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Abstract
Camera traps often produce massive images, and empty images that do not contain 
animals are usually overwhelming. Deep learning is a machine-learning algorithm and 
widely used to identify empty camera trap images automatically. Existing methods 
with high accuracy are based on millions of training samples (images) and require a 
lot of time and personnel costs to label the training samples manually. Reducing the 
number of training samples can save the cost of manually labeling images. However, 
the deep learning models based on a small dataset produce a large omission error of 
animal images that many animal images tend to be identified as empty images, which 
may lead to loss of the opportunities of discovering and observing species. Therefore, 
it is still a challenge to build the DCNN model with small errors on a small dataset. 
Using deep convolutional neural networks and a small-size dataset, we proposed an 
ensemble learning approach based on conservative strategies to identify and remove 
empty images automatically. Furthermore, we proposed three automatic identifying 
schemes of empty images for users who accept different omission errors of animal 
images. Our experimental results showed that these three schemes automatically 
identified and removed 50.78%, 58.48%, and 77.51% of the empty images in the 
dataset when the omission errors were 0.70%, 1.13%, and 2.54%, respectively. The 
analysis showed that using our scheme to automatically identify empty images did 
not omit species information. It only slightly changed the frequency of species occur-
rence. When only a small dataset was available, our approach provided an alternative 
to users to automatically identify and remove empty images, which can significantly 
reduce the time and personnel costs required to manually remove empty images. 
The cost savings were comparable to the percentage of empty images removed by 
models.
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1  | INTRODUC TION

Camera traps are widely used in ecological surveys due to their 
advantages of noninvasiveness, noninterference, and low cost. 
Camera traps deployed in the wild can help ecologists study species 
richness (Forsyth et  al.,  2019), population and distribution (Webb 
et al., 2016), habitat use (Dertien et al., 2017; Thorne et al., 2017), 
etc. It provides better decision support for ecological monitoring and 
protection. Camera traps usually produce a large number of images, 
and the proportion of empty images not containing animals can be 
overwhelming (Diaz-Pulido & Payan,  2011; Swanson et  al.,  2015; 
Willi et al., 2019). For example, the dataset of the Snapshot Serengeti 
(SS) Savannah Ecological Monitoring Project in Serengeti, Tanzania, 
Africa, collected 3.2 million images, of which 75% were empty im-
ages (Swanson et al., 2015). Automatically identifying and removing 
empty images from massive image datasets can significantly reduce 
the workload of ecologists (Harris et  al.,  2010; Hines et  al.,  2015; 
Rovero et al., 2013).

In recent years, deep learning (LeCun et al., 2015), a machine-
learning algorithm, has shown excellent performance in image 
processing and speech recognition (Simonyan & Zisserman,  2014; 
Verma & Gupta, 2018; Zhang et al., 2016). It enables the computer 
to extract features hierarchy from the raw data (images) and map 
the inputs (images) to some specific outputs (classes). The Deep 
Convolutional Neural Networks (DCNN) is one of the most popular 
deep learning algorithms and is widely used in image classification. 
Empty image recognition and species recognition based on DCNN 
have become a research hotspot in computer vision and machine 
learning (Beery et  al.,  2018; Giraldo-Zuluaga et  al.,  2017; Gomez 
et al., 2017; Willi et al., 2019).

Generally, building a DCNN model requires a large number of 
labeled training samples, and the more training samples, the bet-
ter the model tends to perform. Existing research uses millions of 
large-scale training samples to build DCNN models to identify empty 
camera images (Norouzzadeh et al., 2018; Tab ak et al., 2019; Willi 
et al., 2019; Yousif et al., 2019). They have achieved high accuracy 
and small omission error that refer to the possibility that animal im-
ages are incorrectly predicted as empty images. However, manual 
labeling a large-scale training set requires a lot of time and personnel 
costs. Many small ecological monitoring projects do not have the 
ability to label large-scale training images. Reducing the number of 
training samples can save costs substantially, but the model usually 
produces a large omission error when the training sample size is 
small. For example, Willi et al. (2019) used datasets contained ~0.5 
million images and the ResNet-18 model (He et al., 2016) to identify 
empty images. They achieve high accuracy, but their omission error 
and commission error are 11.9% (100%-88.1%) and 12.9% (100%-
87.1%) (see Figure 9 of Willi et al. (2019)), respectively. Furthermore, 
they indicated “that their method was more likely to miss an animal 
rather than detecting one that is not present.” The main purpose of 
ecological monitoring is to collect species information as much as 
possible. A large omission error of animal images may lead to missing 
the opportunities to discover species and observe wildlife. When the 

dataset is small, how to build the deep learning model to limit the 
omission error to an acceptable range and to maximize the automatic 
removal rate of empty images is still a challenge.

