnomAD V2.1 has more than 120,000 WES samples,
and gnomAD V3 has more than 70,000 WGS samples1.

Using high-quality summary counts has led to important
supporting evidence in identifying pathogenic germline muta-
tions in adult cancers5 and pediatric cancers6. However, research
is lacking on developing a general framework for using high-
quality summary counts and evaluating the performance of such
a framework.

Several challenges remain when using public summary counts
for rare variant association tests. First, because the genotypes of
the cases and controls are called separately, the QC and filtering
steps might not be consistent if performed separately for cases
and controls. To account for such differences, Guo et al.4 relied
on the variant annotation QD (quality score normalized by allele
depth); they also used synonymous variants to search for
threshold combinations that would remove systematic inflation.
One disadvantage of this approach is that it relies on one variant
QC metric, instead of more sophisticated variant QC methods,
such as VQSR7.

Differences in the genetic composition of unmatched cases and
controls present another challenge. When using publicly available
summary counts, researchers often use Fisher’s exact test (FET)4,6

which either treats different ethnicities as a single population or
selects samples from one major ethnicity, e.g., samples of Eur-
opean ancestry. Ignoring ethnicity when using public summary
counts can result in false positives due to population structure
when rare variants have relatively high minor allele frequencies

(MAFs) in a specific population. On the other hand, considering a
single matched ethnicity might reduce the statistical power.
Although a better and more common practice is to use all sam-
ples and account for the population structure by adjusting for the
principal components (PCs)8, it is not applicable when only
public summary counts are available without individual genotype
information.

The inflation factor estimation of the association test when
focusing on very rare variants is also important. In genome-wide
association studies with common variants, the null distribution of
P values is assumed to be continuous and follow a uniform dis-
tribution U(0, 1). However, for rare variants, especially those with
very low MAFs, assuming a uniform distribution of the P values
under the null hypothesis of no association is no longer accurate.
For example, in the FET under the null hypothesis of no asso-
ciation, the count of cases with alternate alleles in a 2 × 2 con-
tingency table for each gene follows heterogenous hypergeometric
distributions, depending on the total number of rare alleles. For
the same reason, traditional FDR-control methods such as the BH
procedure9 assuming a uniform distribution of the P values under
the null is suboptimal for the discrete count-based test results10.

Lastly, the most critical challenge when using public summary
counts is related to rare variants in high-linkage disequilibrium
(LD). In most cases, the independence assumption is probably
reasonable because the variants are rare and the chance of
observing both variants in one sample is low, unless they are in
strong LD. However, when the assumption is violated, either due
to high LD or technical artifacts, that can cause false-positive
findings or systematic inflation.

In this study, we develop a framework called CoCoRV to
prioritize disease-predisposition genes by using public summary
counts as controls for rare variant burden tests, making it possible
to discover novel genes without sequencing additional healthy
control samples. Our framework provides consistent variant QC
and filtering, ethnicity-stratified gene-based burden test, accurate
inflation factor estimation, powerful FDR control, and an
approach to detect high-LD variants using gnomAD summary
counts, which is essential for removing false positives. We also
evaluate the concordance between using summary counts and full
genotypes. In general, the concordance is good, especially for top-
ranked genes with a low P value threshold. We focus on genotype
calls from WES data throughout this study.

Results
Overview of the proposed framework. To address the chal-
lenges in rare variant association tests using public summary
counts, we developed a new framework termed Consistent
summary Counts based Rare Variant burden test (CoCoRV)
(Fig. 1). The input case data can be either full-genotype-based
or summary-count-based. The input control data are summary-
count data such as from gnomAD. We included a fast and
scalable tool to calculate the coverage summary statistics
because coverage depth is important in consistent filtering
between cases and control4. Cases belonging to different eth-
nicities can be matched to corresponding controls. CoCoRV
allows a user to customize criteria for filtering variants based on
annotations in the input data. We provided several built-in
variant categories based on annotations from ANNOVAR11 and
REVEL scores12. For putative pathogenic variants, we included
variants annotated with “stopgain”, “frameshift_insertion”,
“frameshift_deletion”, and “nonsynonymous” with a REVEL
score ≥0.65, which showed empirically good discrimination
power for potential pathogenic versus nonpathogenic variants.

CoCoRV ensures that the variant QC and filtering
are consistently applied between cases and controls. Only
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high-quality variants are retained in the analysis by
controlling the coverage depth, missingness of the variants in
both case and controls. A blacklist of potentially problematic
variants was created based on gnomAD’s filtering status and
discrepancies in allele frequencies between the WES and
WGS platforms (Supplementary Methods). In addition to the
FET, CoCoRV includes ethnicity-stratified analysis using the
Cochran–Mantel–Haenszel (CMH)-exact test, which mitigates
systematic inflations when samples include multiple ethnicities.
We computed sample counts in three models (dominant,
recessive, and double-heterozygous) within each gene.

Due to the discrete nature of count data, we propose an
accurate inflation factor estimation method that is based on
sampling the true null distribution of the test statistics (Fig. 2a)
and is essential for checking possible systematic inflations.
Similarly, the commonly used BH procedure9 for FDR control
assumes a continuous uniform distribution, which is not true
for discrete count-based tests. We, therefore, propose to use
more powerful resampling-based FDR-control methods or FDR
methods directly accounting for the discrete and heterogeneous
distribution for the FET and CMH test results (Fig. 2a). The
sampled P values under the null hypothesis can be used for both
inflation factor estimation and resampling-based FDR control.

We introduce a LD-detection method using only gnomAD
summary counts to identify high-LD variants (Fig. 2b). It
partitions the gnomAD data set into several independent
summary-count sets, and then infers the high-LD between
variants based on the generated independent summary counts
for each ethnicity. Excluding high-LD variants results in a more
accurate estimation of the number of samples in each model and
reduces false positives when the assumption of independence
between variants is violated, especially for the recessive and

double-heterozygous models. Details of the framework and
modeling are provided in “Methods”. We also provide a side-
by-side comparison of the features of our proposed tool and other
existing tools for summary-count-based analysis (Supplementary
Data 1).

CoCoRV’s inflation factor estimation is unbiased and accurate.
We compared our proposed inflation estimation method with
two other methods described by TRAPD4. We used the rare
variant analysis results of the central nervous system tumors
(CNS) and acute lymphoblastic leukemia (ALL) cohorts against
our in-house controls under a dominant model to compare these
methods (Fig. 3). We also checked their distributions under the
simulated null P values, where a well-estimated inflation factor
should be unbiased and centered around 1. For the CNS cohort
tested using FET (Fig. 3a), the inflation factor λemp estimated
using empirical null P values was 0.96, and those of the other two
methods were greater than 1. For the ALL cohort tested using
FET (Fig. 3b), all three inflation factors were less than 1. The
rightmost plots in Fig. 3 show that λemp was well-calibrated under
the null hypothesis, while the other two methods from TRAPD
showed either upward or downward biases. The QQ plots based
on CoCoRV’s method showed almost straight lines along the
diagonal, and the other two methods showed clear shifts from the
diagonal. In addition to FET, we saw similar patterns using the
CMH-exact test (Fig. 3c, d). The estimation of CoCoRV’s λemp

was stable, even with as few as 100 simulated null P values.
Therefore, in later estimations of λemp in QQ plots, we used
100 simulated null P values per gene, unless otherwise specified.
When the null distribution of the inflation factor is of interest, as
shown in the rightmost plots, it is better to use at least 1000

Fig. 1 Overview of the proposed framework CoCoRV. The top box describes the main input and preprocessing. The bottom left box describes the key
features and the tested models. The bottom right box shows the main output. ControlAC: the annotation for the alternate allele count; ControlAN: the
annotation for the total allele count; ControlAA: the annotation for the homozygous alternate genotype count; P_DOM: the raw P value of the dominant
model using two-sided Fisher’s exact test, OR_DOM: the odds ratio of the dominant model; P_adj: the adjusted P values for multiple testing.
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replications for a more stable result. Because of the better per-
formance of the proposed estimation, we applied it to nearly all
subsequent analysis results in this study. The run time of our
inflation factor estimation is less than a minute for sampling 1000
replicates of ~20,000 genes, considerably fast because of the direct
computing of the cumulative distribution function (CDF) of
P values under the null hypothesis.

Concordance of rare variant association between using sum-
mary counts and full genotypes. We compared the concordance
between the result obtained using summary counts from sepa-
rately called controls and that using jointly called full genotypes.
For this analysis, we generated separately called control summary
counts using an in-house control cohort of 8175 WES and treated
the jointly called case–control full genotypes as the ground truth
(Supplementary Fig. S1). To our knowledge, this is the first direct

comparison between analysis results using summary counts of
separately called cases and controls and that using jointly called
full genotypes. For this comparison, we focused on the commonly
used dominant model. We used an AF threshold of 1e–3 for the
CNS and ALL cohorts and for all comparisons.

We first compared the sample counts with defined pathogenic
variants for each gene. For cases, we compared and tabulated the
sample counts with defined potential pathogenic variants from
using jointly called full genotypes and that from using summary
counts into a cross-classification/contingency table (Fig. 4a, b).
For both the CNS and ALL cohorts, the concordance between
using full genotypes and CoCoRV was very high (Pearson’s
correlation r > 0.98). Most of the discordances were within
one count. For controls, because the number of samples with
defined potential pathogenic variants varied in a large range, we
used the scatter plot of those numbers to illustrate the
concordance between using full genotypes and using summary

African American (afr) as an example
Chr21-45999723-AGG-A
Alternate allele count

Chr21-45999727-A-ACG
Alternate allele count Total haplotypes
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6059405elam_rfa_CA_recnac

2124683783elamef_rfa_CA_slortnoc

6092572572elam_rfa_CA_slortnoc

6754593293elamef_rfa_CA_lortnoc_non_recnac_non

6372062852elam_rfa_CA_lortnoc_non_recnac_non

p11

p10
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p00

r

x-r

y-r

n-x-y+r

Four possible haplotypes of two loci

Model the likelihood of pairs of observed summary counts  ∑

Test the parameter of interest representing LD strength: odds ratio

Total counts of  each haplotypeHaplotype  frequency

SNP1
Alternate allele count

SNP2
Alternate allele count Total haplotypes

gnomAD full set

cancer

noncancer set
controls set

Partition into six independent summary 
counts by data sets and by sex per ethnicity 

Observed data

other diseases 
(non_cancer_non_control)

healthy controls

P

5.26E-10 10 240 148 56737

6.90E-05 1 249 75 56810

0.000206 3 247 14 56871

... ... ... ... ...

