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Abstract
Background  Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, characterized by high 
mortality. This study aimed to explore the prognostic value and function of alternative lengthening of telomeres 
(ALT)-related genes in HCC.

Methods  Differentially expressed genes (DEGs) were identified based on The Cancer Genome Atlas (TCGA) and then 
intersected with ALT-related genes to obtain ALTDEGs. Risk score model was constructed using the least absolute 
shrinkage and selection operator (LASSO) algorithm and Cox regression and validated with Gene Expression Omnibus 
(GEO) datasets. The predictive efficacy of the risk score and ALTs-score was evaluated by Kaplan-Meier curves, time-
ROC curves, and the nomogram analyses. The impacts of SMG5 silencing on the HCC cell behaviors were assessed by 
CCK-8, wound healing, and Transwell assays.

Results  A total of 500 ALTDEGs were screened and 13 genes (CDCA8, SMG5, RAD54B, FOXD2, NOL10, RRP12, CCT5, 
CCT4, HDAC1, DDX1, HRG, HDAC2, and PPP1CB) were identified for constructing a prognostic model. The overall 
survival (OS) curves, time-ROC curves, and nomograms based on the risk score or ALTs-score were developed to 
optimally predict the survival of HCC patients. ALTs-score was correlated with immune infiltration and confirmed its 
value in predicting immunotherapy outcomes. Furthermore, RT-qPCR demonstrated that eight risk signature genes 
were up-regulated in HCC cells. SMG5 silencing suppressed the proliferation, migration, and invasion of HCC cells. It 
was also found that SMG5 silencing reduced C-circle level in SNU-387 cells.

Conclusion  We identified new ALT-related prognostic biomarkers for HCC. SMG5 knockdown inhibited the HCC 
progression, which might be a promising target for HCC therapy.

Highlights
	• 13 ALTDEGs were identified for constructing a risk model model.
	• Risk model and ALTs-score model could be used for HCC prognosis.
	• 13 ALTDEGs could serve as prognostic and diagnostic biomarkers for HCC.
	• SMG5 knockdown suppressed the proliferation, migration, and invasion of HCC cells.
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Introduction
Primary liver cancer accounted for over 906,000 new 
cases and 830,000 deaths globally in 2020, according to 
GLOBOCAN statistical data, making it the sixth most 
prevalent cancer to be diagnosed and the third largest 
cause of cancer-related deaths. Hepatocellular carcinoma 
(HCC) constitutes 75-85% of all primary liver cancer 
cases [1]. Virus infection, contamination with aflatoxins, 
excessive alcohol intake, and smoking are predisposing 
factors for HCC. Currently, the primary options for the 
HCC treatment include hepatic resection, liver trans-
plantation, radiation therapy, local ablation, transarterial 
therapy, and systemic therapy [2]. However, as HCC lacks 
symptoms in its early phases, the majority of patients 
are typically diagnosed at an advanced stage, missing 
the chance for these treatments [3]. Consequently, it is 
important to further explore the molecular mechanisms 
of HCC and search for effective biomarkers and potential 
therapeutic targets.

Telomeres are located at the ends of chromosomes 
and are safeguarded by a series of telomere-binding pro-
teins, ensuring they are not perceived as DNA double-
strand breaks [4]. As somatic cells divide, their telomeres 
shorten, causing a buildup of DNA damage that initiates 
cellular senescence [5]. The maintenance of telomere 
length is essential for the proliferation of malignant cells. 
Telomerase sustains telomere length primarily through 
the addition of the TTAGGG repeat sequence to chro-
mosome ends or the alternative lengthening of telomeres 
(ALT) mechanism, which largely depends on homolo-
gous recombination (HR) between sister chromatids [6]. 
Telomere shortening without telomerase causes ssDNA 
accumulation at the telomere region, and the HR coun-
ters the ssDNA and elongates the telomere via the DNA 
damage response pathway [7]. Clustering of telomeres 
can occur at the G1 and S phases of the cell cycle, with 
three types of telomeric HR being distinguished by the 
mode of telomeric DNA exchange: equivalent telomeric 
sister chromatin exchange, inequivalent T-SCE, and non-
sister chromatid exchange [8]. ALT occurs in 5-10% of 
all cancers, with a significantly higher prevalence in pan-
creatic neuroendocrine tumors, complex karyotype sar-
comas, isocitrate dehydrogenase-mutant astrocytomas, 
neuroblastoma, and chromophobe HCC [9]. In HCC, 
the incidence of ALT is between 6% and 10% [10]. ALT 
has been recognized as an effective diagnostic and prog-
nostic biomarker for specific cancer types. It is reported 
that patients with soft tissue sarcomas characterized by 
an ALT phenotype generally experience poorer progno-
ses than those with ALT-negative tumors [11]. A bioin-
formatics study demonstrated that the ALT-associated 

22-gene risk score is a strong prognostic indicator in 
lower-grade glioma patients [12]. Furthermore, NFRKB, a 
telomere-associated protein, is highly expressed in HCC 
and correlates with reduced overall survival (OS) times 
and a worse prognosis [13]. However, the prognostic rel-
evance of ALT-related genes in HCC and their impact on 
biological processes are not fully understood.

In this investigation, we identified new ALTDEGs-
related biomarkers and developed a risk model and an 
ALTs-score model to predict the prognosis of HCC. 
Moreover, targeting SMG5 effectively diminished HCC 
cell proliferation, migration, invasion, and C-circle level, 
suggesting SMG5 might be a potential target for HCC 
treatment.

Materials and methods
Data collection
Supplementary Fig. 1 illustrates the process of this study. 
Firstly, using the TCGAbiolinks package in the R soft-
ware (version 4.1.2), the liver hepatocellular carcinoma 
(LIHC) dataset from The Cancer Genome Atlas (TCGA) 
(https:/​/portal​.gdc.ca​ncer​.gov/) was obtained. This ​d​a​t​a​
s​e​t comprised 374 LIHC samples and 50 paraneoplastic 
samples. In the UCSC Xena database ​(​​​h​t​t​p​:​/​/​g​e​n​o​m​e​.​u​
c​s​c​.​e​d​u​​​​​)​, corresponding clinical data were downloaded 
(Supplementary Table 1). The count sequencing data 
were normalized utilizing the limma package. GSE25097 
(GPL6947 platform), GSE46408 (GPL4133 platform), and 
GSE84402 (GPL570 platform) were acquired from the 
Gene Expression Omnibus (GEO, ​h​t​t​​p​:​/​/​​w​w​w​​.​n​​c​b​i​.​n​l​m​.​n​
i​h​.​g​o​v​/​g​e​o​/​​​​​) via the GEOquery package. GSE25097 com-
prises 268 HCC samples and 243 paraneoplastic normal 
samples. GSE46408 includes six HCC samples and six 
paraneoplastic normal samples. GSE84402 contains 14 
HCC samples and 14 paraneoplastic normal samples. A 
total of three GEO datasets were used as validation sets.