Ensemble learning (Breiman,  1996; Galar et  al.,  2012; Huynh 
et  al.,  2016) can combine different DCNN models to obtain bet-
ter performance than any individual DCNN model using proper 
strategies. It has been well studied in remote sensing image pro-
cessing and other aspects (Chen et  al.,  2019; Hurt et  al.,  2019;; 
Pathak et al., 2018; Xia et al., 2018) and proven to improve model 
performance. However, the research on the automatic recognition 
of empty camera trap images based on ensemble learning has just 
begun (Norouzzadeh et al., 2018). Norouzzadeh et al.  (2018) use a 
large training set (1.4 million) and nine DCNN models to build an en-
semble learning model to identify empty images automatically, but 
the accuracy of their ensemble model is not higher than that of the 
individual model.

Although the existing research using ensemble learning methods 
to recognize empty images does not significantly improve the rec-
ognition accuracy, it is still worth trying when only a small labeled 
dataset is available. Different from existing research, we pay more 
attention to the accuracy of empty image recognition, hoping to 
remove animal images as little as possible when automatically re-
moving empty images. Therefore, we adopt a series of conservative 
strategies for the automatic removal of empty images. Here, the 
conservative strategies mean that we would rather identify empty 
images as animal images than identify animal images as empty im-
ages. According to this idea, we proposed an ensemble learning ap-
proach based on small-scale dataset to remove empty camera trap 
images automatically. The goals of this study were:

1.	 To build the ensemble model based on a small data set to 
minimize omission error of animal images and avoid losing too 
much species information due to the automatic identifying and 
removal of empty images.

2.	 To maximize the proportion of empty images automatically re-
moved by the model to reduce the burden of manually identifying 
and removing empty images.

3.	 To provide different empty images automatically identifying and 
removing schemes for users who have different acceptances of 
omission errors.

2  | DATA SETS AND METHODS

2.1 | Dataset

Our study data came from 135 camera sites in Lhasa Mountain 
(LSM) (26°20′N, 99°15′E), Yunling Nature Reserve, Yunnan, China. 
We gathered all images of the 135 sites from May 2017 to August 
2018. Whenever movement objects, such as waving vegetation, 
moving animals, etc., trigger the camera trap, the camera will take a 
set of images. Each trigger is called a capture event, and each capture 
event usually contains three images. A few capture events contain 
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less than three images due to image corruption and other reasons. 
The LSM dataset contained 90,182 capture events (268,484 images) 
of 40 different species. Each image in the LSM dataset was assigned 
an empty or species label using our software system, called "Camera 
Trap Images Manual Classification System" (Yang et  al.,  2019). All 
images with species labels were treated as nonempty images, also 
called animal images. In the LSM dataset, the proportion of empty 
images was 77.86%, all images were in RGB format, and their size 
was 4,000  ×  3,000 pixels. The LSM dataset contained all images 
taken during the day and night. We resized all images to meet the 
requirements of DCNN models for the input image size using the 
resize() method in the Python Imaging Library (Clark, 2019) of the 
Python 3.5.3 platform.

2.2 | Ensemble learning framework

Based on the idea of conservatively removing empty images, we 
designed a multilevel ensemble learning framework (Figure 1). The 
goal of the ensemble learning framework was to maximize the Na 
and to minimize Nm without losing species, where Na and Nm were 
the numbers of empty images removed by the model automati-
cally and by humans manually, respectively. To improve the model 
performance, we chose three DCNN models with significant dif-
ferences in architecture as the basic model, then used a series of 
conservative strategies to combine these DCNN models. In consid-
eration of the diversity of DCNN model architectures, our ensemble 
learning framework used three DCNN models: the AlexNet model 
(Krizhevsky et al., 2012), Inception model (Szegedy et al., 2016), and 
ResNet model (He et al., 2016). On the other hand, considering the 
impact of the class imbalance of the training dataset on the per-
formance of the model, we constructed an unbalanced training set 
(Train1) and a balanced training set (Train2). We trained these three 
DCNN models on both training sets and then combined them, re-
spectively. A common problem of DCNN-based classifiers is that the 

number of samples of some classes in the training set is significantly 
higher than that of other classes, which is the called class imbalance 
problem (Chawla,  2010; Japkowicz & Stephen,  2002; Mazurowski 
et  al.,  2008). The performance of the DCNN model is susceptible 
to the class imbalance of the training set, and the classifier trends 
to recognize the input as the majority class in the training set (Buda 
et  al.,  2018). Combining models trained on different training sets 
using proper strategies can improve the performance of the model.