Observed counts for each gene 

...

null hypergeometric distribution Fast sampling of p-values under 
null from p-values’ CDF

• Average the ordered P-values under null to obtain the empirical mean 
• Regress the observed P-values against in log10 scale
• Works for both FET and CMH exact test for stratified 2x2 tables

FDR estimationInflation factor estimation 

...
replicates 

• Adopted powerful resampling-based FDR control or FDR methods directly 
accounting for the discrete and heterogeneous distribution 

• Works for both FET and CMH exact test for stratified 2x2 tables

(a)

(b)

LD detection from observed summary counts

Fig. 2 The schematic representation of proposed methods in CoCoRV. a The estimation of inflation factors and FDR. We sample the raw P values under
the null directly from P value’s cumulative distribution function (CDF) which is very fast. Either Fisher’s exact test or Cochran–Mantel–Haenszel exact test
can be used. Either one-sided or two-sided test can be specified. b LD detection using gnomAD summary counts. The gnomAD full data sets were
partitioned into three independent sets of summary counts and then further partitioned into six independent sets stratified by sex. The six independent
summary counts between a pair of variants can be modeled with the LD strength as a parameter, and the LD strength can be tested for LD detection. The
table at the bottom shows an example of the six independent summary counts between two variants of high LD in the African American ethnicity group.
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counts (Fig. 4c, d). The correlation between using full genotypes
and CoCoRV was also very high (r= 0.996). The high correlation
of the raw counts shows that the proposed summary counts-
based framework maintained a high concordance with the jointly
called full-genotype-based framework. We also examined the top
genes of the association tests between using jointly called full

genotypes and separately called summary counts (Fig. 4e, f). In
general, the percentage of top overlapped genes was about 70% or
higher, especially for the more stringent P value thresholds. We
also performed ethnicity-stratified analyses for both frameworks
and found similar overlapping patterns (Supplementary Fig. S2).
Finally, the QQ plots using jointly called full genotypes and
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separately called summary counts were also similar, with
correlations between –log10 P values greater than 0.9 (Fig. 4g, h).

We also investigated the coverage depth cutoff in QC. The
coverage depth cutoff of 10 shows the best concordance measured
by correlations of qualified sample counts in cases or controls,
and correlations of the association test P values (Supplementary
Data 2). The best concordance of using the depth cutoff 10 could
be related to the QC of genotypes: we keep high-quality genotypes
with DP ≥ 10 (DP is the number of informative reads for each
sample in the VCF file), which is consistent with the QC used in
gnomAD for summary allele counts. As the coverage cutoff
increases, the variant quality will increase too, but we might risk
missing good quality variants if the coverage cutoff is too high,
especially for some regions not well covered due to high GC
contents or other sequencing features. We also calculated the size
of qualified regions with different coverage cutoffs on gnomAD’s
whole-exome coverage data (Supplementary Fig. S3). The cover-
age cutoff of 10 seems to be a good trade-off between variant
quality and the size of qualified regions being retained.

FDR methods accounting for discrete counts show good FDR
control and improved power. Two adopted resampling-based
methods: RBH_P and RBH_UL, and one recently developed
method designed for discrete distributions ADBH.sd10 show good
FDR control in general and similar improved power for FET-
based test results, even though RBH_P has slightly inflated FDR
in some settings (Supplementary Fig. S4). Compared to BH, the
relative power increases of RBH_UL range from 11 to 27%
(Supplementary Data 3). Filtering the genes with few rare allele
counts (BH_T2 and BH_T3) shows little power increase. When
applied to the CNS association test results using gnomAD as the
control (threshold <0.2), the three methods accounting for the
discrete counts all identify the established genes NF1, SUFU, ELP1
as significant, while the BH method only identifies NF1 as sig-
nificant (Supplementary Data 4). For resampling-based FDR
control, the time cost is within a minute, similar as that in
inflation estimation because sampling the P values under the null
hypothesis is the main time-consuming part. For ADBH.sd, the
time cost is even smaller because only P values’ CDF is needed
without sampling P values under the null.

The proposed LD-detection method has high power in
detecting high-LD rare variants and accurately identifies
MNVs in gnomAD. We first evaluated the type I error and
statistical power of the proposed LD test by using simulated data
consisting of six independent sets of summary counts (Supple-
mentary Fig. S5a). The type I error was well-controlled. The
power of detecting LD increased as the LD strength and the AF
increased. The LD test was well powered for detecting strong
positive LDs but not for detecting weak LDs. When full genotypes
are available, the proposed test can also be used because the full-
genotype-based LD test is a special case of our proposed method,
where the total haplotypes is 2. We evaluated our method in

simulations under the full-genotype setting and compared it with
the ld function in snpStats13 which is designed for LD detection
using full genotypes. CoCoRV and snpStats have almost the same
results (Supplementary Fig. S5b) and the type I error was well-
controlled. The power increased remarkably compared to using
summary counts, which was expected given that more informa-
tion is available when using full genotypes.

As one application and a validation of the proposed LD-
detection method, CoCoRV was applied to detect high-LD
multinucleotide variants (MNVs)14 without access to the sequen-
cing reads information. A MNV is defined as a cluster of two or
more nearby variants on the same haplotype in an individual.
Because variants within a MNV are close to each other, they are
very likely transmitted together thus exhibiting high-LD in a
population. We applied our proposed LD test to the whole exomes
of gnomAD data to detect rare variant pairs of high LD and
compare them with the reported gnomAD MNVs detected using
sequence reads. Although high-LD variants and MNVs are not the
same, they have similarities when restricted to rare variants with
distances ≤2 BPs (Table 1). For each ethnicity and each variant, we
extracted the gnomAD exome count data and generated six
independent sets of summary counts using the cohort and sex
information. Then we applied the LD test on pairs of variants
annotated with certain functions, excluding synonymous variants.

The detection results in gnomAD per ethnicity group are
summarized in Table 1. In total, ~10 million tests of variant pairs
were performed. By controlling the FDR at 0.05, we detected
nearly 10,000 coding variant pairs that are in LD (Supplementary
Data 5). Most of the detected variant pairs with FDR < 0.05 were
high-LD variants (odds ratio >150). We also checked the overlap
between high-LD variants and reported gnomAD MNVs. Because
the reported gnomAD coding MNVs are pairs of SNVs within 2
BPs, we restricted the detected pairs to high-LD (odds ratio >150)
SNVs for both variants and the distance within 2 BPs. About 90%
of them are reported in the gnomAD MNV dataset (either from
exomes or genomes) using read-based MNV detection14. We then
manually checked the read haplotype information from the
gnomAD website (https://gnomad.broadinstitute.org/) for those
116 pairs not reported as gnomAD MNVs. There were 85 unique
pairs if not distinguishing ethnicities, and 65 (76.4%) had read
information. Of the 65 pairs, 60 (92.3%) had supported reads
showing that they are on the same haplotype. The reason that
these pairs were not reported as gnomAD MNVs might be due to
other filtering criteria used. Reported gnomAD MNVs had
alternate alleles verified on the same haplotype, which provides
strong evidence that the pairs detected through our LD test are
true high-LD variants because the likelihood of two independent
rare alleles appearing on the same haplotype is very low.
Although there was a peak when the distance was <10 BPs,
there was also a large mass when it was >10 BPs (Supplementary
Fig. S6), emphasizing the importance of detecting high LD with
relatively long distance. In general, the recombination rate
decreased as the physical distance increased, indicating that even
though the physical distance was large, the recombination

Fig. 3 Comparisons of different inflation factor estimation methods. The first three columns show the inflation factors estimated using different methods.
The dashed lines are the fitted lines in the inflation factor estimation. The fourth column shows boxplots of the estimated inflation factors using simulated
P values under the null hypothesis (n= 1000 independent replicates). The red circle indicates the mean value, the center line indicates the median value,
the bounds of the box covers data between 25th and 75th percentile. The outliers are points above or below 1.5 times the interquartile range starting from
the 75th or 25th percentile. If there is no outlier, the whisker defines the minima or maxima, otherwise it is 25th percentile minus 1.5 times interquartile
range or 75th percentile plus 1.5 times the interquartile range. a Results based on the central nervous system (CNS) cancer cohort and the two-sided
Fisher’s exact test (FET). b Results based on the acute lymphoblastic leukemia (ALL) cohort and the two-sided FET. c Results based on the CNS cohort and
the two-sided Cochran–Mantel–Haenszel exact test (CMH) stratified by ethnicities. d Results based on the ALL cohort and the two-sided CMH stratified
by ethnicities.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30248-0

6 NATURE COMMUNICATIONS |         (2022) 13:2592 | https://doi.org/10.1038/s41467-022-30248-0 | www.nature.com/naturecommunications

https://gnomad.broadinstitute.org/
www.nature.com/naturecommunications


frequency between the two variants can still be low. Over
relatively long distances (e.g., >150 BPs), high-LD variants could
not be detected by examining the sequencing reads data (usually
~150 BPs) but could be detected using CoCoRV.

