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Abstract

The neonatal brain undergoes dramatic structural and functional changes over the last

trimester of gestation. The accuracy of source localisation of brain activity recorded from

the scalp therefore relies on accurate age-specific head models. Although an age-

appropriate population-level atlas could be used, detail is lost in the construction of such

atlases, in particular with regard to the smoothing of the cortical surface, and so such a

model is not representative of anatomy at an individual level. In this work, we describe

the construction of a database of individual structural priors of the neonatal head using

215 individual-level datasets at ages 29–44 weeks postmenstrual age from the Develop-

ing Human Connectome Project. We have validated a method to segment the extra-

cerebral tissue against manual segmentation. We have also conducted a leave-one-out

analysis to quantify the expected spatial error incurred with regard to localising func-

tional activation when using a best-matching individual from the database in place of a

subject-specific model; the median error was calculated to be 8.3 mm (median absolute

deviation 3.8 mm). The database can be applied for any functional neuroimaging modal-

ity which requires structural data whereby the physical parameters associated with that

modality vary with tissue type and is freely available at www.ucl.ac.uk/dot-hub.

K E YWORD S

atlas, database, neonatal, structural prior

Received: 10 February 2020 Revised: 1 July 2020 Accepted: 24 September 2020

DOI: 10.1002/hbm.25242

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2021;42:567–586. wileyonlinelibrary.com/journal/hbm 567

https://orcid.org/0000-0003-0372-8366
mailto:liam.jones.14@ucl.ac.uk
http://www.ucl.ac.uk/dot-hub
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


1 | INTRODUCTION

A structural prior is a model of structural anatomy that delineates the

different tissues within a particular anatomical region. Structural priors

of the cranial anatomy can be beneficial to a wide range of neuroim-

aging and neuromodulation modalities that monitor brain function via

neuronally generated electromagnetic fields (electronencephalography

[EEG]; and magnetoencephalography [MEG]), or via haemodynamics

(such as functional near-infrared spectroscopy [fNIRS], diffuse correla-

tion spectroscopy, photoacoustic imaging) but do not simultaneously

acquire structural data.

Functional magnetic resonance imaging (fMRI) has been used

extensively to study functional development of the neonatal brain, for

example, by mapping the sensorimotor cortex (Allievi et al., 2016;

Arichi et al., 2010; Arichi et al., 2012; Dall'Orso et al., 2018). However,

given the requirement that subjects remain still, fMRI cannot be used

to study the awake infant, which limits fMRI data acquisition to

infants who are either asleep or sedated.

Such constraints can be overcome by using other more motion

tolerant functional imaging techniques to collect functional data,

such as fNIRS, an optical imaging technique whereby the head is

interrogated with near-infrared light via an array of sources and

detectors placed on the scalp (Lee, Cooper, & Austin, 2017; White,

2010). Changes in the detected light intensity measured between a

resting state and a stimulated state are used to calculate changes in

oxy- and deoxy-haemoglobin concentration in the cortex, which are

markers of functional activation. Advantages of fNIRS include the

fact that it is silent, non-invasive, portable, and relatively tolerant of

motion (Eggebrecht et al., 2014; Ferradal et al., 2016; Lee et al.,

2017). However, techniques such as fNIRS conventionally offer

limited spatial resolution (Lloyd-Fox, Blasi, & Elwell, 2010), but can

be extended to produce three-dimensional images with the use of a

structural prior.