In the ensemble learning framework, we first trained the 
AlexNet, Inception, and ResNet models on the training set Train1 
to generate three models A1, I1, and R1 and trained the models on 
training set Train2 to generate models A2, I2, and R2. Second, we used 
a conservative strategy to combine A1, I1, and R1 to obtain the first-
level ensemble model AIR1 and to combine A2, I2, and R2 to obtain the 
first-level ensemble model AIR2. Finally, we used different conserva-
tive strategies to combine AIR1 and AIR2 to obtain the second-level 
ensemble model AIR.

2.2.1 | Data splitting

In the camera trap image dataset, the images of the same capture event 
were overly similar. If images of the same capture event were split into 
the training set and the test set, the model often shows excellent per-
formance on the test, but the generalization of the model was poor. To 
avoid this problem, we the same method as Norouzzadeh et al.,(2018) 
to put all the images of the entire capture event into either the train-
ing set or test set. We first randomly selected 80,000 capture events 
(238,673 images) from the LSM dataset to construct the training set 
Train1, which was an imbalanced training set. Then, we extracted all 
nonempty images in Train1 and randomly selected the same number 
of empty images from Train1 to construct the training set Train2, which 
was a balanced training set. Finally, we took the remaining 10,182 cap-
ture events (29,811 images) in the LSM dataset as the test set (Test). 
The description of the training and test sets was shown in Table 1.

F I G U R E  1   Framework of ensemble learning for automatically removing empty images. Ai, Ii and Ri were the classifiers that output by the 
three DCNN models on the training set Traini. AIRi was the first-level ensemble classifier combined with Ai, Ii, and Ri (i = 1,2). AIR was the 
second-level ensemble classifier combined with AIR1 and AIR2
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2.2.2 | DCNN models

We used the three DCNN models of AlexNet, InceptionV3, and 
ResNet-18, because there are two core factors in defining a good 
ensemble classification system: the accuracy of individual classifi-
ers and the diversity among classifiers (Faria et al., 2014). Since the 
AlexNet model was proposed in 2012, the depth and width of DCNN 
model have been increasing. The representative models of expanding 
the network width include NiN (Lin et al., 2013), GooleNet (Szegedy 
et al., 2015), Inception, etc. The representative models of expand-
ing the network depth include VGG (Simonyan & Zisserman, 2014), 
ResNet, etc. The AlexNet model, winning the 2012 ImageNet Large-
scale Visual Recognition Challenge (ILSVRC 2012) challenge, is a 
landmark architecture for deep learning. It uses fewer levels and 
larger convolution kernels. The Inception model is proposed based 
on the GoogleNet model that won the 2014 ILSVRC challenge. The 
InceptionV3 model is the third version of Inception, which increases 
the width of the network and introduces the Batch Normalization al-
gorithm and the idea of convolution kernel factorization. The ResNet 
model, winning the 2016 ILSVRC challenge, increases the network 
depth and introduces a residual module to solve the problem of net-
work degradation. Experimental results of Norouzzadeh et al. (2018) 
showed that AlexNet, GoogleNet, and ResNet all achieve high accu-
racy for the task of empty and nonempty image recognition, and the 
accuracy of ResNet-18 is 0.3% higher than that of ResNet-152. Here 
ResNet-18 is the simplified version of ResNet. The description of the 
three models was shown in Table 2.

2.2.3 | Confidence threshold and coverage

The outputs of the DCNN classifier are the probabilities that the 
input image belongs to all classes. The sum of these probabilities is 
1. In other words, if we train a model to distinguish between empty 
and nonempty images, it will output the probabilities that the input 
image is empty and is an animal image, respectively. The probabilities 
can be interpreted as a confidence measure of the prediction result 
of the model. The class with the higher probability will be assigned 
to the input image as its label. Generally, the higher the prediction 
probability, the more credible the prediction result. Therefore, we 
can apply a confidence threshold to filter the prediction results of 
the model automatically. When the prediction probability output by 
the model is less than a certain threshold, it means that the model 
has little confidence in its prediction result, and the opinions of the 
model can be ignored. Ignoring low-confidence predictions can im-
prove the overall accuracy of the model, but it will also reduce its 

coverage. The coverage refers to the share of the model's prediction 
results that are accepted. For example, the model gives predictions 
of 100 images, of which prediction probabilities of 80 images ex-
ceed the confidence threshold, and the prediction probabilities of 
the other 20 images are below the confidence threshold. For this 
case, since we only accept 80 prediction results that exceeded the 
confidence threshold, the coverage is 80%.