The above analyses used the stringent threshold FDR < 0.05 to
achieve high precision but could sacrifice the recall rate. We also

used different P value thresholds and evaluated the recall and
precision by treating the reported gnomAD MNVs (≤2 BPs) as
the ground truth, though some high-LD MNVs detected were not
reported in the gnomAD MNVs, as described above. In total,
there were 1780 reported gnomAD MNVs among our tested
variant pairs (Supplementary Data 6). If we chose 0.01 as the
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P value threshold, 1635 of 1976 detected were true, corresponding
to precision 0.83 and recall 0.92.

To further demonstrate the accuracy of our proposed
LD-detection method, we compared the LD-detection results
using either pooled summary counts or individual genotypes
from our constructed in-house 8175 synthetic controls. Specifi-
cally, in each ethnicity, we randomly split the control dataset into
three datasets with sample size ratio 1:2:3, then we stratified each
of the three dataset by sex, generating six independent datasets.
For each of the six dataset, we pooled the alternate allele counts
and the total allele counts, similar as that from gnomAD, and
tested LD between variant pairs using CoCoRV. For individual
genotypes, we used the ld function in the R package snpStats13 to
test each LD pairs within each ethnicity. We focused on variants
with gnomAD maximal allele frequency among ethnicities <0.1
and the selection criteria of variants based on annotations were
the same as that in the LD scan for gnomAD. We consider 45,626
LD pairs detected using individual genotypes (FDR < 0.05) as the
ground truth. In total, 6694 LD pairs were detected (FDR < 0.05)
using summary counts, where 8 were false positives, indicating
high precision (99.8%) of CoCoRV. The lower power using
summary counts (14.65%) is consistent with our power simula-
tions, suggesting the power advantage of using full genotypes
when they are available. For the true positives detected by
CoCoRV, the estimated LD measure r2 between using summary
counts and using full genotypes were highly correlated (correla-
tion= 0.853) (Supplementary Fig. S7a). After stratifying detected
LD pairs by alternate allele frequencies within the controls and
the estimated LD measure r2 from using full genotypes
(Supplementary Fig. S7b), we observed that summary counts-
based LD detection mainly detect those high-LD pairs with
decent alternate allele counts (e.g., >10).

Next we validated the detected LD pairs from gnomAD using
the 8175 controls with individual-level genotypes. Out of 10,081
LD pairs from gnomAD (FDR < 0.05 within each ethnicity), 7290
(72.3%) variant pairs can be tested with at least one alternate
allele from at least one variant of the pair in the individual-
level controls. We used a P value threshold 5 × 10−4, which

corresponds to 3.6 expected false positives out of 7290 tests under
the null hypothesis of no LD. Of the 7290 variant pairs tested,
6989 (95.9%) passed the P value threshold 5 × 10−4 (Supplemen-
tary Data 5). All pairs that passed the threshold except two have
odds ratio larger than 150. These results show that our proposed
method of detecting LD from gnomAD using summary counts is
accurate or has high precision.

We also compared the LD detected using gnomAD and LD
detected using available individual data (data from the 1000
Genomes Project and the larger 8175 constructed control data).
For individual genotype-based data, we used the ld function from
the R package snpStats. We focused on variants with gnomAD
maximal allele frequency among ethnicities <0.1. LD test were
performed within each ethnicity and the selection criteria of
variants based on annotations were the same as that in the LD
scan for gnomAD. We used FDR threshold 0.05 for each ethnicity
and focused on high LD (odds ratio >10). We stratified the
significant LD pairs based on their alternate allele frequencies and
calculated the contributions of each data source (Supplementary
Fig. S8). For relatively frequent variants, e.g., the AF range [0.01,
0.1), the unique contribution of gnomAD-based LD detection is
small (<3%), however, as the AF range becomes lower, the
contribution of gnomAD-based LD detection becomes substan-
tial. For example, within the AF range [5e−4, 0.001), over 30% of
the significant LD pairs can only be discovered using gnomAD-
based approach if compared with that using the 1000 Genomes
Project’s individual-level data, the unique contribution is still
about 25% if compared with that using the larger 8175
constructed individual control data. These substantial contribu-
tions are likely due to the large sample size of different ethnicities
in gnomAD. The unique contribution from gnomAD can be even
higher when considering each ethnicity individually (Supplemen-
tary Fig. S9). For example, in the AF range [5e−4, 0.001), the
unique contribution of gnomAD-based approach can be over
35% for the East Asian and South Asian, and about 80% for
the Finnish population, even when compared with that using
the larger 8175 individual-level control data. On the other hand,
the unique contribution from that using full genotypes is usually

Fig. 4 Comparisons of concordance between using separately called summary counts and jointly called case–control full genotypes. a, b Cross-
classification tables between using jointly called full genotypes and using separately called summary counts across all genes on the number of samples
carrying defined potential pathogenic rare alleles in the CNS (a) and ALL (b) cohorts. The column ID represents the number of samples calculated using full
genotypes, and the row ID represents the number of samples calculated using summary counts. Only counts ≤7 are displayed. Genes with zero samples
carrying rare alleles among all cases and controls, calculated by using the full genotypes and summary counts, are excluded. c, d Scatter density plots of the
number of control samples from the CNS (c) and ALL (d) cohorts carrying qualified rare alleles, as determined by using full genotypes and summary
counts. e, f Comparisons of top genes in the CNS (e) and ALL (f) cohorts between using jointly called full genotypes and separately called summary counts.
The bar heights show the percentage, and the numbers within each bar show the absolute number of genes. g, h QQ plots of rare variant association
results using jointly called full genotypes (left panels), separately called summary counts (middle panels), and scatter plots of –log10 P values between
using jointly called full genotypes and separately called summary counts. Analyses results are from the CNS (g) and the ALL (h) cohorts. All P values are
raw P values from the two-sided Fisher’s exact test.

Table 1 LD detection of annotated functional variants within each gene by using gnomAD summary counts.

Ethnicity Sample size Pairs tested FDR < 0.05 High LDa MNV (≤2 BPs) Reported in gnomAD MNVb

nfe 56,885 4,760,061 1962 1962 311 278 (0.89)
afr 8128 1,166,251 3766 3762 291 271 (0.93)
amr 17,296 2,171,082 1948 1948 200 181 (0.91)
eas 9197 483,555 923 923 136 118 (0.87)
sas 15,308 1,407,370 971 971 119 97 (0.82)
fin 10,824 177,390 511 511 79 75 (0.95)

nfe non-Finnish European, afr African American, amr Admixed American, eas East Asian, sas South Asian, fin Finnish, BPs base pairs, FDR false discovery rate, MNV multinucleotide variant.
aHigh LD was defined as estimated odds ratio >150.
bThe union of gnomAD coding MNV and genome MNV with distance ≤2 BPs. The numbers within the parentheses are the proportions of our detected MNV (≤2 BPs) reported in the gnomAD MNV
dataset.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30248-0

8 NATURE COMMUNICATIONS |         (2022) 13:2592 | https://doi.org/10.1038/s41467-022-30248-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


larger, which is also consistent with our power simulation results.
Considering the two different data sources can complement each
other, we merged the LD-detection results from both data sources
and use them for checking LD under the recessive models.

Detecting high-LD variants improves count estimation
and removes false positives in the recessive and double-
heterozygous models. We performed a simulation of count esti-
mation by using summary counts from a set of variants, including
independent and correlated variants (Supplementary Fig. S10). Our
results showed that the count estimation results from using
CoCoRV were more accurate than those from using TRAPD.
TRAPD overestimated the counts for all three models when high-
LD variants were present, most likely because TRAPD was
designed to be conservative for a one-sided FET to mitigate the
violation of the assumption of independent variants. This over-
estimation could result in an inflated type I error, and the potential
loss of power if a two-sided test is used. CoCoRV corrected for
high-LD variants and resulted in a much better estimation.

We also compared the association results under the recessive
model, with or without the LD test with an AF threshold 0.01 and
using gnomAD summary counts as controls for both the CNS and

ALL cohorts (Fig. 5). When there was no LD check for cases with
two heterozygous variants, we found several false positives with very
low P values (Fig. 5a, c). When variants in LD were excluded from
the count of case samples (Fig. 5b, d), those false positives were
removed (Supplementary Data 7). One example is the variant pair
(3-37089130-A-G, 3-37089131-A–C) in gene MLH1, which is also
identified as an MNV from gnomAD. Applying the LD test also
removed false positives with very low P values under the double-
heterozygous model (Supplementary Fig. S11). We noticed that the
QQ plots under the recessive model were not as well-calibrated as
those under the dominant model, even after applying the LD test.
The reason for this result could be that not all double-heterozygous
variants with positive LD were detected. Another factor to consider
is that the recessive and double-heterozygous models are sensitive to
differences in LD structures between cases and controls. Stratifying
samples into different ethnicities might still retain some LD
differences due to the population substructure within each of the
six ethnicities. For example, African/afr and Latino/amr are two
main admixed populations, and different proportions of ancestries
can change the LD structure. Although there is no perfect solution,
our CoCoRV method represents an advance in using only summary
counts as controls for rare variant association tests.
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Fig. 5 Employing LD detection removes false positives under the recessive model. a, c QQ plots of association tests under the recessive model without
employing LD detection in the CNS and ALL cohorts, respectively. b, d QQ plots of association tests under the recessive model after employing LD
detection with a P value threshold of 0.1. Red dots in (a) and (c) are false-positive genes that pass the exome-wide significance threshold (P < 2.5e-6). The
P values are raw P values from the two-sided Cochran–Mantel–Haenszel (CMH) exact test.
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CoCoRV analysis of the CNS and ALL cohorts. We applied
CoCoRV to two St. Jude pediatric cancer cohorts (CNS and ALL)
and used gnomAD summary counts as controls under a domi-
nant model. For a comparison, we also applied TRAPD to the two
cohorts. We used the all-pooled AC and AN to generate the
counts per gene because TRAPD is hard-coded to use the
annotation AC and AN to generate case–control statistics.
CoCoRV was flexible to specify any annotated fields, such as non-
cancer subsets, or any population-specific counts from gnomAD.
Both SNVs and short indels were considered. For TRAPD, using
the option “--pass” shows less false positives than using the QD-
based filtering (Supplementary Data 8), therefore we used the
former for comparison with CoCoRV. For the CNS cohort,
TRAPD reported an inflated λ2points (Fig. 6a). Two genes passed
the exome-wide significance (P < 2.5 × 10−6) using TRAPD. One
was a false positive and the other was the known glioma causal
gene NF1. For CoCoRV, it showed no inflation in either the
pooled counts from all ethnicities (Fig. 6b) or the stratified ana-
lysis using CMH (Fig. 6c). One gene passed the exome-wide
significance, which was the known causal gene NF1. After manual
variant checking, the false positive from TRAPD was caused by
inconsistent filtering: the variant has FILTER status PASS in cases
and therefore included in cases but has the failed status (failed the
random forest-based QC) in gnomAD therefore not included in
controls (Supplementary Data 8). For the ALL cohort, five genes
passed exome-wide significance using TRAPD and four of them
were false positives. The inflation factor λ2points was inflated
(Fig. 6d). In contrast, CoCoRV showed no obvious systematic