Structural priors are often derived from magnetic resonance

imaging (MRI) data, given its high soft tissue contrast and high spatial

resolution (Makropoulos, Counsell, & Rueckert, 2018; Makropoulos,

Robinson, et al., 2018). The tissues that must be delineated will

depend on the application modality, how the physical parameters

associated with that modality vary with tissue type, and how well

known those parameters are. Common segmentations include grey

matter, white matter, and cerebrospinal fluid (CSF). However, since

the brain does not exist in isolation, fields induced or detected on the

scalp surface must propagate through non-brain tissues to reach the

brain. These tissues, predominantly the skull and scalp, must also be

represented in a structural prior. Structural priors can be used to sup-

port image registration (Xiao et al., 2016), improve the targeting of

neuromodulation (Mueller, Ai, Bansal, & Legon, 2017), or to model the

spatial distribution of the electric, magnetic, ultrasonic or optical fields

that underpin many imaging modalities (Arridge & Cooper, 2015;

Azizollahi, Aarabi, & Wallois, 2016; Legon et al., 2018; Pirondini et al.,

2018; Ranjbaran et al., 2019; Roche-Labarbe et al., 2008; Routier et al.,

2017). As such, structural priors are needed to improve the spatial

specificity of functional imaging modalities.

One modality where structural priors of the head are particularly

important is diffuse optical tomography (DOT), an extension of fNIRS

in which optical data is used in conjunction with a structural prior to

reconstruct three-dimensional images of haemoglobin concentration

changes in the cortex. By using a structural prior to model field propa-

gation within the head, imaging techniques such as DOT are enabled

which produce images that spatially localise activation on the cortex

(rather than relying on the position of sources and detectors on the

scalp to interpret results, as is done in conventional fNIRS). In the last

two decades, a large body of research applying DOT to the study of

the neonatal brain has been established, such as studies of functional

activation (Austin et al., 2006; Hebden, 2003; Karen et al., 2019;

White, Liao, Ferradal, Inder, & Culver, 2012), neuropathology (Chalia

et al., 2016; Dempsey et al., 2014; Plomgaard et al., 2016; Singh

et al., 2016), and monitoring the brain for extended periods (Brigadoi

et al., 2019). Previous work with infants has also employed prior

structural information as a space to which functional data can be reg-

istered (Papademetriou et al., 2013).

As DOT measurements provide no structural information about

the target object, an appropriate structural prior is critical. The more

realistic the structural priors, the higher the accuracy of the photon

propagation model that underpins image reconstruction, and there-

fore the more accurate the reconstructed images (Ferradal,

Eggebrecht, Hassanpour, Snyder, & Culver, 2014). To achieve the

highest accuracy, an individual's own MR image can be used to pro-

duce a subject-specific structural prior (Cooper et al., 2012). Despite

offering the highest accuracy, necessitating an MRI scan for every

subject undermines many of the advantages of DOT, such as its porta-

bility and tolerance of motion. What can be used in place of a subject-

specific model is an atlas: a structural prior based on MRI data

acquired from other individuals. Atlases can consist of spatially aver-

aged MRI data from a group of individuals from a population of inter-

est, which are intended to be representative of that population (Brett,

Johnsrude, & Owen, 2002; Tsuzuki & Dan, 2014). We will refer to

such atlases here as population-level atlases. In contrast, an individual

atlas is a structural prior that derives from the MRI data of a single

individual, be that from just one scan or (as is the case for the Colin27

atlas (Collins et al., 1998)) by spatially averaging several scans from

the same individual. In order for an atlas to be applied, it will usually

first be spatially registered to a given subject using cranial landmarks,

which can be measured on the subject using a digitising positioning

system or via photogrammetric methods (Tsuzuki & Dan, 2014). Sev-

eral MRI atlases have been (and continue to be) applied for use in

DOT of adults. These models include the adult MNI152 population-

level atlas (Custo et al., 2010) and the Colin27 individual atlas (Aasted

et al., 2015; Cooper et al., 2012).

The use of structural priors for infants and children has proved

much more challenging to implement. Due to the rapid maturation of

the neonatal brain (Makropoulos et al., 2016), selecting structural

priors matched by age is critical. Atlases derived from adult data do

not accurately represent the patterns of maturation seen in the devel-

oping brain, and so the infant brain cannot simply be treated as a

smaller version of the adult (Fonov et al., 2011; Richards, Sanchez,
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Phillips-Meek, & Xie, 2016; Richards & Xie, 2015). However, histori-

cally there has been a lack of publicly available structural neonatal

MRI data (Makropoulos, Counsell, & Rueckert, 2018) which has lim-

ited the production of infant brain models.