2.2.4 | Ensemble methods

To achieve low omission error and meet the demands of users with 
different acceptances of omission error, we proposed a two-level 
ensemble method. The first level was the DCNN model ensem-
ble, which used a conservative strategy to combine DCNN models 
trained on the same training set into an ensemble model. The second 
level was the scheme ensemble, which used different conservative 
strategies to construct different empty image automatic removal 
schemes for users with different tolerances for omission errors.

In the DCNN model ensemble, we first set a 95% confidence 
threshold for each DCNN model. After setting the confidence 
threshold, the output of the DCNN model was one of the empty 
image, nonempty image, and uncertain image, which were repre-
sented as 0, 1, and δ, respectively. The uncertain images represented 
that the model's predicted probability for the input image was lower 
than the preset threshold. Then, we adopted a conservative strat-
egy to combine DCNN model A1, I1, and R1 into the ensemble model 
AIR1 and to combine DCNN model A2, I2, and R2 into the ensemble 
model AIR2. In our conservative strategy, the ensemble model AIRi 
(i = 1,2) assigned an empty (or nonempty) label to the input image if 
the predictions of model Ai, Ii, and Ri for the same input image were 
all empty (or nonempty). Otherwise, the ensemble model AIRi as-
signed an uncertain label x to the input image. The reason why the 
ensemble model AIRi assigned an uncertain label x to the input image 
was that the prediction results of the three DCNN models for the 
same input image were inconsistent or were less than the threshold 
δ. Images with uncertain labels need to be identified and removed 
manually. We adopted such a conservative ensemble strategy be-
cause we hoped to reduce the probability of erroneously predicting 
nonempty images as empty images as much as possible. The conser-
vative DCNN model ensemble method was defined as Equation (1).

(1)AIRi =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, if Ai= Ii=Ri=0

1, if Ai= Ii=Ri=1

x, else

, i = 1, 2

Datasets
Number of 
total images

Number of 
empty images

Number of 
nonempty images

Empty image 
percentage (%)

Train1 238,673 185,688 52,985 77.80

Train2 105,970 52,985 52,985 50.00

Test 29,811 23,294 6,517 78.14

TA B L E  1   The training sets and the test 
set
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In the scheme ensemble, to meet the needs of different users for 
automatically removing empty images, we designed an enhanced en-
semble strategy and a complementary ensemble strategy (Table 3). 
The purpose of the enhanced ensemble strategy was to achieve 
smaller omission errors to provide automatically removing services of 
empty images for users with a strict limitation for omission error. In 
the enhanced ensemble strategy, if both the ensemble model AIR1 and 
the AIR2 output the same prediction label for the same input image, 
the ensemble model AIR (denoted as AIR1 and AIR2) assigned the label 
to the input image. Otherwise, the ensemble model AIR assigned an 
uncertain label x to the input image. The purpose of the complemen-
tary ensemble strategy was to increase the coverage of the ensem-
ble model AIR (denoted as AIR1 or AIR2) so that it can automatically 
remove more empty images while limiting the omission errors to an 
acceptable range. The complementary ensemble strategy was de-
scribed as follows: (1) If the model AIR1 and AIR2 output the same 
prediction label for the same input image, the label was assigned to 
the input image; (2) if only one of the model AIR1 and AIR2 assigned a 
certainty (empty or nonempty) label to the input image, and the other 
assigned an uncertain label x to the input image, then the AIR assigned 
the certainty (empty or nonempty) label to the input image; and (3) if 
models AIR1 and AIR2 output certainty but opposite labels, then AIR 
assigned the nonempty label to the input image. It was a conservative 
strategy, which can reduce the probability that the model recognized 
animal images as empty images and removed them by mistake.

2.3 | Model evaluation

Existing research treated empty images and animal images equally. 
They usually used accuracy to evaluate model performance, and 

some researchers used the recall and precision to evaluate their 
model. Our purpose was to look for an approach to achieve a small 
omission error at the cost of a reduced removal rate of empty im-
ages when only a small training set was available. We hoped to 
maximize the number of empty images that can be automatically 
removed by the model while limiting the number of animal images 
that were removed improperly. Therefore, we were more concerned 
about how many empty images the model correctly removed and 
how many animal images have been removed mistakenly. So we fo-
cused on three metrics: the omission error of animal images (Eoa), 
the commission error of empty images (Ece), and the removal rate of 
empty images (Rre), which were defined as (2), (3), and (4), respec-
tively. In addition, to systematically evaluate the performance of the 
model, we supplemented two metrics that the overall error (Eov) and 
the commission error of the animal image (Eca), which were defined 
as (5) and (6).