inflation, and identified the known causal gene ETV6 as the only
exome-wide significant gene. The CMH-based analysis had better
calibration at the tail than did the FET-based analysis (Fig. 6e, f).
The cause of the false positives from TRAPD was either incon-
sistent filtering between cases and controls or low-quality variants
which showed large differences in AF between gnomAD WES
and WGS data (Supplementary Data 8).

NF1 was detected in the pediatric CNS cohort and had
relatively similar P values across different scenarios, no matter
which summary counts-based controls were used. For the ALL
cohort, the much larger sample size of gnomAD dramatically
increased the significance of ETV6, from 10−6 to 10−12 (Table 2).
The relatively stable P values for NF1 in the CNS cohort were
most likely due to the adequately large counts in the contingency
table using the in-house–constructed summary counts. The
benefit of increasing the number of controls also diminished
after a certain level, while the number of cases was fixed (Table 2).
In contrast, ETV6 had 0 or 1 qualified control sample with rare
alleles in the in-house controls, had more significant P values by
using gnomAD as controls, benefited from the improved
quantification of the AFs when the control sample size increased
substantially.

For the CNS cohort, the top four genes were NF1, ELP1,
C17orf75, and SUFU (Fig. 6). NF1 and SUFU are well-established
causative genes for pediatric brain tumors15. ELP1 was recently
identified as a predisposition gene of medulloblastoma, one type
of pediatric brain tumors6. This makes C17orf75 an interesting
candidate. From the GTEx portal, two of the top three tissues
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Fig. 6 CoCoRV and TRAPD analyses of the CNS and ALL cohorts. We used gnomAD summary counts as controls. a–c The analyses of the CNS cohort
using TRAPD (a), CoCoRV with the two-sided Fisher’s exact test (FET) (b), and CoCoRV with the two-sided Cochran–Mantel–Haenszel (CMH) exact test
(c). d–f The analysis of the ALL cohort using TRAPD with the two-sided FET (d), CoCoRV with the two-sided FET (e), and CoCoRV with the two-sided
CMH-exact test (f). Red dots in (a) and (d) indicate false-positive genes that pass the exome-wide significance threshold (P < 2.5e-6). All P values are raw
P values without multiple testing adjustments.
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with highest median expression of C17orf75 are the cerebral
hemispheres and the cerebellum (Supplementary Fig. S12).
Further validation is needed to confirm the association of
C17orf75 with pediatric brain tumors.

ProxECAT16 is another recently proposed method for
performing summary-count-based analysis. It pools the counts
of functional and non-functional alleles from cases and controls
to form a contingency table, which is used for an association test.
We implemented this method within CoCoRV and applied it to
the CNS and ALL cohort. ProxECAT showed slight inflations
(inflation factor 1.05 for ALL, and 1.08 for LGG). The known
gene NF1 and ETV6 reached the exome-wide significance level
and there were no false positives reaching the exome-wide
significance (Supplementary Data 8). For the known causal genes
NF1, CoCoRV shows more significant P values (P= 7.6 × 10−10)
than ProxECAT (P= 9.2 × 10−8), the trend is the same for ETV6
too (Supplementary Data 9).

We also explored the recessive models in the association test
using both TRAPD and CoCoRV (Supplementary Data 10).
When the LD was not accounted for, for both TRAPD and
CoCoRV, all genes that passed the exome-wide significance were
due to the high LD between variants, therefore considered as false
positives. However, when the LD was accounted for in CoCoRV,
there was no gene passing the exome-wide significance. This
suggests that for the CNS and ALL, the association signal is
mainly driven by the dominant model, although it is also possible
that we do not have enough power for the recessive models with
the current sample size of cases.

Analysis of germline samples from The Cancer Genome Atlas
(TCGA). We applied CoCoRV to the TCGA WES datasets of
glioblastoma multiforme (GBM) and low-grade glioma (LGG).
Brain tumors can be classified into grades I–IV based on stan-
dards set by the World Health Organization. The TCGA LGG
data consist of grades II and III, and the GBM data are considered
grade IV. The processing of raw reads alignment, variant QC,
ethnicity, and relatedness inference were the same as those used
for the CNS and ALL cohorts. After removing related samples,
325 GBM samples and 483 LGG samples remained. We used
CoCoRV to perform summary-count-based association tests
separately for GBM and LGG samples. We selected the non-
cancer summary counts from gnomAD as controls and used
the CMH ethnicity-stratified test. The threshold of AF and the
AF_popmax (the maximal AF among ethnicities from the

gnomAD annotation) were set to 1e–3. The same criteria were
used to define potential pathogenic variants, as in the pediatric
CNS and ALL cohorts. We observed no inflation in the QQ plot
(Supplementary Fig. S13). Table 3 shows the top five genes from
the results of the GBM cohort. We further tested these five genes
in the TCGA LGG cohort and found that two genes, TP53 and
ABCB8, were significant (P < 0.05) (Table 3). As an independent
statistical validation, we used 85 pediatric high-grade glioma WES
samples from the PCGP project17 as cases and independent 8525
controls, including additional non-cancer in-house samples and
samples from the ADSP and the 1000 Genomes Project. We used
the full-genotype-based analysis in this validation for the best
control of confounding effects. The top 20 PCs were included as
covariates, and the VT method implemented in EPACTS18 was
used for the rare variant association test. The P values of TP53
and ABCB8 were significant (P= 0.01 and 0.005, respectively)
(Table 3). TP53 is a known tumor-suppressor gene and a pre-
disposition gene for many cancers, including adult and pediatric
brain tumors15,19. Huang et al.5 performed a germline-based
association analysis of TCGA data focusing on 152 candidate
genes including TP53; however, TP53 was not listed as significant
for GBM. This false negative is most likely due to their analysis
design: they used one cancer versus all other cancers in TCGA,
and TP53 is enriched in multiple cancers so the enrichment in
GBM is not detected. ABCB8 is an interesting candidate gene
associated with brain tumors that encodes an ATP-binding sub-
unit of the mitochondrial potassium channel. Potassium channels

Table 2 Statistics of the top genes by using different methods and alternate allele frequency thresholds.

Cohorts and genes Methoda n1 n2 n3 n4 P value

AF ≤8e–5
CNS (n= 336) NF1 Jointly called full genotype 12 324 6 8169 1.77e–13

CoCoRV using in-house controls 11 325 6 8169 3.09e–12
CoCoRV using gnomAD as controls 11 325 262 125,486 2.82e–10

ALL (n= 958) ETV6 Jointly called full genotypes 6 952 0 8175 1.31e–06
CoCoRV using in-house controls 7 951 1 8174 9.96e–07
CoCoRV using gnomAD as controls 7 951 5 125,743 1.06e–12

AF ≤1e–3
CNS (n= 336) NF1 Jointly called full genotype 12 324 11 8164 1.08e–11

CoCoRV using in-house controls 11 325 11 8164 1.48e–10
CoCoRV using gnomAD as controls 11 325 289 125,459 7.60e–10

ALL (n= 958) ETV6 Jointly called full genotypes 6 952 0 8175 1.31e–06
CoCoRV using in-house controls 7 951 1 8174 9.96e–07
CoCoRV using gnomAD as controls 7 951 5 125,743 1.06e–12

AF alternate allele frequency, ALL acute lymphoblastic leukemia, CNS central nervous system.
aThe CoCoRV results were calculated based on the FET.
n1: number of cases with potential pathogenic alleles; n2: number of cases without potential pathogenic alleles; n3: number of controls with potential pathogenic alleles; n4: number of controls without
potential pathogenic alleles.

Table 3 The top candidate genes from the TCGA GBM
cohort and statistical evidence from the TCGA LGG cohort
and the PCGP HGG cohort.

TCGA GBM TCGA LGG PCGP HGG

chr Genes P value P value P value

1 TTC39A 7.30e–06 1 –
17 TP53 5.60e–05 0.02 0.01
12 ELK3 3.80e–04 1 –
7 ABCB8 4.62e–04 0.01 0.005
1 CELA2B 1.13e–03 0.14 –

chr chromosome, FDR false discovery rate, GBM glioblastoma multiforme, HGG high-grade
glioma, LGG low-grade glioma, PCGP Pediatric Cancer Genome Project, TCGA The Cancer
Genome Atlas. P values less than 0.05 are in bold.
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can promote cell invasion and brain tumor metastasis20. They
also have an important role in brain tumor biology21. Per the
GTEx portal, the cerebellum has the highest median expression of
ABCB8 (Supplementary Fig. S12). Further experiments are crucial
to confirm whether deleterious ABCB8 mutations increase the
risk to adult brain tumors.