We entered the keyword “Alternative Lengthening of 
Telomeres” and selected the “Protein Coding” option in 
the GeneCards database (https://www.genecards.org/), 
resulting in 309 ALT-related genes (ALTRGs). Addition-
ally, a total of 411 ALTRGs were obtained from PubMed 
website (https:/​/pubmed​.ncbi.n​lm.n​ih.gov/). A total of 
625 ALTRGs were identified between two databases. 
The somatic mutation data of the TCGA-LIHC dataset, 
including single nucleotide polymorphism (SNP) data, 
were loaded from the TCGA database and visualized 
using the maftools. The copy number variation (CNV) 
data was download via TCGAbiolinks package, which 
were then analyzed by GISTIC 2.0.
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Combination of validation datasets
The GSE25097, GSE46408, and GSE84402 datasets were 
integrated, and the batch effect was removed by the sva 
package in the R software. The combined datasets were 
then standardized using the limma package.

Identification of ALT-related differentially expressed genes 
(ALTRDEGs)
Differentially expressed genes (DEGs) were identified 
with the limma R package. To uncover as many HCC-
related genes as possible, a criterion of |logFC| > 0 and 
p < 0.05 was used [14, 15]. This approach ensures that 
small but potentially significant changes in expression are 
not missed, especially in complex regulatory networks 
or in cases where small changes in expression lead to 
large phenotypic effects, and p-value filters contribute to 
ensuring that the changes detected are statistically signif-
icant. ALTRDEGs were obtained by taking the intersec-
tion of ALTRGs and DEGs using the Venn tool ​(​​​h​t​​t​p​s​​:​/​/​b​​i​
o​​i​n​f​o​r​m​a​t​i​c​s​.​p​s​b​.​u​g​e​n​t​.​b​e​/​w​e​b​t​o​o​l​s​/​V​e​n​n​/​​​​​)​. The volcano 
plot and differential ordering plot of ALTRDEGs were 
generated using the ggplot2 package.

Functional enrichment analysis
Gene Ontology (GO) analysis includes three terms: 
biological process (BP), cellular component (CC), and 
molecular function (MF). GO and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis of 
ALTRDEGs was performed utilizing the clusterProfiler 
package. Statistical significance was determined when 
the p < 0.05 and FDR < 0.05.

Gene set enrichment analysis (GSEA)
The clusterProfiler R package was utilized to conduct 
GSEA. Gene sets were screened with a maximum size 
of 500 genes and a minimum size of 10 genes. Gene set 
c2.cp.all.v2022.1.Hs.symbols.gmt [All Canonical Path-
ways] (3050) was obtained through the Molecular Signa-
tures Database (MSigDB) database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​g​s​e​a​-​m​
s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​​​​​) for GSEA. The screening thresh-
olds were set at p < 0.05, FDR < 0.25, and |NES| > 1.

Gene set variation analysis (GSVA)
The “c2.cp.kegg.v7.2.symbols.gmt” file was obtained from 
the MSigDB database. Data adjustments were conducted 
via the limma package, with p < 0.05 marking significant 
differences among the subgroups.

Establishment and validation of the ALTRDEGs-based risk 
model and ALTs-score model
To identify prognosis-related ALTRDEGs, the least abso-
lute shrinkage and selection operator (LASSO) analy-
sis was executed with the glmnet package, applying a 
binomial family parameter and tenfold cross-validation. 

LASSO regression can eliminate irrelevant variables by 
penalizing the magnitude of the regression coefficients 
[16]. Using LASSO regression, we performed feature 
selection and developed a predictive signature. The pro-
cess was run for 1000 cycles to prevent overfitting. Risk 
scores were calculated based on the following formula 
(the mRNA expression was quantified based on Frag-
ments Per Kilobase Million):

	
riskScore =

∑

i

Coefficient ( gene i) ∗ mRNA Expression ( gene i)

In the prognostic risk model, mRNA Expression (gene_i) 
denotes the expression values of gene i, and Coefficient 
(gene_i) indicates the regression coefficient for gene i in 
the model. According to their median risk score, patients 
with HCC were allocated into low-risk and high-risk 
groups. ALTs scores were calculated for each sample 
in the TCGA-LIHC disease group using the ssGSEA 
algorithm with the GSVA package [17]. The ability of 
ALTs-score, prognosis-related ALTRDEGs, and relevant 
clinical parameters to predict overall survival OS in LIHC 
patients was evaluated employing univariate and multi-
variate Cox regression analyses. Time-dependent receiver 
operating characteristic (ROC) curve analyses were per-
formed using the survivalROC package. The rms R pack-
age was employed to build a nomogram of the prognostic 
genes, ALTs-score, and clinicopathological features, with 
the calibration plots utilized to measure the prognostic 
effectiveness. On the x-axis, the nomogram-predicted 
survival was displayed, and the observed outcome was 
plotted on the y-axis, with the 45° line representing the 
best prediction. 1-year, 3-year, and 4-year decision curve 
analyses (DCA) were conducted to evaluate and compare 
prediction models that account for clinical outcomes, 
assessing the suitability of our nomogram for clinical use. 
The x-axis displayed the threshold probability percent-
age, while the y-axis showed the net benefit.

Immunotherapy and immune infiltration analysis of ALTs-
score model
LIHC patients were categorized into high and low groups 
according to ALTs scores. Expression of ALTRDEGs in 
high and low groups were calculated by Mann-Whitney 
U test. The Immunophenoscore (IPS) was utilized to pre-
dict responses to immune checkpoint inhibitors (ICIs). 
Box plots of IPS for high and low groups of ALTs were 
generated with the ggplot package. The CIBERSORT 
(https:/​/cibers​ort.sta​nfor​d.edu/) was employed to analyze 
immune infiltration. The composition of 22 tumor-infil-
trating immune cell types was calculated for each tumor 
sample, followed by a Wilcoxon test to compare immune 
cell infiltration differences between high and low groups.