Despite these challenges, several MRI brain atlases have been

produced for neonates in the last decade. Heiskala, Pollari, Met-

säranta, Grant, and Nissilä (2009), Oishi et al. (2011), and Shi

et al. (2011) have all proposed spatial averaging of MRI data to pro-

duce a population-level atlas for neonates, however the resulting

atlases do not encode any measure of postmenstrual age (PMA).

However, given that the neonatal brain is rapidly developing, a more

appropriate approach is to produce population-level atlases for spe-

cific age points throughout the neonatal period. This was the method

adopted by Kuklisova-Murgasova et al. (2011) who produced age-

specific population-level MRI templates and tissue probability maps

for infants aged 29–44 weeks PMA at 1-week intervals. Serag

et al. (2012) also produced an age-dependent atlas for a similar age

range—28–44 weeks PMA—using data from 204 neonatal infants

non-rigidly registered to age-specific common spaces. Makropoulos

et al. (2016) took a similar approach to produce an average atlas using

data from 420 images taken from infants aged 27–45 weeks PMA,

and also include a parcellation atlas delineating 82 brain structures.

A major barrier to these infant atlases being used as spatial priors

for portable imaging modalities such as DOT is that they do not rou-

tinely contain skull and scalp tissues. A major application of these MRI

atlases is usually to aid automated brain tissue segmentation proce-

dures (Makropoulos, Counsell, & Rueckert, 2018) and, as a result, the

skull and scalp tissues need not to be considered. To overcome this

issue, Brigadoi, Aljabar, Kuklisova-Murgasova, Arridge, and Coo-

per (2014) produced a population-level atlas of four-layer tissue

models, consisting of grey matter; white matter; CSF and extra-

cerebral tissue (a combined label for skull and scalp) for infants aged

28–44 weeks PMA at 1-week intervals. This atlas was constructed

using age-specific tissue probability maps from the Kuklisova–

Murgasova atlas to produce a three-layer model for brain tissues. Skull

and scalp tissues are difficult to separate on neonatal MRI due to their

low thickness and lack of differential contrast (Brigadoi et al., 2014).

However, because these tissues have relatively similar optical proper-

ties (Dehaes et al., 2013), Brigadoi et al. produced a combined seg-

mentation for these two tissues (referred to as extra-cerebral tissue,

using the Betsurf procedure (Jenkinson, Pechaud, & Smith, 2005). This

atlas was the first of its kind, and has been freely disseminated to

researchers in a wide range of fields. It has been applied in neonatal

atlas-guided DOT (Chalia et al., 2016; de Oliveira et al., 2019; Singh

et al., 2014; Verriotis et al., 2016), and photoacoustic modelling

(Ranjbaran et al., 2019), and optical phantom construction (Dempsey,

Persad, Powell, Chitnis, & Hebden, 2017).

However, a major limitation of the Brigadoi et al. head model is

that neither the accuracy of the extra-cerebral tissue segmentation,

nor the spatial error in activation localisation incurred by the use of

their model in place of a subject-specific prior, could be directly

assessed. This was because the associated individual-level MRI data

upon which their model was based was not publicly available. Nor

was there an existing gold-standard model against which to compare.

The authors noted that it is likely that their atlas underestimates the

thickness of the extra-cerebral tissue. A further issue that is true of

the Brigadoi model, and of many population-level atlases, is that detail

is lost in the process of spatially averaging the MRI data

(Makropoulos, Counsell, & Rueckert, 2018). Given its highly variable

folding pattern, the cortical surface tends to become smoothed fol-

lowing spatial averaging, and a similar smoothing effect is seen on the

detail of the white matter. The resulting spatially averaged models are

therefore not representative of any single individual, and may there-

fore not offer an anatomically meaningful space in which the spatial

distribution of a physical field can be modelled. In addition, surface

registration techniques such as the well-established FreeSurfer soft-

ware (Fischl, Sereno, & Dale, 1999) are increasingly used to permit

comparison between subjects and groups in functional neuroimaging

and have been incorporated as part of the structural pipeline of the

Human Connectome Project (Glasser et al., 2013). However, the use

of atlases with smoothed cortical surfaces is often incompatible with

surface-based registration techniques, which can limit the develop-

ment of new data analysis pipelines.