Analysis of an amyotrophic lateral sclerosis study using case
only summary counts. We used publicly available case summary
counts and gnomAD summary counts for rare variant analysis.
Specifically, we downloaded the summary counts of an ALS
study22 from the ALSDB website (http://alsdb.org/downloads).
Because we cannot classify the ethnicities of each sample based
only on the summary counts, we relied on the reported summary
counts of Caucasian ancestry, which included 3093 cases and
8186 controls. The data were converted to the VCF format and
annotated using ANNOVAR. We used the downloaded coverage
bed file to extract high-coverage sites (at least 90% of samples
with coverage ≥10) and intersected those with gnomAD high-
coverage sites. In addition, we used the UCSC CRG Align 36 track
to ensure that the mapping uniqueness was 1. The AF threshold
was set to 5e–4. We included variants annotated as stopgain,
frameshift_insertion, frameshift_deletion, splicing, and non-
synonymous with REVEL score ≥0.65. We applied our method to
the case summary counts and summary counts from the gno-
mAD nfe population. There was a mild inflation in the QQ plot
(Fig. 7a). Known genes SOD1, NEK1, and TBK1 were ranked in
the top. Two false positives were confirmed by manual variant
QC check. For one false-positive gene, there were eight indels at
the same position, chr12:53207583, and only homozygous geno-
types were observed. The two false-positive genes had variants in
both study-specific cases and controls but none in gnomAD. This
observation was most likely due to processing platform-related
batch effects. Because study-specific control summary counts
were also available, we also performed the summary-count-based
case–control rare variant analysis using case–control data only
from this study. Yet, we still identified no obvious inflation in the
QQ plot (Fig. 7b). For both cancer-predisposition genes NEK1
and TBK1, using gnomAD showed a much-improved significance
level, compared with that using the study-specific control sum-
mary counts. This demonstrates the advantage of using public

summary counts of large sample size in prioritizing disease-
associated genes. Although minimal variant QC manipulation can
be done with only summary counts available from cases and
controls in this dataset, CoCoRV still successfully prioritized the
disease-predisposition genes.

The impact of ethnicity compositions on summary-count-
based analysis. Population structure is a known confounder for
genetic association test if not properly addressed8. The effect of
ethnic-specific allele frequencies (AFs) on the association test
results depends on the differences among ethnic-specific AFs, and
the differences in ancestry compositions between cases and
controls. The majority population of gnomAD V2 exomes is
European (nfe= 47%), and the four datasets we analyzed (ALL,
CNS, GBM, LGG) all have European populations as the majority
(nfe ≥70%, Supplementary Fig. S14). The dominance of European
samples in the cases and controls, as well as our focus on rare
variants (AF ≤ 1e−3), might explain that in general, the results
using ethnic-specific AFs or the pooled AFs did not show large
differences in terms of genes achieving exome-wide significance
for the four datasets we analyzed. However, we do observe one
difference under the recessive model. Although LD was accounted
for, using the pooled AF in analyzing the CNS cohort resulted in
one false positive (P value <2.5 × 10−6), while there was no false
positive if ethnicity-stratified analysis was used (Supplementary
Data 10). The variant causing the false positive is 19-55898120-A-
AT, which has the largest AF in gnomAD V2 African/African
American (AF= 0.1122), but the AF is very low in European
population (AF= 0.0002196).

To further illustrate the impact of ethnicity compositions and
the importance of ethnic-specific analysis, we constructed a
simulated “case” cohort using samples from the 1000 Genomes
Project with sample ID starting with “NA”. In total, there were
840 samples included from the five major populations (nfe: 210,
afr: 250, amr: 65, eas: 213, sas: 102). The ethnicity composition in
the constructed “case” was very different from that in gnomAD,
e.g., the European samples were not the majority. Because the
samples from the 1000 Genomes Project are not disease-specific,
genes that were significant in the analysis between the constructed
“case” and gnomAD were false positives due to the confounding
of population structures, instead of being associated with any
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Fig. 7 Rare variant analysis of the Caucasian samples from the ALSDB data using summary counts for both cases and controls. a CoCoRV analysis with
the two-sided Fisher’s exact test using control summary counts from the gnomAD non-Finnish Europeans. The red dots are false positives after a manual
check on the variants contributing to the test statistics: the first false positive is due to a large cluster of indels in the study-specific case and control
samples; the second is due to a variant with strong Hardy–Weinberg disequilibrium in both study-specific cases and controls. b CoCoRV analysis with the
two-sided Fisher’s exact test using control summary counts from the study-specific 8186 Caucasian control samples. All P values are raw P values without
multiple testing adjustment.
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disease. Association results showed that the simple pooled
analysis can produce many false positives (Supplementary
Fig. S15a, d and Supplementary Data 11), while ethnicity-
stratified analysis substantially reduced the false positives
(Supplementary Fig. S15c, f). Adding the filter using the maximal
allele frequencies among gnomAD ethnicities (AF_popmax)
could also mitigate the false positives (Supplementary Fig. S15b,
e), although it was not as effective as ethnicity-stratified analyses.
The variants that drive the top false positives in the simple pooled
AF analysis showed large differences in allele frequencies between
different ethnicities, where the AF ratios between the highest AF
and lowest AF among ethnicities were around 10 and could reach
about 20 (Supplementary Data 12). The number of false positives
decreases as the AF threshold decreases. For example, when AF
was set to 1e−4 and the ethnicity-stratified analysis was used,
there were no false positives in the analysis. The impact of
different ethnicity compositions was not just limited to the
African population but could happen in any other populations
(e.g., eas, afr, amr, sas) less represented in the gnomAD dataset
(Supplementary Data 12).

Discussion
In this study, we developed a framework to prioritize disease-
predisposition genes by using public summary counts as controls
for rare variant burden tests. Consistent variant QC and filtering,
as well as joint AF-based filtering make sure no artificial bias is
introduced in the analysis. Ethnicity-stratified burden test ame-
liorates the effect of population stratification. By considering the
discrete and heterogeneous nature of the null distribution, we
proposed a more accurate inflation factor estimation method and
several more powerful FDR-control methods than assuming the
null distribution of P values is uniform. We also proposed an
approach to detect high-LD variants using gnomAD summary
counts. We detected and stored the variants in LD from either
using gnomAD summary counts or using in-house controls with
full genotypes, and then used them in the framework to remove
false positives, which is critical under the recessive models. In
addition, we evaluated the concordance between using summary
counts and full genotypes, which was high especially for the top
hits with high statistical significance.

The inflation factor estimation and FDR-control method can
also be used in other applications if the tests are performed using
FET or CMH. Besides its application in the rare variant asso-
ciation test, our proposed LD test can detect high-LD MNVs, and
is not limited by sequencing read length compared with tradi-
tional read-based MNV detection. Identifying rare variants in
strong LD is also helpful in other analyses, e.g., distinguishing
compound-heterozygous variants from those on the same
haplotype or applying special treatment to MNVs14.

In principle, allele frequencies derived from an independent
large non-rare disease cohort should be helpful and can provide
an unbiased way for AF-based filtering. We tried to use TOPMed
AF (Freeze 8) annotations for variant filtering after lifted over to
GRCh37 using picard23. Unfortunately using TOPMed AF alone
introduced false positives (Supplementary Data 8). One main
reason is that there are likely substantial differences in ethnicity
proportions between gnomAD and TOPMed. Variants that show
large ethnicity-specific AFs and should be filtered out are kept if
we only use TOPMed’s AF for filtering. One example is the
variant 1-18809351-G–C, which has the highest AF in gnomAD
V2 South Asian (AF= 0.1285), but TOPMed’s overall AF is very
low (AF= 0.00082360). Even though using TOPMed AF anno-
tation alone for AF filtering can cause false positives, TOPMed
could serve as a useful resource for additional AF-based filtering
on top of the joint AF-based filtering.

By applying CoCoRV framework to pediatric and adult can-
cers, we identified known cancer-predisposition genes and
prioritized other risk genes, one of which was statistically vali-
dated. We caution that CoCoRV should be used as a prioritiza-
tion tool and not a statistical validation tool, because using
summary counts might not control some hidden confounding
factors. For example, our proposed method estimates the sample
counts in the controls under different models rather than
counting the actual counts from individual-level genotypes, there
is the possibility that the estimated counts might not match well
with the actual counts. This is the limitation of using summary-
count-based burden tests. Once interesting genes are identified,
either a strict full-genotype-based association test or lab-based
functional studies are needed to validate the findings.

One potential limitation of using summary counts is that
adjusting for covariates is not straightforward. Besides potential
batch effects introduced by the sequencing platform, one (and
often the only) confounding factor in genetic studies is popula-
tion structure24. We propose to use a CMH-based, ethnicity-
stratified analysis to mitigate this problem. Whether the popu-
lation stratification causes an obvious systematic inflation
depends on three factors: (1) population composition in the cases
and controls, (2) AF threshold, and (3) sample size. In practice,
we cannot guarantee that the populations of cases and controls
will match perfectly, but with an adequately low AF threshold
(e.g., 5e–4) and a focus on potential pathogenic variants, the
influence of the population structure can be substantially reduced,
possibly to the point of no systematic inflation. Improving the
adjustment for population structure using summary counts might
be worth future investigation.

Testing LD is a well-studied problem in statistical genetics
when haplotypes or genotypes can be observed25,26. We
extended the LD test when only a set of summary counts of two
variants was available, such as in gnomAD. We assumed the
Hardy–Weinberg equilibrium (HWE) in our test, which simpli-
fied the calculation and performed well. This might be due to that
only strong LD can be well detected when using a limited set of
summary counts, and the influence of the Hardy–Weinberg dis-
equilibrium (HWD) for most rare variants is negligible or
inadequate. Further investigation to extend the proposed method
to account for the HWD might be useful, for example using a
composite measure of LD27. Our proposed LD-detection method
in CoCoRV is similar to a method proposed to estimate haplotype
frequencies and LD measures in pooled DNA data28. The major
differences are as follows: First, CoCoRV allows for different
numbers of samples in a pool, e.g., the subset of samples within
each ethnicity in gnomAD, rather than a fixed number in the
design of the pooled experiment. Second, instead of using an
expectation-maximization algorithm and treating the haplotype
frequencies as missing data, our framework uses a direct gradient-
based maximization of the likelihood, which exploits many well-
developed gradient-based optimization methods29; therefore, it
converges faster. In addition, we use a one-sided (rather than a
two-sided) test to detect strong positive LD. Finally, we use the
odds ratio (rather than correlation coefficient) to characterize LD
strength for rare variants. In this study, we considered only the
LD between two biallelic variants; in the previous study28, mul-
tiple loci and multiple alleles were allowed, which might be an
interesting topic to explore in the future.