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://cibersort.stanford.edu/
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Consensus clustering
We categorized LIHC patients into subtypes using con-
sensus clustering with the ConsensusClusterPlus package 
in the R software, based on prognostic ALTRDEGs. For 
clustering, the number of clusters was varied from 2 to 8, 
with each configuration repeated 50 times, sampling 80% 
of the data, and using km as the algorithm and Euclid-
ean distance. Differential expression of prognostic genes 
between disease subtypes were determined using the 
Mann-Whitney U test.

Cell culture
Human normal hepatocytes L-02 and human HCC cells 
SK-HEP-1 and SNU-387 were acquired from Icellbiosci-
ence Biotechnology Co., Ltd., (Shanghai, China). L-02 
cells were cultured in RPMI-1640 medium with 20% fetal 
bovine serum (FBS; Thermo Fisher Scientific, Massachu-
setts, USA) and 1% antibiotics. SK-HEP-1 cells were cul-
tivated in MEM medium supplemented by 10% FBS and 
1% antibiotics. SNU-387 cells were grown in RPMI-1640 
medium containing 10% FBS, 1% antibiotics, 1% Gluta-
MAX-1 glutamine, and 1% sodium pyruvate. All cells 
were grown in an incubator set to 37 °C with 5% CO2.

Cell transfection
The siRNA targeting SMG5 (si-SMG5-1, si-SMG5-2, 
and si-SMG5-3; GenePharma, Shanghai, China) was 
used to knock down SMG5 in HCC cells. The non-tar-
geting siRNA (si-NC) served as a negative control. Cells 
were seeded into 24-well plates. Upon reaching a den-
sity of about 30–50%, cells were transfected using Lipo-
fectamine 3000 (Thermo Fisher Scientific) following the 
manufacturer’s guidelines. Briefly, after removing the 
original medium, 1 mL of fresh culture medium (con-
taining serum and no antibiotics) was added to each well. 
Two clean and sterile centrifuge tubes were prepared, 
and 25 µL of DMEM culture medium (without serum 
and antibiotics) was added to each tube. The siRNA (20 
pmol) was added to one sterile tube, and 1 µL of Lipo-
fectamine 3000 transfection reagent to the other. Both 
were gently mixed by pipetting and left at room temper-
ature for 5  min. The culture medium containing siRNA 
was then gently transferred into the sterile centrifuge 
tube containing Lipofectamine 3000 transfection reagent. 
The mixture was gently inverted and mixed, followed by 
a 5-min incubation at room temperature. A total of 50 
µL of the mixture was added dropwise to each well and 
gently mixed. Cells were cultured for 6 h after transfec-
tion, and the medium was changed with fresh complete 
culture medium. The siRNA sequences used in this study 
were shown in Supplementary Table 2.

Reverse transcription quantitative PCR (RT-qPCR)
Total RNA extraction from cells was performed 48  h 
post-transfection with Trizol reagent (Thermo Fisher Sci-
entific). Phase separation of cell lysates in Tirol was per-
formed by adding 120 µL of chloroform, and then 300 µL 
of isopropanol was added to precipitate the RNA. Then, 
cDNA synthesis was performed using a SweScript All-in-
One First-Stand cDNA Synthesis Supermix kit (Service-
bio, Wuhan, China). The qPCR was carried out on a 7500 
real-time PCR system (Thermo Fisher Scientific). Target 
gene expression levels were determined via the 2−ΔΔCt 
method. Primer sequences are provided in Supplemen-
tary Table 3.

Cell counting kit-8 (CCK8)
The 1 × 104 cells was configured in a 96-well plate. Subse-
quently, 90 µL of complete and 10 µL of CCK-8 reagent 
(Solarbio, Beijing, China) were incorporated at 0, 24, 48, 
and 72  h, respectively. Cells were incubated for 2  h at 
37 °C, followed by measurement of absorbance at 450 nm 
using a microplate reader (DALB, Shanghai, China).

Wound healing assay
HCC cells were plated into each well of 24-well plates. 
Once cells were 90% confluent, a 200 µL pipette tip was 
used to scratch the cell monolayer, creating a consistent 
width. At 0 and 24 h, migratory cells were viewed in five 
randomly chosen fields under a light microscope (OLYM-
PUS, Tokyo, Japan). Wound widths were detected with 
ImageJ software (National Institutes of Health, Bethesda, 
MD, USA). The ratio of wound healing was computed as 
follows: migration distance/initial intercellular distance × 
100%.

Transwell assay
The ability of cell invasion was assessed by an invasion 
chamber precoated with Matrigel (8-mm pores; BD Bio-
sciences, California, USA). In the upper chamber, 100 
µL of cells with a concentration of 5 × 105 cells/mL were 
introduced, while the lower chamber was filled with 600 
µL of medium supplemented with 20% FBS. Cells that 
invaded the Transwell membrane were fixed with 4% 
paraformaldehyde for 10 min and stained with 0.1% crys-
tal violet for 20 min following a 48-h incubation at 37 °C. 
The stained cells were observed under a light microscope.

C-circles (CC) assay
The C-circle assay was conducted according to previ-
ously reported methods [18]. Briefly, genomic DNA was 
isolated using the PureLink Genomic DNA Mini Kit 
(K182001; Thermo Fisher Scientific). Genomic DNA 
(250 ng) was digested with 0.25 µL of HinfI and 0.25 µL 
of RsaI (4 U/µg) at 37 °C for 4 h, followed by dilution to 
the specified concentrations of 25, 50, or 100 ng per 10 
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µL. Different concentrations of genomic DNA were com-
bined in a 10 µL of reaction mixture, containing 5  µg 
BSA, 1 mM dATP, 1 mM dTTP, 1 mM dGTP, Ф29 buf-
fer, and 5 U Ф29 DNA polymerase (NEB). Samples were 
incubated at 30  °C for 8 h followed by 20 min at 65  °C. 
The final reaction product or input DNA was slot-blotted 
onto a 2×SSC-soaked Hybond-N + membrane. The mem-
brane was UV crosslinked and then hybridized at 45  °C 
using 5′-labeled TelC probes for Φ29 DNA polymerase 
amplified products or Alu probes for input DNA. TeloC 
probe: 5′-Biotin-​C​C​C​T​A​A​C​C​C​T​A​A​C​C​C​T​A​A-3′; Alu 
probe: 5′-Biotin-​G​G​C​C​G​G​G​C​G​C​G​G​T​G​G​C​T​C​A​C​G​C​C​
T​G​T​A​A​T​C​C​C​A​G​C​A-3′.