Here, TP was the true positive, which indicated the number of im-
ages that the ground truth labels were animal images and were pre-
dicted to be animal images by the model. FP was the false positive, 
which indicated the number of images that the ground truth labels 
were empty images but were predicted to be animal images by the 
model. FN was the false negative, which indicated the number of im-
ages that the ground truth labels were animal images but were pre-
dicted to be empty images by the model. TN was the true negative, 
which indicated the number of images that the ground truth labels 
were empty and were predicted to be empty by the model. Ne was 
the number of empty images in the test set. The Eoa was the same as 
1-recall = 1 − TP / (FN+TP), but the Eoa can more intuitively reflect 
the proportion of animal images that were falsely predicted by the 
model to the total number of animal images in the test set. The Ece 
intuitively reflected the proportion of animal images in the empty 

(2)Eoa = FN∕ (FN + TP)

(3)Ece = FN∕ (FN + TN)

(4)Rre = TN∕Ne

(5)Eov = (FN + FP)∕ (TP + TN + FN + FP)

(6)Eca = FP∕(TP + FP)

Architecture
Number of 
layers Input size Short description

AlexNet 8 227 × 227 2012 ILSVRC Champion. It is a landmark 
architecture for deep learning.

InceptionV3 42 299 × 299 It increases the width of the network and 
uses the idea of Batch Normalization and 
factorization.

ResNet-18 18 224 × 224 It introduces a residual module to solve the 
problem of network degradation.

TA B L E  2   Characteristics of different 
deep learning architectures

TA B L E  3   Two different ensemble methodsa

Model Predicted results

AIR1 0 0 0 1 1 1 x x x

AIR2 0 1 x 0 1 x 0 1 x

AIR1 and AIR2 0 x x x 1 x x x x

AIR1 or AIR2 0 1 0 1 1 1 0 1 x

a0, 1, and x represented empty image, nonempty, and uncertain image, 
respectively. AIR1 and AIR2 was the enhanced ensemble model. AIR1 or 
AIR2 was the complementary ensemble model.
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images removed by the model automatically. Rre reflected the saved 
workload of automatically removing empty images.

Inputting an image, the model will output the corresponding 
prediction result. Some of the existing researches gave the recog-
nition result of individual images, called image-level results. Some 
researchers gave the recognition result of capture events, called 
event-level results. So we gave both experimental results of the 
image-level and the capture event-level in this work.

3  | RESULTS

3.1 | Image-level results

For the image-level results, the ensemble model assigned a label to 
each input image, and we analyzed the experimental results based 
on the individual image (Figure  2). The coverage of the enhanced 
ensemble model AIR (i.e., AIR1 and AIR2) was 47.66%, and its Eoa 
was 0.70%. That was, the ensemble model AIR automatically pro-
cessed 47.66% of images in the dataset and mistakenly removed 
16 nonempty images (Figure 2a). The coverage of the complemen-
tary ensemble model AIR (i.e., AIR1 or AIR2) increased to 79.64%. 
Among them, 47.66% of images can be recognized by both model 
AIR1 and model AIR2. The 15.45% of images can be recognized by 
model AIR2 but not by model AIR1, which was denoted as AIR2 not 
AIR1 (Figure 2b). The other 16.53% of images can be recognized by 
model AIR1 but cannot by model AIR2, which was denoted as AIR1 not 
AIR2 (Figure 2c).

Based on the experiment results, we provided three different 
schemes of empty images automatic identifying and removal for 
users with different acceptances of Eoa (Table 4) (See the Supporting 

Information for the confusion matrix of models), which can automat-
ically remove different proportions of empty images. In the case of 
the LSM dataset, the percentages of empty images that were au-
tomatically removed by three schemes were 50.78%, 58.48%, and 
77.51% when the omission errors were 0.70%, 1.13%, and 2.54%, 
respectively. Users can choose an empty image automatic removal 
scheme according to their acceptance of the Eoa. Although the Eoa 
and Rre of the three schemes gradually increase, the maximal Eoa of 
them was also smaller than any individual DCNN model (Table  4). 
Images that cannot be automatically identified by the three schemes 
need to be identified and removed manually. In the case of the LSM 

F I G U R E  2   Image-level experimental results on LSM dataset (with 95% confidence of DCNN models)

TA B L E  4   Image-level errors on the LSM dataseta

No. Models Eov (%) Eoa (%) Eca (%) Ece (%) Rre (%)