One main difference between using the separately called
summary counts and jointly called full genotypes was the variant
QC step. For example, for the separately called summary counts-
based analysis, VQSR was applied separately to cases and con-
trols; however, for jointly called full-genotype-based analysis, it
was applied to jointly called cases and controls. We found that the
results of VQSR for a specific variant can differ between cases and
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controls if run separately. This is partly expected because VQSR
uses a machine learning approach to model the quality of variants
within a jointly called genotype matrix. Different studies result in
different training samples and different trained models. Including
public sequencing data, such as the 1000 Genomes Project’s WES
data, with the case sequencing data will most likely improve the
robustness of the variant QC and the concordance when the
summary counts-based analysis is performed later.

The lack of obvious inflation in the QQ plot does not guarantee
that the top hits are true positives; it indicates only that there is
no large systematic inflation in the association test. However,
sporadic individual false positives could be among the top hits.
When using publicly available summary counts as controls, the
cases and controls are processed from different pipelines
using different parameters or software versions. Therefore, this
approach is more prone to false positives than is the joint analysis
of case and controls using full genotypes generated from the same
pipeline and QC steps. Also, a more stringent check on the
sequence region of the called variants would be helpful, such as
alignment uniqueness, duplication segments, or repeats from the
UCSC genome browser resources. Warning QC flags from gno-
mAD are also useful. The indel variants required more manual
inspection due to challenges in the accurate alignment and
QC. Another method that alleviates the false-positive problem is
to process cases with a relatively smaller, publicly available
sequencing dataset, such as the WES data from the 1000 Gen-
omes Project, which is also advocated by GATK. Although this
approach requires increased processing time and storage space, it
helps separate the true enrichment of rare alleles in cases from the
false enrichment due to pipeline differences.

Compared with the standard full-genotype-based analysis
using the continuous PCs to account for population structure,
the coarse assignment of discrete ethnicity groups cannot
account for finer population structure within each ethnic group.
Accurate inflation factor estimation and the QQ plot is thus
critical for determining whether there is systematic inflation due
to population structure. For ethnicity stratification, we used the
1000 Genomes Project’s samples to predict the ethnicity of
cases. This procedure was similar to the one used by gnomAD,
though the final trained classifier was not the same due to a
different training set. Hence, some discrepancies may occur
between our assignment and those of the gnomAD classifier.
We anticipate that the differences would be small, considering
that the 1000 Genomes Project’s samples are also part of the
gnomAD dataset, and a very high probability threshold (0.9)
was used to classify the samples in both our and gnomAD’s
ethnicity classification. Moreover, individual small dis-
crepancies in the assignment are unlikely to substantially
influence the final rare variant-based association test. When
interpreting the association results, it is always more convincing
if the association signals contributing to the final significance
are found in more than one ethnicity.

In this study, both our processed data and gnomAD sum-
mary counts used GATK for variant calling and joint genotype
calling, though there were differences, e.g., different versions,
detailed implementations, and variant QC. By retaining high-
quality variants and maintaining a consistent filtering strategy,
we showed that batch effects in the processing pipeline can be
well-controlled. However, we have not explored the potential
batch effects if two completely different variant-calling algo-
rithms were used (e.g., if one uses GATK and the other uses
FreeBayes30). We anticipate these might introduce some
inconsistencies and require further investigation. Recent stan-
dardization of some key processing steps in genome-sequencing
analysis pipelines31 shows promising results in minimizing
these batch effects.

Methods
Data sources. The case cohort in our main analyses included pediatric high-grade
glioma (HGG) samples from the St. Jude PCGP, St. Jude LIFE study [central
nervous system tumors (CNS) and acute lymphocytic leukemia (ALL)]32. We
constructed an in-house control cohort of samples using the WES data from the
Alzheimer’s Disease Sequencing Project (ADSP)33 and the 1000 Genomes
Project34, which was later used to compare the concordance between using sepa-
rately called control summary counts and jointly called case–control full genotypes.
The datasets included multiple ethnicities (Supplementary Fig. S14), with European
ancestry being the majority (52–81%). The inclusion of these individuals in our
study was reviewed and approved by Institutional Review Board at St. Jude Chil-
dren’s Research Hospital. We also tested our framework in two other independent
datasets, The Cancer Genome Atlas (TCGA) brain tumor cohort and an amyo-
trophic lateral sclerosis (ALS) study, to illustrate its power.

Consistent quality control and filtering of variants. When cases and controls are
called separately, coverage summary information (e.g., the percentage of samples
with coverage ≥10) ensures that regions of interest are well covered. Our tool
incrementally summarizes coverage information and computes the percentage of
samples with coverage no less than specified thresholds, such as {1, 5, 10, 15, 20, 25,
30, 50, 100}, for each nucleotide position. Our tool can scale well for tens of
thousands of samples and is easy for parallel running (supplemental text). Fol-
lowing the coverage filtering in Guo et al.4, we kept the variants that have ≥10
coverage (total reads of both alleles) in at least 90% of the samples for both cases
and controls.

Inconsistencies can happen when QC and filtering are applied separately, e.g.,
when a variant is filtered out from controls but not from cases or vice versa. To
address this problem, we employed the following strategy: keeping only high-
quality variants from each cohort’s QC process and performing consistent QC and
filtering. For the former, all variants must pass the cohorts’ QC filter. We required
that the missingness within cases and controls be ≤0.1. In addition, we used the
gnomAD data to generate a blacklist of variants based on gnomAD’s filtering status
and discrepancies in allele frequencies between the WES and WGS platforms
(Supplemental methods). For consistent QC filtering, we excluded all variants that
failed QC steps in either cohort. This consistent filtering step is absent in other
tools such as TRAPD4.

Another critical filtering step is joint allele frequency (AF)-based filtering. The
joint AF of a variant is estimated by pooling the counts of cases and controls
together, i.e., AF = (ACcase + ACcontrol)/(ANcase + ANcontrol), where ACcase and
ACcontrol are the alternate allele counts of cases and controls, respectively, and
ANcase and ANcontrol are the total allele counts (including both reference alleles and
alternate alleles) of cases and controls, respectively. Using joint AF for filtering
avoids inconsistencies when separately filtering variants based on AF within cases
and AF within controls.

The joint allele frequency (AF)-based filtering is consistent and unbiased, which
is commonly applied when individual-level genotypes of cases and controls are
available, such as in genome-wide association studies (GWAS). Suppose we filter
cases using case-derived AF and filter controls using control-derived AF, it can
cause inconsistencies because the case and control-derived AFs for the same variant
can be quite different simply due to statistical variations which depend on the
sample size of cases and controls. On the other hand, if only the control-derived AF
is used for filtering, for controls, all variants selected will have AF less or equal to
the specified AF threshold, but for cases, there are possibilities that some variants
can have AF above the specified AF threshold simply due to statistical fluctuation.
These inconsistencies can result in biased statistical test results and inflated type
I error.

For ethnicity-stratified analysis, we first extract the AC and AN annotation
from each ethnicity, and then calculate the ethnicity-specific joint AFs, then the
maximal joint AF among all ethnicities is used for the AF-based filtering. This
shares some similarities of using the maximal gnomAD AFs (AF_popmax) among
all ethnicities for filtering, however, our filtering is based on the joint AF
considering both cases and controls instead of the control-derived (gnomAD-
derived) AF.

Estimation of sample counts in three models using summary genotype counts.
We defined three models to count the samples for the burden test (Fig. 1). Let ACi
be the alternate allele count of each variant i in a gene for a sample. A sample
belongs to one or more of the following models if the sample satisfies the corre-
sponding conditions:

dominant model : ∑
i
ACi ≥ 1

recessive model : ∑
i
ACi ≥ 2

double-heterozygous model: at least two variants with ACi ≥ 1

8>><
>>:

ð1Þ

Here the recessive model can be either homozygous with alternate alleles at the
same position, or at least one alternate allele at ≥2 positions, i.e., double-
heterozygous. Therefore, the double-heterozygous model can be viewed as a special
case of the recessive model. As noted in Guo et al.4, because the haplotype
information is not directly observed, the double-heterozygous model could mean
two variants on the same haplotype, thus not exactly a compound-heterozygous
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model. We often have the full genotypes for cases, so we can determine the count of
each model directly from the genotype matrix. However, for controls, we need to
estimate the number of samples qualified for each model based on the summary
counts of each variant. Specifically, for a gene with m variants, let piG be the
genotype frequency of variant i with genotype G, where
i ¼ 1; � � �m; and G ¼ 0; 1; 2. Public summary counts, such as gnomAD, usually
provide this information; however, if only AF is available, the genotype frequencies
must be estimated. One convenient, though not optimal, approach is to assume the
Hardy–Weinberg equilibrium (HWE). We estimate the probability of a sample
satisfying the defined models in (1) as follows. Denote the probability of the
dominant model by pDOM , the recessive model by pREC , and the double-
heterozygous model by p2HET . If only one variant exists, we have
pDOM ¼ 1� p10; pREC ¼ p12; and p2HET ¼ 0. If there are at least two variants, they
can be estimated as shown below, assuming independence between the rare
variants:

pDOM ¼ 1�
Ym
i¼1

pi0 ð2Þ

p2HET ¼ ∑
m�1

i¼1
∑
m

j¼iþ1
∑

k≠i;k≠j
1� pi0
� �

1� pj0

� �
pk0 ð3Þ

pREC ¼ ∑
m

i¼1
pi2 ∑

j≠i
pj0 þ p2HET ð4Þ

Equation (2) calculates the probability of being dominant for at least one locus.
For (3), we approximated the probability by considering all pairs of variants with
AC ≥1 out of m loci, because the probability of having two variants with AC ≥1 is
much higher than that of having three or more variants with AC ≥1. Similarly, in
(4), we considered a single variant with homozygous alternate alleles and two
variants with AC ≥1. To calculate the estimated counts, we multiplied the
frequencies of each model by the total number of controls. Here we assumed all
rare variants were independent; later we made some modifications when we
detected variants in LD.