Statistical analysis
In the bioinformatic analysis, all data were analyzed 
using R software (version 4.1.2). To estimate relation-
ships between variables that are not linearly related, the 
Spearman correlation test was used. The Student’s t-test 
compared normally distributed data. The chi-square test 
was used to compare categorical and pairwise features of 
subgroups. The Wilcoxon test was employed for compar-
ing ordinal and non-normally distributed data between 
subgroups. For one independent variable with multiple 
levels and an ordinal dependent variable, the Kruskal-
Wallis test was applied. Data from cellular experiments 
were processed using GraphPad Prism 7.0 software. The 
data were expressed as means ± SD from minimum three 
replicates. Student’s t-test was used for evaluating differ-
ences between two groups, while ANOVA with Tukey’s 
test was employed for multiple-group comparisons. 
Unless specified otherwise, statistical significance was 
defined as a two-tailed p < 0.05.

Results
Combined and calibrated GEO datasets
First, we merged the three validated HCC datasets, 
including GSE25097, GSE46408, and GSE84402, which 
were obtained from the GEO database. The batch effect 
was removed with the sva package in the R software for 
the three datasets. The combined GEO datasets were 
then normalized (Fig. 1A and B), and the results showed 
that the batch effect was largely eliminated for samples 
from different sources. Moreover, principal component 
analysis (PCA) of the expression matrices before and 
after the removal of the batch effect further verified the 
effectiveness of the batch effect elimination (Fig. 1C and 
D). The combined GEO dataset included 288 cases of 
HCC and 263 normal control samples.

Identification of DEGs in the TCGA database for LIHC
Subsequently, we downloaded LIHC-related transcrip-
tome data in the TCGA database. DEGs in LIHC in 
the TCGA database were identified based on |logFC| 

> 0 and p < 0.05. Consequently, 13,305 DEGs were 
screened, of which 10,414 were highly expressed and 
2,891 DEGs were lowly expressed, and the volcano map 
of these DEGs were plotted (Fig.  2A). The intersection 
of the obtained DEGs and ALTRGs were taken to iden-
tify ALTRDEGs associated with LIHC, resulting in 500 
ALTRDEGs (Fig. 2B). Moreover, the difference ordering 
of ALTRDEGs was also analyzed (Fig. 2C).

GO and KEGG enrichment analysis of ALTRDEGs
The potential biological functions of 500 ALTRDEGs 
were investigated by GO and KEGG enrichment analy-
sis. The findings indicated that the 500 ALTRDEGs were 
primarily abundant in BP such as the regulation of DNA 
metabolic processes, double-strand break repair, telo-
mere organization, and DNA recombination. In terms 
of CC, ALTRDEGs were significantly correlated with the 
chromosomal region, chromosome, telomeric region, 
nuclear chromosome, and protein-DNA complex. For 
MF, ALTRDEGs were strongly related to catalytic activ-
ity acting on DNA, DNA-binding transcription factor 
binding, RNA polymerase II-specific DNA-binding tran-
scription factor binding, and ATP-dependent activity. 
Meanwhile, KEGG showed that ALTRDEGs were mostly 
engaged in biological pathways, including alcoholism, 
neutrophil extracellular trap formation, viral carcino-
genesis, DNA replication, and cell cycle (Fig.  3A and F; 
Supplementary Table 4).

GSEA and GSVA of ALTRDEGs
The biological processes of genes in the TCGA-LIHC 
dataset were investigated by GSEA analysis (Fig.  4A 
and Supplementary Table 5), and the data revealed that 
genes in TCGA-LIHC were significantly enriched in the 
TP53 (Fig.  4B), Notch (Fig.  4C), Wnt (Fig.  4D), Jak Stat 
(Fig.  4E), and the Pi3k Akt pathways (Fig.  4F). GSVA 
results demonstrated that DNA repair, TNF-α signal-
ing via NF-kB, xenobiotic metabolism, inflammatory 
response, and MYC targets were substantially different 
between the normal and LIHC groups (Fig. 4G; Supple-
mentary Table 6).

Establishment of the risk model
To construct a risk model, we first conducted a univariate 
Cox regression analysis and variables with a p < 0.01 were 
subsequently included in the LASSO regression analysis 
(Supplementary Fig.  2A-2B). Then, a multivariate Cox 
regression analysis was conducted and the results showed 
that there were 13 ALTRDEGs, including CDCA8, 
SMG5, RAD54B, FOXD2, NOL10, RRP12, CCT5, CCT4, 
HDAC1, DDX1, HRG, HDAC2, and PPP1CB could serve 
as independent prognostic biomarkers for LIHC (Supple-
mentary Fig.  2C and Supplementary Table 7). Nomo-
grams facilitated the quantitative prediction of patient 



Page 6 of 18Zeng et al. BMC Cancer         (2024) 24:1386 

Fig. 1  The HCC datasets GSE25097, GSE46408, and GSE84402 were processed and corrected. A-B. Boxplot of the integrated GEO datasets before (A) 
and after (B) the normalization process. C-D. PCA plots of the combined GEO datasets before (C) and after (D) batch effect removal treatment. Blue color 
represents GSE25097 dataset, red color represents GSE84402 dataset, and yellow color represents GSE46408 dataset. HCC: hepatocellular carcinoma; PCA: 
principal component analysis
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prognosis, offering clinicians a reference point for mak-
ing clinical decisions. The nomogram illustrated that 
SMG5 made the greatest contribution to the prognosis 
more than other ALTRDEGs (Supplementary Fig.  2D). 
Then, we performed 1-year, 3-year, and 5-year prognos-
tic analyses and plotted calibration curves, which showed 
that the risk model predictions of patient survival were in 
general agreement with the actual patient survival (Sup-
plementary Fig. 3A-3 C). Decision curve analysis (DCA) 
was used to assess the clinical efficacy of the risk model at 
1-year (Supplementary Fig. 3D), 3-years (Supplementary 
Fig. 3E), and 4-years (Supplementary Fig. 3F). The find-
ings demonstrated that the clinical utility of the 5-year 
prognostic model was greater than that of the 3-year 
prognostic model, which in turn was greater than that of 
the 1-year prognostic model.