I AIR1 and 
AIR2

0.75 0.70 3.81 0.14 50.78

II AIR2 4.33 1.13 14.86 0.37 58.48

III AIR1 or AIR2 3.94 2.54 14.60 0.68 77.51

1 AlexNet1 8.10 8.8 23.58 2.59 86.89

2 Inception1 3.26 9.06 9.24 1.96 86.21

3 ResNet-181 9.82 22.18 26.28 5.51 80.61

4 AlexNet2 10.95 5.43 31.56 1.75 81.29

5 Inception2 6.80 3.80 22.31 1.12 85.14

6 ResNet-182 15.62 8.85 40.07 3.00 66.56

aEov was the overall error, and Eov = (FP + FN)/(TP + FP + FN + TN). Eoa 
was the omission error of animal images, and Eoa = 1-recall = FN / (FN + 
TP). Eca was commission error of animal image, and Eca =1-precision=FP/
(TP + FP). Ece was the commission error of empty images, and Ece = FN / 
(FN + TN). Rre was the removal rate of empty images, and Rre = TN / Ne, 
where Ne was the number of empty images in the test set.
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dataset, the proportions of empty images that need to be identified 
and removed manually in the three schemes were 49.22%, 41.52%, 
and 22.49%, respectively.

3.1.1 | Event-level results

For the event-level recognition results, the model still assigned a 
class label to each input image, but we analyzed the experimental 
results based on the captured events. To evaluate the experimental 
results of the capture event-level, we defined empty capture events 
and nonempty capture events. That was, a capture event was an 
empty event if all images in the capture event were empty images, 
and a capture event was a nonempty (animal) event if at least one 
image in the capture event was an animal image. Our test set con-
tained 10,182 capture events, of which the empty event rate was 
75.99% (7,737 empty capture events).

The coverage of the enhanced ensemble model AIR (i.e., AIR1 
and AIR2) was 42.32%, and the omission error of animal events was 
0.26%. That was, the ensemble model AIR automatically processed 
42.32% of the capture events in the dataset while mistakenly re-
moving 3 animal events (Figure  3a). The coverage of the comple-
mentary ensemble model AIR (i.e., AIR1 or AIR2) increased to 75.80%. 
Among them, 42.32% of events can be recognized by both models 
AIR1 and mode AIR2. The 15.76% of events can be recognized by the 
model AIR2 but not by the model AIR1 (Figure 3b). The other 17.72% 
of events can be recognized by the model AIR1 but not by the model 
AIR2 (Figure 3c).

We also evaluated the event-level results of these three schemes 
and individual model (Table 5). When the omission errors of animal 
events were 0.26%, 0.64%, and 1.61%, the three schemes auto-
matically removed 40.22%, 48.93%, and 70.71% of empty events, 

respectively. The percentages of empty capture events that need to 
be identified and removed manually in three schemes were 59.78%, 
51.07%, and 29.29%, respectively.

4  | DISSCUSION

4.1 | Generalizability

To verify the generalizability of our ensemble learning approach 
based on the conservative strategies, we applied it to 332,192 im-
ages from 135 cameras of the SS benchmarking data set, which 
were extracted from S1 subset of the SS dataset and denoted as 
the SS_S1_135 dataset (see Supporting Information for more detail). 
The sample size of the SS_S1_135 dataset was equivalent to that 
of the LSM dataset. We built the training set and test set using the 
same method (Table S.7), and retrained and tested the models on the 
SS_S1_135. Experimental results showed that the ensemble models 
also performed better than any individual DCNN model on the SS_
S1_135 dataset (Table 6). It can be seen that our ensemble learning 
ideas based on conservative strategies can be applied to the small 
dataset of the savanna ecosystem.

Although the ensemble models obtained smaller errors than any 
individual model on two different datasets, there was still a signif-
icant difference between the model performances on the two dif-
ferent datasets. For example, the Eoa of the ensemble model on the 
LSM data was smaller, and the Eca of the ensemble model on the 
SS_S1_135 dataset was smaller. These differences exist because the 
two datasets came from different ecosystems, with various natural 
environments and wildlife communities. LSM is a typical mountain-
ous terrain dominated by primary forests, where harbors wildlife 
species with relatively small body size. The SS dataset is a typical 

F I G U R E  3   Event-level experimental results on LSM dataset (with 95% confidence of DCNN models)
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savanna ecosystem, and most wildlife species trapped by cameras 
are large mammals.

4.2 | Ensemble model versus individual model

The goal of this study was to identify and remove empty camera trap 
images accurately. Therefore, we preferred that the model achieved 
a smaller omission error. If a model has a high empty image removal 
rate, but its omission error is also high, such a model cannot be used 
in actual ecological projects. In this work, we balanced the removal 
rate of empty images with the omission error of animal images to 
limit the omission error to an acceptable range and remove empty 
images as many as possible automatically. In this perspective, our en-
semble learning method performed better than the individual DCNN 
model on both data sets.