Burden test with samples stratified by ethnicity groups. In addition to the
pooled analysis of all ethnicities, we provide an ethnicity-stratified analysis. The
latter requires predicting the ethnicity of each case. We performed principal
component (PC) analysis for all samples, including samples from the 1000 Gen-
omes Project (see the supplemental text). Following the practice in gnomAD1, we
trained a random forest classifier based on the top 10 PCs and used the six major
ethnicity categories as training labels: non-Finnish European (nfe), African
American (afr), Admixed American (amr), East Asian (eas), South Asian (sas), and
Finnish from the 1000 Genomes Project. Then we applied the classifier to the rest
of the samples and used probability 0.9 as a cutoff to assign samples to the six
ethnicities or to “other” when all predicted probabilities were less than 0.9. We then
stratified samples based on the six ethnicities and calculated/estimated the counts
for each model within each stratum; samples labeled “other” were not used. We
performed the CMH-exact test35 to aggregate evidence of each stratified 2 × 2
contingency table. When using gnomAD summary counts as controls, we used the
stratified summary counts of each ethnicity directly.

Inflation factor estimation for discrete count-based test. For the P values of
burden tests calculated by the FET or CMH, the null distribution does not follow
the uniform distribution. Therefore, the expected ordered null P values could not
be derived from the uniform distribution. The null distribution of the ordered
P values of a set of tested genes using either FET or CMH depends on the number
of rare alleles in each gene. Instead of assuming the incorrect uniform distribution,
we empirically sampled from the correct null distributions for inflation factor
estimation. We assumed that the genes are independent of each other, which is
reasonable for rare variants with very low AFs. Instead of permuting the pheno-
types, we worked on the 2 × 2 contingency table directly (Fig. 2a). For each gene, let
m be the number of cases, n be the number of controls, and k be the number of
samples with rare alleles among all cases and controls. These values can be obtained
from the observed 2 × 2 contingency tables and are held fixed for each gene. In
order to sample P values under the null hypothesis of no association, for each gene,
we can randomly sample the number of cases with rare alleles (denoted by x) from
a hypergeometric distribution with parameters m, n, k and form a new 2 × 2
contingency table, then we can calculate the null P values using FET. However, this
strategy will need to run FET for each replicate, which can be time consuming for
all the genes and all replicates. A much faster sampling of P values under the null is
to sample directly from the P values’ cumulative distribution function (CDF). To
generate the CDF, first we generated the P values’ support list which is based on
tabulating all possible values of x and corresponding probabilities from the
hypergeometric distribution. Then the P value can be computed for each value of x
according to the hypothesis and CDF can be generated afterward. We used the
CDF approach for fast sampling. Then we sorted the P values under null across all
genes for each replicate. This process was repeated N times, and the final expected
sorted P values (order statistics) were the average of N P values at each ordered
rank. To estimate the inflation factor, we took the lower 95% quantile of points in

the QQ plot and regressed the sorted log10-scaled observed P values to the log10-
scaled expected sorted P values. The slope of the regression was used as the
inflation factor, which is denoted by λemp. Similarly, we extended the inflation
factor estimation to the CMH-exact test. For CMH-exact test36, assume there are K
strata, the test statistic is S ¼ ∑i¼K

i¼1 xi , where xi is the number of case samples with
rare alleles in strata i. To sample the P values directly from the CDF under the null
hypothesis, we first need to tabulate all possible values of S and corresponding
probabilities. Direct enumeration of S would be very time consuming, fortunately,
there has been a very fast network-based algorithm developed37. We use the
network-based algorithm, which was already implemented as an internal function
in R, to calculate the P values’ support. Then the P value can be computed for each
value of S according to the null hypothesis and the CDF can be generated after-
ward. Once the P values under the null are sampled based on the CDF, the inflation
factor could then be calculated similarly as in FET.

Guo et al.4 also noted an excess of P values that equaled 1 when the null
distribution was assumed to follow a uniform distribution. Thus, they proposed
modifications to estimate the inflation factor. Two versions of this estimation are
included in Guo et al.4. One estimated the slope by using values between quantile
0.5 and 0.95, denoted by λ0:5�0:95 in our study, and the other estimated the slope
from two points: the first is the point with the observed P value of 1 with the
highest rank, and the second is the point at the 0.95 quantile of the P values not
equal to 1, denoted by λ2points in our study. For both λ0:5�0:95 and λ2points, the
expected ordered P value of rank r in an increasing order from n P values was
r/(n + 1) assuming a uniform distribution U(0, 1). Because these modifications
were still based on a uniform distribution, their solutions were biased.

To illustrate the performance of different methods on inflation factor
estimation, we used simulated P values under the null hypothesis to evaluate the
bias. Specifically, for N replicates of sampled null P values, we applied all three
methods to estimate the inflation factor. For the empirical null P value-based
method, we saved on computation cost for each replicate of null P values by using
the rest (N−1) replicates of null P values to estimate the expected sorted P values.

FDR control. Resampling-based FDR-control method was originally developed to
address the correlation between multiple tests38. We adopt it here for FDR control
of discrete count-based tests. We simulated the P values under the null hypothesis
the same as in the inflation factor estimation (Fig. 2a). Then we adopted the
resampling-based FDR-control method to estimate the adjusted P values. The two
resampling methods used a mean point estimate (RBH_P) or an upper limit
estimate (RBH_UL) for the number of true positives detected, respectively. Given
the simulated P values under the null hypothesis, the adjusted P value estimation is
similar as that in the R package FDR-AME39. Let R�ðpÞ be the number of genes
with P values no greater than p in the simulated P values under the null hypothesis,
RðpÞ the number of genes with P values no greater than p in the observed P values,
M�ðpÞ the mean of R�ðpÞ, Q�

βðpÞ the 1−β quantile of R�ðpÞ. Then for RBH_P, the

estimated true positives detected at threshold p was s p
� � ¼ R p

� ��M�ðpÞ; for
RBH_UL, s p

� � ¼ R p
� �� Q�

βðpÞ. Then the adjusted P values were calculated as

PBH P p
� � ¼ ER�

R� pð Þ
R� pð Þþs pð Þ

� �
; if s p

� �
≥Q�

βðpÞ

ER� R� p
� �

> 0
� �

; otherwise

8><
>: ð5Þ

and

PBH UL p
� � ¼ ER�

R� pð Þ
R� pð Þþs pð Þ

� �
; if s p

� �
> 0

ER� R� p
� �

> 0
� �

; otherwise

8><
>: ð6Þ

where ER� means taking the expectation over all replicates of P values under the
null hypothesis.

An alternative approach for powerful FDR control is using FDR methods which
directly account for the discreteness and heterogeneity of the distribution. We
chose to use the methods developed recently which show good performance for
discrete distributions40, e.g., A-DBH-SD. These methods can be applied to
arbitrary discrete distributions if the CDF of the P values under the null is known
or can be calculated. However, the implemented R package DiscreteFDR only
supports the generation of CDF of FET. To extend these powerful FDR methods to
the CMH-exact test, we developed a method to generate the CDF of the P values
under the null in CMH-exact test as described in the section for inflation factor
estimation. Due to the fast network algorithm37 for tabulating the test statistic and
corresponding probabilities, the CDF list can be generated within seconds for
~20,000 genes considered.

Detection of high-LD rare variants via gnomAD summary counts. One inter-
esting feature of CoCoRV is the proposed LD test using only gnomAD summary
counts (Fig. 2). The gnomAD dataset has several subset-based summary counts,
including “controls” and “non_cancer.” Because control samples are a subset of
non_cancer samples, we can partition them into three independent sets of sum-
mary counts: cancer, healthy controls within the non_cancer set, and other diseases
within the non_cancer set, which are labeled “non_cancer_non_controls.” After
further stratifying by sex, we can generate six independent summary counts per
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ethnicity (Fig. 2). We assume that the allele frequencies and LD among variants are
the same among these six independent datasets per ethnicity, which is likely rea-
sonable because most variants should not be associated with sex or cancer. Given
the ACs (alternate allele counts in a cohort) of two variants and the total number
of haplotypes in these data, we can test the hypothesis that two variants are in
positive LD, i.e., the variants are more likely to lie on the same haplotype than
random chance under the assumption of independence. Specifically, let the data
observed be fxi; yi; ni; i ¼ 1 � � � Ig, where xi is the AC of the first variant, yi is AC of
the second variant, ni is the total number of haplotypes, I is the number of
independent sets of summary counts (e.g., six from gnomAD) (Fig. 2). Denote the
four haplotypes of two variants by h11; h10; h01; h00 and their corresponding
probabilities by p11; p10; p01; p00, where 1 indicates the alternate allele and 0
indicates the reference allele. The log-likelihood of the observed data is

logL ¼ ∑
I

i¼1
logPðxi; yijniÞ ð7Þ

In the following equation, we drop the subscript i to simplify the notation. Let r be
the count of unobserved haplotype h11, then the counts of the four haplotypes are
r; x � r; y � r; and n� x � y þ r, respectively. By the law of total probability, the
likelihood of observed allele counts x, y of two variants given n total haplotypes is
P x; y j n� � ¼ ∑rPðx; y; rjnÞ. Assuming the HWE, Pðx; y; rjnÞ can be calculated as the
multinomial probability with the four haplotype counts and probabilities. Specifically,