Validation of prognosis-associated risk model
Survival curves for OS demonstrated poorer OS in the 
high-risk group compared to the low-risk group (Supple-
mentary Fig.  4A). Additionally, the results showed that 
the risk score was significantly higher in the death group 
than in the survival group, suggesting a significant asso-
ciation between the high-risk scores and high probability 
of death (Supplementary Fig. 4B). As shown by the time-
dependent AUC curve, risks score demonstrated moder-
ate predictive validity for HCC onset at 1-, 3-, and 5-years 
(0.7 < AUC < 0.9; (Supplementary Fig. 4C-4D).

Expression and ROC curve analysis of prognostic ALTRDEGs 
in the TCGA-LIHC and GEO datasets
Based on the TCGA-LIHC and combined GEO datasets, 
the expressions of prognostic genes, including CDCA8, 
SMG5, RAD54B, FOXD2, NOL10, RRP12, CCT5, CCT4, 
HDAC1, DDX1, HDAC2, and PPP1CB were elevated in 
LIHC, whereas the expression of HRG was decreased 
in comparison to the normal group (Figs.  5A and 6A). 

According to the ROC curves in the TCGA-LIHC data-
sets, CDCA8, SMG5, NOL10, RAD54B, CCT5, CCT4, 
and DDX1 exhibited an AUC over 0.9, reflecting a high 
predictive value for LIHC. FOXD2, RRP12, HDAC1, 
HDAC2, PPP1CB, and HRG had an AUC ranging from 
0.7 to 0.9, indicating moderate predictive accuracy for 
LIHC (Fig.  5C and N). At the same time, according to 
the ROC curves in the combined GEO dataset, CDCA8 
had an AUC over 0.9. SMG5, FOXD2, RAD54B, HDAC1, 
CCT5, DDX1, and CCT4 showed an AUC from 0.7 to 
0.9, while NOL10, HRG, HDAC2, and RRP12 had an 
AUC between 0.5 and 0.7 (Fig. 6B and N).

Exploration of CNV and SM for prognostic genes
Based on the LIHC-TCGA dataset, we performed 
somatic mutation and CNV analysis on 13 prognostic 
genes. The results indicated that the predominant muta-
tions in these genes were missense mutations, primarily 
in the form of SNPs. The most common single nucleotide 
variants SNVs observed in LIHC were C to A mutations 
(Supplementary Fig. 5A). These 13 prognostic genes were 
then ranked and visualized according to their mutation 
frequency, from high to low (Supplementary Fig.  5B). 
Additionally, CNV analysis using GISTIC 2.0 revealed 
significant numbers of amplifications and deletions 
among the 13 prognostic genes in LIHC samples. SMG5, 
RAD54B and CCT5 had relatively high amplification fre-
quencies. On the contrary, the deletion frequencies of 
HDAC1, HDAC2 and CDCA8 were relatively high (Sup-
plementary Fig. 5C).

Prognostication of immunotherapy response with the 
ALTs-score model
The scores of ALTs were calculated based on ssGSEA 
algorithm and HCC patients were categorized into high 
and low groups according to the score. The IPS associated 
with LIHC from the TCGA database was downloaded to 

Fig. 2  Screening of LIHC-related DEGs. A. Volcano plot of DEGs in the LIHC and normal groups in the dataset TCGA-LIHC. B. Venn diagram showing 
ALTRDEGs. C. ALTRDEGs in the TCGA-LIHC dataset were ranked according to their p value and |logFC| value. HCC: liver hepatocellular carcinoma; DEGs: 
differentially expressed genes; ALTRGs: alternative lengthening of telomeres-related genes; ALTRDEGs: alternative lengthening of telomeres- related dif-
ferentially expressed genes
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Fig. 3 (See legend on next page.)
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explore the prediction of immunotherapy efficacy using 
the telomerase selective prolongation score model. The 
results revealed that the low group had higher IPS scores 
than high group in all categories, including IPS (Supple-
mentary Fig. 6A), IPS-PD1/PD-L1/PD-L (Supplementary 
Fig. 6B), IPS-CTLA4 (Supplementary Fig. 6C), and IPS-
PD1/PD-L1/PD-L2 + CTLA4 (Supplementary Fig.  6D), 
suggesting that ALTs-score model could be predictive of 
the prognosis of immunotherapy.

Evaluation of immune cell distribution
The analysis of immune infiltration demonstrated that 13 
immune cells were significantly associated with the ALTs-
score (Supplementary Fig.  7A-7B). Additionally, there 
were positive correlations between SMG5 and immune 
cell M0 macrophage, as well as between RRP12 and 
immune cell M0 macrophage (Supplementary Fig.  7C). 
There were positive correlations between monocytes 
and resting mast cells, and between M0 macrophage and 
regulatory T cell (Treg). In contrast, negative correlations 
were observed between T follicular helper cell (Tfh) and 
resting CD4 + memory T cells, and between resting mast 
cells and T follicular helper cell (Tfh) (Supplementary 
Fig. 7D).

Construction of LIHC subtypes
Using consistent clustering, LIHC patients were catego-
rized into various subgroups based on the 13 ALTRDEGs 
expressions. CMplots were then employed to visualize 
the matrix heatmap at k = 2, showing clear distinctions 
between the two clusters (Supplementary Fig. 8A). LIHC 
subtype 1 (cluster1) included 115 samples and LIHC sub-
type 2 (cluster2) comprised 259 samples. PCA revealed 
significant differences between the cluster1and cluster2 
samples (Supplementary Fig.  8B). The empirical cumu-
lative distribution attained its greatest approximation at 
k = 2, thus indicating maximum stability (Supplementary 
Fig.  8C-8D). Furthermore, there were significant differ-
ences in the expression of all 13 hub genes between clus-
ter1 and cluster2 (Supplementary Fig. 8E).

Assessment of the prognostic value of the ALTs-score 
model
In the nomogram, predictive factors included the ALTs 
model along with other clinicopathological features. 