The Developing Human Connectome Project (dHCP) is acquiring

structural, functional and diffusion MRI data from neonatal infants

and foetuses to build the first spatio-temporal connectome of early

life (www.developingconnectome.org). MRI data from the dHCP has

recently been released, including structural images and brain tissue

segmentations. In this work, we take advantage of this newly available

structural data from the dHCP to produce a database of multi-layered

structural priors of the neonatal head, including an extra-cerebral tis-

sue layer, for individuals aged 29–44 weeks PMA for use in DOT and

potentially several other imaging modalities. We define an extra-

cerebral tissue segmentation method and then validate that approach

across our database, and describe a package of multi-layer tissue

masks and meshes. Finally, using a leave-one-out analysis, we quantify

the spatial error incurred by one possible application of this database:

using an age and size-matched individual in place of subject-specific

structural model.

2 | METHODS

2.1 | Model construction

2.1.1 | Structural MRI data

The MR images were acquired as part of the dHCP, whose resources

have been made open-source (www.developingconnectome.org).

Images were obtained from infants using a 3 T Philips Achieva Scan-

ner (Best, NL) at the Evelina Newborn Imaging Centre, St Thomas'

Hospital, London, with a 32-channel dedicated neonatal head coil

(Hughes et al., 2017). The T2-weighted images were acquired in two

stacks of slices acquired in sagittal and axial planes using parameters

TR = 12 s, TE = 156 ms, SENSE factor 2.11 (axial), and 2.58 (sagittal)

(Makropoulos, Robinson, et al., 2018). Overlapping slices (resolution
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0.8 × 0.8 × 1.6 mm3) were acquired, and the final up-sampled image

resolution was 0.5 × 0.5 × 0.5 mm3 after reconstruction and motion

correction (Cordero-Grande, Hughes, Hutter, Price, & Hajnal, 2018;

Cordero-Grande et al., 2016; Kuklisova-Murgasova et al., 2011). All

T1-weighted images were acquired using an inversion recovery

sequence at the same resolutions using parameters TI = 1740 ms,

TR = 4.8 s, TE = 8.7 ms, SENSE factor 2.26 (axial) and 2.66 (sagittal).

All images were reviewed by a paediatric neuroradiologist.

Datasets from 634 individuals whose images had undergone

the dHCP structural processing pipeline (Makropoulos et al., 2014;

Makropoulos, Robinson, et al., 2018) were used to construct struc-

tural priors in this work. The datasets included binary tissue seg-

mentations for brain tissues (cortical grey matter, white matter,

outer CSF, ventricles, deep grey matter, hippocampus, brainstem,

and cerebellum) with voxel dimensions: 0.5 × 0.5 × 0.5 mm3, as well

as T1- and T2-weighted MR images (voxel dimensions:

0.5 × 0.5 × 0.5 mm3) for each individual. An evaluation of the qual-

ity of the brain tissue segmentations can be found in Makropoulos,

Robinson, et al. (2018).

Each individual's T1-weighted volume was inspected visually to

determine whether the dataset would be appropriate for producing a

multi-layer tissue model. Datasets were excluded if extra-cerebral tis-

sue was cropped from the image superiorly or laterally (this excluded

314 subjects); the pre-auricular points were not in the field of view of

the T1-weighted image (excluded 15 subjects); severe motion artefact

was present in the image that significantly distorted the outer scalp

boundary (excluded 24); or a haematoma was present in the extra-

cerebral tissue that impacted the outline of the outer scalp boundary

(excluded 13). This process identified a total of 268 datasets deemed

appropriate for inclusion. However, at present only 215 of these

datasets have been made publicly available by the dHCP and so only

structural data deriving from these publicly available datasets can be

included in our database. Figure 1 shows the age distribution of these

215 individuals.