P x; y; r j n� � ¼ n!

r! x � rð Þ! y � r
� �

!ðn� x � y þ rÞ! p
r
11p

x�r
10 py�r

01 pn�x�yþr
00 ð8Þ

Note that the range of r is ½max 0; x þ y � n
� �

;min x; y
� ��. There are only three

free parameters for the four haplotype probabilities because their sum is 1. For a
direct test of the null hypothesis, we reparametrize the haplotype probabilities
using another three parameters s ¼ p11 þ p10; t ¼ p11 þ p01; and θ ¼ p11p00

p10p01
, where s

is the alternate AF of the first variant, t is the alternate allele frequency of the
second variant, and θ is the odds ratio specifying the LD strength and direction
between two variants. We used a likelihood ratio test, where the null hypothesis
was θ ≤1 and the alternative hypothesis was θ >1, i.e., the two variants were more
likely to be on the same haplotype. The parameters s and t were treated as nuisance
parameters. Specifically, the test statistic is as follows:

T ¼ 2 max
s; t; θ2 �;þð Þ

logL s; t; θð Þ � max
s; t; θ2 �; 1ð Þ

logL s; t; θð Þ
� �

We derived the gradient of the log-likelihood function and used the R package
nloptr29 to maximize the log-likelihood under the null hypothesis and full model.
For robust maximation, multiple initial parameter values were used. The chi-square
distribution with 1 degree of freedom was used to calculate the P values, which
appeared to work well, though the asymptotic distribution of the one-sided
likelihood ratio test could be better characterized. We used an odds ratio of 1 in the
null hypothesis; however, other prespecified odds ratios can be used to test directly
whether the LD exceeded a high odds ratio threshold. Due to QC, the ni of each
variant can slightly differ, hence in our implementation, it was calculated as the
rounded average of all (ni)s of the qualified variants within a gene. To accelerate the
optimization, we implemented the gradient functions in C++ with Rcpp41.

The above test can also be used to detect LD when full genotypes are observed.
The additive coding of genotypes corresponds to n= 2 in the above summary-
count-based test. The calculation of the likelihood can be accelerated because there
are only nine combinations of genotypes between the two variants. Let
f ij ¼ Pðx ¼ i; y ¼ jjn ¼ 2Þ, then assuming HWE we have

f 00 ¼ p200;f 01 ¼ 2p00p01;f 02 ¼ p201;

f 10 ¼ 2p10p00;f 11 ¼ 2p11p00 þ 2p10p01;f 12 ¼ 2p11p01; ð10Þ

f 20 ¼ p210;f 21 ¼ 2p11p10;f 22 ¼ p211:

The log-likelihood of the data is as follows:

logL ¼ ∑
2

i¼0
∑
2

j¼0
cijlogðf ijÞ ð11Þ

where cij is the count of genotype combination x ¼ i; y ¼ j. This full-genotype-based
LD test resembled a recently proposed LD test26, but we used a different
parametrization. We also implemented this full-genotype-based LD test in CoCoRV,
in case users have full genotypes, which will result in higher power to detect LDs.

Accounting for LD between two variants. For variants in high LD, we needed to
adjust the procedure of counting qualified samples with rare alleles. When esti-
mating the counts of qualified samples in controls for each group of rare variants in
LD, only the variant with the highest AF was kept representing the variants in LD;
the rest were excluded. The reason that we exclude redundant variant pairs that are
in LD in the controls from the counting of the recessive model is twofold: (1) to
match the assumption when estimating the number of samples under the recessive
models in controls: rare variants are assumed to be independent; (2) it is less
interesting if the recessive pattern in the case samples can be simply explained by
LD between two variants in the control population. Supplementary Fig. S16

illustrates the counting process under different models with/without considering
LD between pairs of rare variants in LD.

For a quick check of high-LD variants, we precomputed the LD test results
(P values and FDRs) from gnomAD and in-house controls and stored those with
relatively small P values (e.g., P < 0.1). When estimating sample counts for controls,
we regarded variants as LD variants if the LD test result has FDR < 0.05. To be
conservative, for each double-heterozygous sample in the cases, we further required
the P value of the LD test to be less than a threshold (e.g., P < 0.05 or 0.1). This
practice reduced false positives due to strong LD between variants under the
recessive or double-heterozygous models.

Detection of high-LD variants in gnomAD exomes. We used our proposed LD-
detection method to scan the gnomAD exome-based summary counts in each gene
to detect high-LD variants, which share some similarities with MNV14. MNVs are
usually detected by direct examination of the sequence reads in aligned bam files.
As a validation of the effectiveness of the proposed test, we detected high-LD
variants by using the summary counts from the gnomAD exomes and compared
them with the reported gnomAD MNVs.

Because we are interested in rare variants annotated with some functions, we
focused on variant sets annotated as “stop gain”, “nonsynonymous”, “splicing”,
“frameshift_insertion”, or “frameshift_deletion” by ANNOVAR. We restricted
variants in the cohort to those with AF ≤0.01, at least 10 alternate allele counts (AC
≥ 10), and missingness ≤0.1. Note that the alternate allele count differed from the
alternate read count, which is the number of sequencing reads harboring the alternate
allele supporting the genotype calls. We filtered out variants in the blacklist, as
described in the supplemental text. We required a coverage depth of at least 10 (total
reads of both alleles) for 90% of the samples. For each pair of variants within a gene,
we applied the LD test by using the summary counts for each ethnicity. In total, about
10 million tests were run. Variant pairs with FDR < 0.05 within each ethnicity were
considered significant. For comparison with gnomAD MNVs, we downloaded the
coding MNVs detected from gnomAD exomes, where variants’ distances were ≤2
base pairs (BPs). Therefore, we restricted our comparison to high-LD variants with
distances ≤2 BPs. We also downloaded the MNV lists based on gnomAD genomes
and defined the union of coding MNVs and genome MNVs with distances ≤2 BPs as
the full set of MNVs reported in gnomAD with ≤2 BPs.

Comparison of CoCoRV with other methods. TRAPD4 was developed to use
gnomAD summary counts, therefore we perform the comparison with CoCoRV
using gnomAD summary counts. The schematic diagram of applying TRAPD is
shown in Supplementary Fig. S17. TRAPD proposed to use a single annotation QD
for variant QC. We followed the description in TRAPD4 to select the best QD
threshold pairs for cases and controls by which TRAPD’s estimated inflation factor
was closest to 1. Besides the QD-based filtering, we also tried the option “--pass”
for variant filtering which is based on the FILTER status. Because the filtering is
performed in cases and controls separately, it can create inconsistencies. We used
the option “--minAN” to make sure the variant missingness ≤0.1, which can help
reduce false positives. The option “--popmaxAF” is used for filtering based on
AF_popmax in gnomAD. We use TRAPD’s “--includeinfo” to select variants based
on the defined criteria of potential pathogenic variants. Because TRAPD uses the
maximal allele frequency among different ethnicities (AF_popmax) to filter var-
iants, we added AF_popmax to filter variants in CoCoRV. Specifically, we used an
AF_popmax threshold of 1e–3 in TRAPD for filtering in the final test with the best
QD threshold for single-nucleotide variants (SNVs) and indels. For CoCoRV, we
used an AF threshold of 1e–3 and AF_popmax threshold of 1e–3. Because TRAPD
uses only AC and AN to derive qualified sample counts, we included the analysis
using only AC and AN from gnomAD for CoCoRV. In addition, we included the
ethnicity-stratified results for CoCoRV. We changed the default one-sided FET to a
two-sided FET in TRAPD to match that used in CoCoRV.

Another method ProxECAT16 which pools the counts of functional and non-
functional alleles between cases and controls to form a 2 × 2 contingency table for
the test of the enrichment of rare variants. However, the R package ProxECAT only
provides two functions performing the statistical tests assuming the contingency
tables have already been generated. There is no tool for any upstream filtering or
generation of the 2 × 2 contingency tables. For a fair comparison, we implemented
the pooling method proposed by ProxECAT in CoCoRV, and used the same
upstream variant filtering from CoCoRV. The functional alleles were defined the
same as that in CoCoRV for potential pathogenic alleles. The non-functional alleles
included alleles annotated as synonymous or missense variants with REVEL < 0.2.
The test in ProxECAT is essentially the likelihood ratio test given the 2 × 2
contingency table, which might not produce accurate P values when the counts are
very small, therefore we replace it with Fisher’s exact test in our analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GRCh37-lite is available at ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/
Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-
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lite.fa.gz. UCSC CRG Align 36 track is available at http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign36mer.
bigWig. The gnomAD summary-count data is available at https://gnomad.broadinstitute.
org/. The gnomAD detected MNV is available at https://gnomad.broadinstitute.org/
downloads#v2-multi-nucleotide-variants. The TOPMed summary-count data is available
at https://bravo.sph.umich.edu/. The ALS data used in this study are available at http://
alsdb.org/downloads. The Alzheimer’s Disease Sequencing Project (ADSP) are available
under restricted access following NIH dbGaP’s policy: https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000572.v8.p4. The 1000 Genomes Project’s
data are available at https://www.internationalgenome.org/. The Cancer Genome Atlas
(TCGA) is available under restricted access following NIH dbGaP’s policy: https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8. The St Jude
cancer cohort is available under restricted access following St Jude Cloud’s policy: https://
www.stjude.cloud/. The GTEx portal is available at https://gtexportal.org/home.

Code availability
The code for TRAPD is available at https://github.com/mhguo1/TRAPD. The code for
ProxECAT is available at https://github.com/hendriau/ProxECAT. The CoCoRV42 code
for summary counts-based rare variant association test is available at https://bitbucket.
org/Wenan/cocorv/src/master/.
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