The combined nomogram indicated that the T stage and 
ALTs-score model had the high weights among all the 
clinically relevant covariates (Supplementary Fig.  9A; 
Supplementary Table 8). Similarly, multivariate Cox anal-
ysis revealed that the ALTs-score model (HR: 0.419, 95% 
CI: 0.254–0.693, p < 0.001), T2 stage (HR: 0.457, 95% CI: 
0.237–0.882, p = 0.020), and T1 stage (HR: 0.280, 95% CI: 
0.157–0.501, p < 0.001) were independent prognostic fac-
tors for HCC patients (Supplementary Fig. 9B). Accord-
ing to the calibration curves, the predicted OS values 
were consistent with the actual outcomes (Supplemen-
tary Fig. 9C-9E). CA curves demonstrated that the clini-
cal utility of the 5-year ALTs-score model was superior 
to that of the 3-year ALTs-score model, which, in turn, 
was superior to the 1-year ALTs-score (Supplementary 
Fig. 9F-9 H).

RT-qPCR detection of mRNA expression levels of 
prognostic ALTDEGs
The mRNA expression levels of eight prognostic ALT-
DEGs with AUC > 0.7 were verified by RT-qPCR in 
human normal hepatocytes L-02 and human HCC cells 
(SK-HEP-1 and SNU-387). The findings revealed that the 
expression levels of CDCA8, SMG5, RAD54B, FOXD2, 
CCT5, CCT4, HDAC1, and DDX1 were significantly 
increased in SK-HEP-1 and SNU-387 cells compared 
with the L-02 cells (Fig. 7).

Silencing of SMG5 inhibited HCC cell proliferation, 
migration, and invasion
According to the nomogram, SMG5 had a greater 
impact on the prognosis than any other ALTRDEGs 
(Supplementary Fig.  2D). Moreover, previous research 
has suggested that SMG5 may be an important target 
for immunotherapy of HCC [19]; therefore, we chose 
SMG5 for in-depth exploration. SMG5 expression was 
knocked down both in SK-HEP-1 and SNU-387 cells. RT-
qPCR and western blot showed that there was no signifi-
cant difference of SMG5 expression between the si-NC 
and Control groups in the two types of HCC cells. The 
expression of SMG5 in the si-SMG5-1, si-SMG5-2, and 
si-SMG5-3 groups was notably lower than that in the 
si-NC group both at mRNA and protein levels. Among 
these, si-SMG5-1 exhibited the best knockdown effi-
ciency in both cell types and was therefore selected for 

(See figure on previous page.)
Fig. 3  GO and KEGG enrichment analysis for ALTRDEGs. A-B. Bubble plots of GO and KEGG enrichment analysis results for ALTRDEGs. The analysis in-
cluded BP, CC, MF, and KEGG. In the bubble diagrams, the size of each bubble represents the number of genes, and the color of the bubbles indicates 
the p value size. Redder colors denote smaller p values, while bluer colors indicate larger p values. C-D. Circle plots of GO and KEGG enrichment analysis 
results for ALTRDEGs. The outer circle in each plot displays the molecules and their |logFC| values, with red indicating up-regulated genes and blue 
indicating down-regulated genes. A positive z-score suggests positive regulation, while a negative z-score suggests negative regulation. The larger the 
absolute value of the z-score, the higher the degree of regulation. E-F. Histograms of the results of GO and KEGG enrichment analysis of ALTRDEGs. Verti-
cal coordinates represent GO terms or KEGG terms. The screening criteria for GO and KEGG enrichment analysis were p < 0.05 and FDR < 0.05. ALTRDEGs: 
alternative lengthening of telomeres-related differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: 
biological process; CC: cellular component; MF: molecular function
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subsequent experiments (Fig.  8A and B). CCK-8 assay 
showed that SMG5 silencing suppressed SK-HEP-1 and 
SNU-387 cell proliferation (Fig.  8C). The migration and 
invasion capabilities of SK-HEP-1 and SNU-387 cells 
were assessed using wound healing and Transwell assays. 
The data indicated that the migration and invasive ability 
of HCC cells were markedly reduced after SMG5 silenc-
ing (Fig. 8D and E).

Silencing of SMG5 reduced the C-circle level of ALT cells
C-circles, which are circular DNA structures derived 
from telomeric repeats, are frequently used as indica-
tors of ALT activity [20]. We subsequently measured 
C-circle level in SNU-387 cells following SMG5 silencing. 
We found that silencing of SMG5 notably decreased the 
C-circle level (Fig. 9).

Discussion
HCC is one of the most challenging cancers globally, with 
the characteristics of high morbidity and mortality [21]. 
Each year, nearly seven million people are diagnosed with 
HCC, and the disease causes over six million deaths [22]. 
Despite improvements in HCC therapy in recent years, 
the prognosis for HCC patients continues to be poor due 
to malignant infiltration and metastasis [23]. Thus, it is 
important to identify reliable and effective prognostic 
biomarkers and prospective therapeutic targets for HCC. 
In this study, we identified 13 prognostic genes. Upon 
construction and validation, the risk model, ALTs-score 
model, and visual nomogram performed with remarkable 
predictive accuracy, calibration, and applicability. More-
over, we found that silencing of SMG5 inhibited the pro-
liferation, migration, and invasion of HCC cells. SMG5 
silencing also reduced C-circle level in HCC cells.

The telomerase-independent ALT pathway was initially 
discovered in the S. cerevisiae telomerase mutant and 
later delineated in human cancer cell lines and tumors 
[24]. Lagging strand synthesis encounters the end repli-
cation problem, which prevents complete replication of 
the 5’ end and contributes to the gradual shortening of 
chromosomal ends with successive cell divisions [25]. 
To counteract telomere depletion and evade replica-
tive senescence, certain cancerous cells utilize the ALT 
pathway to lengthen telomeres and sustain their prolif-
erative potential [26]. ALT + cancers can be identified by 
various methods, such as fluorescence in situ hybridiza-
tion (FISH), which serves as a diagnostic and prognostic 
tool for these cancers. In oligodendrogliomas, ALT cor-
relates with shorter progression-free survival and is an 
independent prognostic indicator [27]. ALT FISH status 
determined by immunohistochemistry can distinguish 
indolent cases from aggressive small low-grade pancre-
atic neuroendocrine tumors, and identify those patients 
who might benefit more from surgical intervention 