2.1.2 | Segmentation of the extra-cerebral tissue

No gold standard exists for the segmentation of skull and scalp layers

for the neonatal MRI. Though studies have been published that pro-

pose methods to segment these tissues (Daliri et al., 2010; Ghadimi

et al., 2008), these studies relied on manual segmentation of a small

group of individuals. As a result, in this work, a similar strategy to

Brigadoi et al. was pursued and so a segmentation approach for the

scalp and skull in combination (i.e., the extra-cerebral tissue) was

developed.

For each of the selected datasets, the pre-defined segmentations

for brain tissues and CSF were combined and thresholded to produce

a binary cerebral tissue mask, the outer extent of which was used to

define the inner skull boundary. In order to define an extra-cerebral

tissue mask, a method was needed to demarcate the outer scalp

boundary. Once determined, the shape defined by this boundary

could be filled in the axial, sagittal and coronal planes to produce a

head tissue mask. The cerebral tissue mask is then subtracted from

the head tissue mask to produce the extra-cerebral tissue mask.

In this work, we investigated different approaches to segment

extra-cerebral tissue, which in our case depended on determining the

outer scalp boundary. One method investigated was Betsurf: a well-

established tool that uses the intensity distribution of an MR image

constrained to a robust range, to find the scalp surface (Jenkinson

et al., 2005). Betsurf can be run with an individual's T1-weighted

image as its only input, or it can use both a T1- and T2-weighted

image from the same individual. In this work, both of these

implementations of Betsurf were evaluated. Another method investi-

gated was Otsu thresholding (Otsu, 1979), a method that fits a

bimodal model to the distribution of image intensities to determine a

threshold between foreground and background voxels. Otsu thresholding

has been previously employed by (Tuan, Kim, & Bao, 2018) to define

the outer scalp boundary in an adult model. Using each of these

methods, an outer scalp boundary was delineated and a one-voxel

thick boundary was then extracted.

In order to quantify performance and determine the appropriate-

ness of these different methods, a validation approach involving man-

ual segmentation was employed. The air-tissue boundary for a subset

of 12 individuals' MRIs were manually segmented. The subset of

12 consisted of 3 arbitrarily chosen infants at four age-points (32, 36,

40, and 44 weeks PMA). For the manual segmentation itself,

T1-weighted images were used, which offered better contrast for

scalp tissue than T2-weighted images. Manual segmentations were

completed slice-by-slice in the axial plane then reviewed and modified

in the sagittal and coronal planes. The segmentations were then filled

slice-by-slice in the axial plane, before extracting a one-voxel thick

outer boundary. All 12 manual segmentations were completed by a

F IGURE 1 Age distribution of infants whose structural data were
used to produce the database of neonatal structural priors

570 COLLINS-JONES ET AL.



single rater (and validated by two independent raters, see below),

using ITK-SNAP (Yushkevich & Gerig, 2017). Infants were selected

from a range of ages spanning 12 weeks PMA to identify if there was

any relationship between segmentation method performance and age,

which could lead us to determine whether a single segmentation

method was appropriate at all ages or whether different segmentation

methods were needed to be applied at different ages.

For each individual, the one-voxel thick outer scalp boundaries

from the manual segmentation were compared to each of the seg-

mentations resulting from the automated methods. Three different

metrics were used to compare each manual and automated segmenta-

tion. The mean surface distance (the mean of the distances from/to

the centre of each manually segmented voxel to/from the centre of

the nearest automated segmentation voxel) was used to provide an

overall measure of similarity. The Hausdorff distance (the maximum of

these distances) was used to quantify the maximum error, while the

modified Hausdorff distance (the value of the 95th percentile of these

distances) was used to quantify the spread of error in the data without

being biased towards outliers.