We found that in the first-level ensemble, the models with the 
smallest omission errors on the balanced training set and the unbal-
anced training set were the Inception and the AlexNet, respectively. 
The Eov of the Inception model was always the best on both datasets. 
The three models showed consistency on the two sets of data.

Norouzzadeh et  al.  (2018) indicate that the ResNet-18 model 
performed better than the AlexNet model. However, in most cases 
in our experiments, the ResNet-18 model did not perform better 
than the AlexNet model on both LSM and SS_S1_135 datasets, es-
pecially on the LSM dataset. The possible reason was that our train-
ing samples (<0.24 million) are much less than that of Norouzzadeh 
et al. (2018) (1.4 million). We speculated that the ResNet-18 required 
more training samples than AlexNet to achieve good accuracy, which 
will be further verified in our future work.

The AlexNet, Inception, and ResNet-18 models were used as the 
basic models because the architectures of these three models were 
significantly different, and they all showed excellent accuracy in 

identifying the camera trap images (Norouzzadeh et al., 2018). They 
represent the starting point of the DCNN model and two improving 
directions, respectively. In this work, we focused on whether our en-
semble models can achieve better performance on small-scale data-
sets than the individual model. However, these three models were 
not necessarily the best combination. Regarding which models are 
the best combination, we will further explore them and then develop 
it into software for users for free downloading in future work.

4.3 | The impact of different schemes on the 
frequency of species occurrence

The purpose of this study was to automatically identify and remove 
empty images as many as possible while keeping the Eoa to a small 
range instead of automatically removing all the empty images in the 
dataset. For empty images that the models cannot automatically rec-
ognize, we recommended manual identifying and removing them. In 
this study, we assumed the manual recognition of empty images was 
credible. Based on this assumption and LSM dataset, we analyzed 
the impact of the omission errors of three empty image automatic re-
moval schemes on the frequency of species occurrence. The scheme 
I missed 16 animal images, which were distributed in 12 capture 
events of 9 cameras (see Figure S12 in Supporting Information for 
the image examples). Among them, three capture events (8 images) 
were completely missed, and the remaining events only missed part 
of the images. Our scheme II missed 50 animal images, which were 
distributed in 29 capture events of 24 cameras, of which 12 capture 
events (27 images) were completely missed. Our scheme III missed 
124 animal images, which were distributed in 76 capture events 
of 48 cameras, of which 32 capture events (84 images) were com-
pletely missed. We manually checked the 124 missed animal images 

TA B L E  5   Event-level errors on the LSM dataseta

No. Models Eov (%) Eoa (%) Eca (%) Ece (%) Rre (%)

I AIR1 and 
AIR2

0.60 0.26 1.93 0.10 40.22

II AIR2 4.26 0.64 11.34 0.32 48.93

III AIR1 or AIR2 3.69 1.61 10.91 0.58 70.71

1 AlexNet1 8.25 7.12 22.26 2.46 84.99

2 Inception1 2.91 6.11 7.71 1.62 85.55

3 ResNet-181 10.59 11.31 26.80 3.87 72.59

4 AlexNet2 10.68 4.53 28.54 1.70 79.77

5 Inception2 6.37 3.47 19.17 1.18 85.56

6 ResNet-182 19.85 4.03 41.93 1.97 56.47

aEov was the overall error, and Eov = (FP + FN)/(TP + FP + FN + TN). Eoa 
was the omission error of animal images, and Eoa = 1-recall= FN / (FN + 
TP). Eca was commission error of animal image, and Eca =1-precision=FP/
(TP + FP). Ece was the commission error of empty images, and Ece = FN / 
(FN + TN). Rre was the removal rate of empty images, and Rre = TN / Ne, 
where Ne was the number of empty images in the test set.

TA B L E  6   Image-level errors on the SS_S1_135 dataset (with 
95% of confidence)a

No. Models Eov (%) Eoa (%) Eca (%) Ece (%) Rre (%)