[28]. Furthermore, ALT is a predictor of the site of ori-
gin in neuroendocrine tumor liver metastases, particu-
larly useful in identifying the primary tumor when its 
origin is unclear [29]. Another study has shown that 
ALT positivity is a strong risk predictor, especially in 
non-insulinomas. Patients with ALT-positive pancre-
atic neuroendocrine tumors generally have significantly 
shorter progression-free survival compared to those 
with ALT-negative in a Chinese cohort [30]. ALT in 
pediatric high-grade gliomas can occur independently 
of ATRX mutations and is commonly found in patients 
with pathogenic germline mismatch repair variants [31]. 
These findings indicate that ALT has important applica-
tions in clinical practice. Increasing number of studies 
have shown that ALT plays a role in HCC. A previous 
study found that 11 out of 13 chromophobe HCC with 
abrupt anaplasia were ALT-positive, which suggests that 
chromophobe HCC with abrupt anaplasia are highly 
enriched in the ALT phenotype [32]. The types of ALT-
positive primary hepatic epithelial tumors expand to 
include cholangiocarcinoma, HCC-cholangiocarcinoma 
comorbidities, and carcinosarcomas [33]. Furthermore, 
many studies are focused on understanding the clini-
cal relevance of ALT in liver tumors. A preclinical study 
showed that hepatic angiosarcomas frequently exhibit 
the ALT phenotype, which is strongly correlated with 
the loss of ATRX expression [34]. ALT serves as a valu-
able biomarker in neuroendocrine tumor liver metastases 
patients and can identify the primary site in cases where 
it is unknown according to a tissue microarrays study 
[29]. The frequency of ALT positivity in chromophobe 
HCC is similar in men and women, unlike the male pre-
dominance observed in regular HCC patients [35]. G2/M 
checkpoint depressors have been designed for the treat-
ment of ALT-positive cancers [36]. The above findings 
suggest that ALT is a promising target for the treatment 
of liver tumors. In this study, we found a novel ALTDEGs 
constructed risk model and a ALT-score model that was 
effective in forecasting the prognosis of HCC.

In this study, 13 ALTDEGs (CDCA8, SMG5, RAD54B, 
FOXD2, NOL10, RRP12, CCT5, CCT4, HDAC1, DDX1, 
HRG, HDAC2, and PPP1CB) were identified to develop 
a prognostic signature according to the LASSO Cox 
regression analysis. This risk score was able to predict 
1-, 3-, and 5-year survival in patients with HCC. ROC 
curve analysis showed that 13 ALTDEGs could effec-
tively distinguish HCC samples from normal samples. 
CDCA8 and PPP1CB are associated with cell cycle reg-
ulation. CDCA8 facilitates tumor proliferation and pre-
dicts poor prognosis in HCC. CDCA8 silencing inhibits 
HCC growth and stem cell properties through ATF3 
tumor suppressor restoration and AKT/β-catenin sig-
naling inactivation [37–39]. The rs13025377 variant 
in PPP1CB is significantly linked to an increased risk 
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Fig. 4  GSEA and GSVA on the TCGA-LIHC dataset. A. Mountains map of five biological functions by GSEA of the dataset TCGA-LIHC. B-F. GSEA showed 
that all genes were significantly enriched in the TP53 pathway (B), Notch pathway (C), Wnt pathway (D), Jak Stat pathway (E), and the Pi3k Akt pathway 
(F). G. Heatmap of GSVA results between different subgroups (Normal/LIHC). The screening criteria for GSVA were p < 0.05 and FDR < 0.25. In the heatmap, 
blue indicates down-regulation and red indicates up-regulation. The LIHC group is represented in red, while the Normal group is represented in blue. 
TCGA: The Cancer Genome Atlas; LIHC: liver hepatocellular carcinoma; GSEA: Gene Set Enrichment Analysis; GSVA: Gene Set Variation Analysis
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Fig. 5  Expression level and prognostic analysis of prognostic genes based on TCGA-LIHC dataset. A. Expression levels of prognostic genes in LIHC. Blue 
color represents the Normal group and red color represents the LIHC group. *** equivalent to p < 0.001. B-N. ROC curves for prognostic genes CDCA8 (B), 
SMG5 (C), NOL10 (D), RAD54B (E), CCT5 (F), CCT4 (G), DDX1 (H), FOXD2 (I), RRP12 (J), HDAC1 (K), HDAC2 (L), PPP1CB (M), and HRG (N). The closer the AUC 
in the ROC curve is to 1, the better the diagnostic effect. TCGA: The Cancer Genome Atlas; LIHC: liver hepatocellular carcinoma; ROC: receiver operating 
characteristic curve; AUC: area under curve
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Fig. 6  Prognostic gene expression levels and ROC curve analysis were analyzed in the combined GEO dataset. A. Violin plot of expression levels of 
prognostic genes in LIHC. Blue color represents the Normal group and red color represents the LIHC group. *** indicates p < 0.001. B. ROC curves for prog-
nostic genes CDCA8 (B), SMG5 (C), FOXD2 (D), RAD54B (E), HDAC1 (F), CCT5 (G), DDX1 (H), CCT4 (I), NOL10 (J), HRG (K), HDAC2 (L), and RRP12 (M) in the 
combined GEO dataset. The symbol ns corresponds to p > 0.05, indicating no significant difference, while *** corresponds to p < 0.001. TCGA: The Cancer 
Genome Atlas; LIHC: liver hepatocellular carcinoma; ROC: receiver operating characteristic curve; AUC: area under curve
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of HBV-related HCC [40]. In this study, we found that 
CDCA8 was highly expressed in SK-HEP-1 and SNU-
387 cells, suggesting that it might act as an oncogene in 
HCC. RAD54B is involved in the DNA repair process. 
RAD54B expression is elevated in HCC, which is consis-
tent with our results. It fosters the development of HCC 
through the homologous recombination repair pathway 
or Wnt/β-catenin signaling activation [41, 42]. FOXD2, 
HDAC1, HDAC2 are all associated with transcriptional 
regulation. Dysregulation of the LncRNA FOXD2 adja-
cent opposite strand RNA 1 (FOXD2-AS1) facilitates the 
progression of a variety of tumors, such as glioma, reti-
noblastoma, and HCC [43–45]. Upregulation of HDAC1 
and HDAC2 is significantly associated with a poorer 
prognosis of HCC patients, while their combined knock-
down result in enhanced HCC cell death, reduce cell pro-
liferation and colony formation [46, 47]. This study also 
showed that FOXD2 and HDAC1 mRNA levels were 
elevated in HCC cells, which might promote HCC pro-
gression. Ribosome biogenesis-related genes NOL10 and 
RRP12 have been reported to be independent prognostic 
factors for HCC [48, 49]. Study have shown that unfolded 
protein response-related genes CCT5 and CCT4 expres-
sion levels are significantly increased in HCC tissues at 
both transcript and protein levels. The present study fur-
ther confirmed that the mRNA levels of CCT5 and CCT4 
were elevated in SK-HEP-1 and SNU-387 cells. Moreover, 
high expression of CCT5 and CCT4 correlates with poor 
prognosis in HCC [50, 51]. DDX1 is engaged in RNA pro-
cessing and HRG is associated with immune response, 
both of which serve as independent prognostic factors 