In order to obtain a measure of inter-rater variability, 2 of the

12 images were manually segmented by two additional independent

raters, and the similarity with the primary rater was compared using

the metrics outlined above. The mean surface distance between the

primary rater's segmentation and those completed by the other two

raters was 0.153 mm with a SD of 0.236 mm. The Hausdorff distance

was 1.5 mm and the modified Hausdorff distance was 0.5 mm.

2.1.3 | Creating a multi-layer tissue mask

Having established an appropriate automated procedure for the iden-

tification of the outer scalp boundary (see Section 3), the extra-

cerebral tissue segmentation could be combined with the cerebral tis-

sue mask. The full segmentation pipeline, used to produce multi-layer

tissue masks for each of the 215 individuals, is outlined in Figure 2.

When considering the optical properties of cerebral tissues, cortical

and deep grey matter can be grouped to become a single tissue label,

grey matter; ventricles and outer CSF can be grouped to become a

single label, CSF; and white matter, brainstem, and cerebellum (which

largely consists of white matter) can be grouped into one label, white

matter.

2.1.4 | Constructing a volumetric tetrahedral mesh

A high-density tetrahedral volumetric mesh was produced for each of

the 215 datasets using the iso2mesh toolbox (Fang & Boas, 2009).

The multi-layered tissue masks were used as an input for a meshing

procedure which assumes isotropic voxels: using the CGAL mesher

option, the maximum element size was set to 1.5 unit cubed (where

1 unit is equal to 0.5 mm, the length of an isotropic voxel), while the

maximum radius of the Delaunay sphere was set to 1 unit. The coordi-

nates of the nodes of the resulting mesh were then rescaled into

millimetre units. The quality of the volumetric meshes was assessed

using the Joe–Liu quality index (Liu & Joe, 1994):

qvol =
12 � 3 �volð Þ23
P

0≤ i≤ j≤3l
2
i,j

where qvol is the Joe–Liu quality index, vol is the volume of a tetrahe-

dron, and li,j are the lengths of the edges of the tetrahedron. Another

metric, the mean Voronoi volume—the volume around a given mesh

node which encompasses each point which is closer to the given node

than any other mesh node—was used as an indication of mesh den-

sity; the lower the Voronoi volume, the higher the mesh density. In

F IGURE 2 Flowchart describing the construction of structural
priors for each neonatal individual using segmentations of cerebral
tissues and an extra-cerebral tissue (ECT) segmentation extracted
from a T1-weighted MR image
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each tetrahedral volume mesh, the tissue labels (indexed from 1 to

9 specifying extra-cerebral tissue, outer CSF, cortical grey matter,

white matter, ventricles, cerebellum, deep grey matter, brainstem, and

hippocampus, respectively) were computed on an element-wise basis.

2.1.5 | Cranial landmarks and 10–5 positions

A convention for describing positions on the scalp surface of each

model is very helpful in determining equivalent scalp surface positions

across different subjects, for spatially registering structural priors and

for determining appropriate positions of optodes, electrodes or any

other equipment placed on the scalp surface. The 10–5 system is a

convention for describing positions on the scalp, originally intended as

a convention for high-density electrode positioning in EEG

(Oostenveld & Praamstra, 2001). The 10–5 system is computed using

the coordinates of the cranial landmarks, corresponding to the nasion

(Nz), the inion (Iz), the left pre-auricular point (Al), the right pre-

auricular point (Ar), and the approximate location of the vertex of the

head (Cz). For each individual in the database, these five landmarks

were determined manually: ITK-SNAP was used to provide a visualisa-

tion of the external surface of the extra-cerebral tissue (i.e., the scalp)

and a single voxel was selected to represent the location of each land-

mark. The coordinates of the node in the head volume mesh closest

to the centre of that voxel were then taken as the updated coordi-

nates of each landmark in the volume mesh space. Each node in the

mesh was rigidly transformed to a coordinate system in which the ori-

gin is defined as Iz, the y-axis is defined as a vector joining Iz to Nz,

and mesh nodes are rotated around the y-axis such that the z-

coordinates of Ar and Al are approximately equal.