I AIR1 and 
AIR2

0.71 2.75 2.69 0.42 86.29

II AIR2 2.07 2.95 9.45 0.56 87.24

III AIR1 or AIR2 2.43 5.68 9.45 1.06 94.02

1 AlexNet1 3.76 11.11 11.38 2.23 96.03

2 Inception1 2.74 11.35 5.71 2.20 97.08

3 ResNet-181 3.94 17.31 8.95 3.12 96.05

4 AlexNet2 5.41 7.26 20.73 1.56 93.27

5 Inception2 4.26 6.14 16.44 1.32 92.67

6 ResNet-182 5.07 8.14 19.79 1.65 91.06

aEov was the overall error, and Eov = (FN+ FP)/(TP + FP + FN+ TN). Eoa 
was the omission error of animal images, and Eoa = 1-recall= N / (FN + 
TP). Eca was commission error of animal image, and Eca = 1-precision= FP/
(TP + FP). Ece was the commission error of empty images, and Ece = FN / 
(FN + TN). Rre was the removal rate of empty images, and Rre = TN / Ne, 
where Ne was the number of empty images in the test set.
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and found that only 17.75% (22 images) of them can identify the spe-
cies information, and the remaining 82.25% (102 images) can only 
find the presence of animals in the images, but it is hard to identify 
the species information. It means 82.25% of the nonempty images 
that were removed mistakenly were insignificance for ecological re-
search. Our experimental results showed that although these three 
schemes for automatically removing empty images slightly changed 
the frequency of species occurrence, they did not miss the species 
information (see Figure S9 in Supporting Information for the detailed 
information).

4.4 | Confidence threshold

Setting a confidence threshold for the outputs of the DCNN models 
can significantly reduce the errors of the DCNN models. To study 
the impact of the confidence threshold of the DCNN model on the 
ensemble model performance, we tested the Eoa and coverage of 
each scheme under different confidence thresholds (Figure 4) (see 
Table S3–S6 and Figure S6–S8 in Supporting Information for the 
more detailed results). We found that when the confidence thresh-
old of DCNN models was 95%, the image-level omission errors of 
the three schemes were 0.7%, 1.1%, and 2.5%, respectively, which 
represented different error gradients and provided different al-
ternatives to users with different error tolerance. When the con-
fidence threshold of the DCNN model was 97.25%, although the 
Eoa of scheme II was still decreasing, the Eoa of schemes I and III 
had begun to increase. We also found that when the confidence 
threshold of the DCNN model was not less than 90%, using any of 
our three schemes to automatically remove empty images did not 
miss the species information. However, if the confidence thresh-
old of DCNN models was 50% (i.e., without confidence threshold), 

neither the scheme I nor the scheme II missed species informa-
tion, but the scheme III (with 4.46% of Eoa) missed a rare species 
(Pomatorhinus ruficollis). This missed species only appeared twice 
in the LSM dataset (two capture events), one event was divided 
into the training set, and the other was divided into the test set 
(see Figure S13 in Supporting Information for the missed species 
examples).

4.5 | Limitations and future work

We found that no matter which empty image automatic filtering 
schemes (scheme Ⅰ, scheme Ⅱ, or scheme Ⅲ) was used, there were 
always some empty images that need to be manually identified and 
removed, which was the limitations of our method. For our three 
schemes (with a 95% confidence threshold of DCNN models), the 
percentages of images that we need to recognize manually were 
52.34%, 36.89%, and 20.36%, respectively. In our future research, 
we will focus on improving the coverage of schemes while limiting 
the omission errors.

We attempted to use the majority rule to ensemble the six 
DCNN models (without the confidence threshold) to identify the 
20.36% (6,701 images) of images, which cannot be processed au-
tomatically by scheme III and was denoted as Not (AIR1 or AIR2). We 
did not set the confidence threshold of the six DCNN models so that 
each DCNN model can cover all test samples. For this attempt, the 
Eoa was 14.73% (see Figure S14 in the Supporting Information for 
the confusion matrix). Furthermore, for users who were unwilling 
to remove empty images manually, we suggest the scheme IV. The 
scheme IV included two steps: (1) first, use scheme III to identify 
and filter empty images in the dataset automatically and (2), sec-
ond, use the majority principle to ensemble the six DCNN models 

F I G U R E  4   Omission errors of animal images (a) and coverage (b) of different schemes with different confidence thresholds on the LSM 
dataset
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(without confidence) to identify and remove empty images that can-
not be identified by scheme III. The Eoa, Ece, and Rre of scheme IV 
were 5.62%, 1.73%, and 89.50%, respectively (see Figure S15 in the 
Supporting Information for the confusion matrix of scheme IV).

On a small dataset, another way for the DCNN model to obtain 
better performance is the transfer learning (Bengio et  al.,  2013; 
Donahue et  al.,  2014; Yosinski et  al.,  2014). Transfer learning first 
pretrains the model on a publicly large-scale dataset, then uses a 
small target dataset to retrain the model to obtain better perfor-
mance than training directly on the small dataset. Our ensemble 
learning method is not opposed to the transfer learning. The in-
dividual DCNN model can be pretrained on the SS dataset firstly 
then transferred to our LSM dataset. After that, use our ensemble 
learning method to improve the performance of the model. In this 
way, maybe we only need fewer training samples to achieve smaller 
errors and a larger empty image removal rate, which will be further 
researched in our future work.
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