for HCC and are correlated with immune infiltration 
[52, 53]. DDX1 is highly expressed in HCC tissues and 
HCC cell lines, including SMMC-7721, QGY-7703 and 
HepG2. Similarly, our study showed that DDX1 expres-
sion was increased in SK-HEP-1 and SNU-387 cells. In 
this study, we found that these genes could be used as 
diagnostic biomarkers in addition to prognostic markers 
for HCC. Additionally, multiple studies have shown that 
13 hub genes are involved in the progression of a vari-
ety of tumors, such as CDCA8 in prostate cancer [54], 
RAD54B in breast cancer [55], and HRG in ovarian [56]. 
These studies suggest that 13 hub genes play important 
roles in the progression of various types of tumors, rather 
than being specific to the HCC. Therefore, constructing a 
risk model based on these 13 genes could provide a more 
comprehensive tool for both the diagnosis and prognosis 
of HCC.

SMG5 is an RNA-binding protein and contributes to 
mRNA degradation via the nonsense-mediated decay 
pathway [57]. Zhang et al. found that in pancreatic cancer, 
DDIT4-AS1, an oncogene, segregates SMG5 and PP2A 
from UPF1 and enhances nonsense-mediated decay by 
increasing UPF1 phosphorylation [58]. Furthermore, a 
pan-cancer analysis has revealed that SMG5 expression 
is elevated in 23 types of tumors and may serve as a risk 
gene for many of them, with particular significance for 
the prognosis and tumor microenvironment in low-grade 
glioma patients [59]. Another study has showed that 
SMG5 is highly expressed in male patients with gastric 
cancer and are significantly associated with poor patient 
prognosis [60]. Moreover, prognostic models based on 

Fig. 7  Prognosis-related mRNA expression levels of ALTRGs (AUC > 0.7) were examined by RT-qPCR, including CDCA8, SMG5, RAD54B, FOXD2, CCT5, 
CCT4, HDAC1, and DDX1. *p < 0.05, *p < 0.01, ***p < 0.001 vs. L-02 group
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Fig. 9  C-circle assays were performed using SNU-387 genomic DNA (25, 50, or 100 ng) extracted from si-NC and si-SMG5 cells. **p < 0.01 vs. si-NC group

 

Fig. 8  Silencing of SMG5 inhibited HCC cell proliferation, migration, and invasion. A-B. SMG5 expression was knocked down using si-SMG5-1, si-SMG5-2, 
and si-SMG5-3 both in SK-HEP-1 and SNU-387 cells and transfection efficiencies were assessed by RT-qPCR and western blot. C. CCK-8 was used to mea-
sure HCC cell proliferation capacity in si-NC and si-SMG5 groups. D-E. The effects of SMG5 knockdown on HCC cell migration (D) and invasion (E) were 
assessed by wound healing assay and Transwell assay. *p < 0.05, **p < 0.01, ***p < 0.001 vs. si-NC group
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SMG5 and other RNA-binding proteins could predict 
clinical outcomes in patients with HCC [61–63]. The 
overexpression of TMEM79 along with SMG5 is con-
nected to unfavorable prognosis, tumor immune infiltra-
tion, and drug sensitivity in HCC [64]. It is also reported 
that SMG5 is linked to the immune cell infiltration, 
such as macrophages, B cells, and T cells, in HCC [65]. 
Similarly, in the present study, we found that upregula-
tion of SMG5 signaled poor prognosis in HCC patients 
and there was a positive correlation between SMG5 and 
immune cell Macrophages M0. These studies indicate the 
potential of SMG5 as a negative prognostic marker for 
many tumor patient outcomes and it is a promising target 
for HCC treatment, especially in immunotherapy. Prior 
research indicates that knockdown of SMG5 inhibits the 
migration, invasion and proliferation of Hep3B and Huh7 
cells, as well as augmented the response of HCC cells to 
sorafenib [66]. In our study, we further confirmed that 
SMG5 knockdown inhibited the proliferation, migra-
tion and invasion of SK-HEP-1 and SNU-387 cells lines, 
suggesting that SMG5 might function as an oncogene 
in HCC. Additionally, the role of SMG5 in other tumors 
remains poorly understood, which require extensive fur-
ther research to fully understand the underlying roles of 
SMG5 in tumors. The CC assay has emerged as a front-
line method for investigating the ALT mechanism [67]. 
The C-circle level provides valuable diagnostic value for 
various tumors, such as sarcomas and gliomas [68, 69]. 
This study revealed that silencing SMG5 decreased C-cir-
cle levels in HCC cells, suggesting that SMG5 is involved 
in the ALT mechanism in HCC. However, there were 
some limitations to this study. First, the study pinpointed 
13 key ALT-related genes in HCC. Although we acknowl-
edged the importance of other genes, such as HRG, we 
were focusing on SMG5 due to time and resource con-
straints. In future studies, we will consider validat-
ing other important genes in HCC. Second, this study 
focused mainly on the effects of SMG5 knockdown on 
HCC development. The impact of SMG5 overexpression 
and knockout mediated by CRISPR-Cas9 on HCC pro-
gression still needs to be explored in our future research, 
gaining a more comprehensive understanding the role of 
SMG5 in HCC. Then, the conclusions drawn from this 
study were based on in vitro experiments. In vivo and 
clinical studies are necessary next steps to validate these 
findings and further explore the therapeutic potential of 
the identified targets in HCC.

Conclusion
We identified prognostic ALTDEGs and developed 
a prognostic ALTDEGs signature and an ALTs-score 
model in HCC. Furthermore, SMG5 silencing suppressed 
the proliferation, migration, and invasion of SK-HEP-1 
and SNU-387 cells. This study provides new biomarkers 

for predict the prognosis of HCC and potential targets 
for HCC treatment.
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