For every individual, the coordinates of the 10–5 locations were

then calculated using a curve-walk procedure (Aasted et al., 2015) see

Homer2: www.nitrc.org/projects/homer2). Given three points on the

mesh surface, a plane can be computed. The coordinates for Nz, Iz,

and Cz are used to define a plane and the intersection between the

plane and the outer surface of the volumetric mesh (i.e., the scalp sur-

face) is computed. As the intersection has been defined in the mesh

space, a set of nodes at the scalp surface that lie within 0.6 mm of the

intersection of the plane were identified to define a curve. A 3D spline

interpolation of these surface nodes is then used to smooth the curve

and avoid errors due to zigzagging between the nodes comprising the

initial curve. The positions along the smoothed curve from Nz to Iz via

Cz are then calculated by dividing the total length of the curve into

5% intervals. This curve is referred to as the sagittal reference curve.

The same process as above is used to compute the coronal reference

curve using points Ar, Al, and Cz to define the intersection with the

scalp surface, and the positions along the curve are computed at 5%

intervals. An axial reference curve is then defined for the entire cir-

cumference of the head by calculating two curves: using FPz, T7, and

Oz on the left and FPz, T8, and Oz on the right, and dividing both cur-

ves into 5% intervals. The length of the axial reference curve is taken

to be the head circumference. The remainder of the 10–5 positions

are calculated along curves defined by equivalent positions on the

right and left sides of the axial reference curve via equivalent posi-

tions in the sagittal reference curve.

To preserve anonymisation of the dHCP data, the tissues around

the eyes in the MR images have been intentionally distorted. The

scalp surface therefore could not be recovered for the anteroinferior-

most regions of the head. The 10–5 positions consist of 345 locations;

however, the lower-most curve of landmarks on the head (which lies

below the axial reference curve) could not be reliably computed given

the anterior distortion of the head. Due to this, all 10–5 positions

below the axial reference curve were excluded. In addition, for each

individual the manually determined cranial landmarks were saved but

were not used in subsequent analyses in this study.

2.2 | Performance of the model in an example
application

While subject-specific structural MRI data may not be available,

knowledge of the subjects age and external features of the head may

be available and are usually far easier to obtain. One such external

feature could be head circumference. Other external features of the

head could include the locations of landmarks on the scalp surface, for

instance the cranial landmarks, derived using a three-dimensional

magnetic digital position tracking system (Tsuzuki & Dan, 2014) or by

using photogrammetry methods (Lloyd-Fox et al., 2014). This is often

the case in both DOT and EEG studies of neonates. For a given sub-

ject, such characteristics can be used to choose a best-matching indi-

vidual from our neonatal head model database.

To demonstrate how this database can potentially be used, a sim-

ple example application and error quantification pipeline were devel-

oped. The functional imaging modalities outlined in this paper rely on

the placement of equipment on the scalp surface. In our example

application, scalp positions from a subject-specific model and a mat-

ched model were projected to the cortical surface. These projection

positions were compared to quantify the difference in cortical anat-

omy underlying equivalent scalp positions in the two models, which

we use as a measure of the error incurred by using a matched model

in place of a subject-specific model.

For each individual, the 10–5 EEG positions were projected to

the cortex. The nodes of the scalp surface of the volumetric mesh

within a 5 mm radius of each 10–5 position were used to fit a plane.

For a given 10–5 position, a ray vector was defined orthogonal to this

plane. The ray was extended to find its intersection with a face on the

cortical surface using the Möller–Trumbore algorithm (Mena-Chalco,-

2019; Möller & Trumbore, 1997). The projection position for 10–5

positions whose ray vector did not intersect the cortical surface were

assigned to be the nearest cortical surface node to the 10–5 position.

The hemisphere of the resulting projection was also noted.

Each individual in the database was selected in turn to act as the

target in a leave-one-out paradigm—the process is shown in flow dia-

gram for in Figure 3. A pool of infants with an age equal to that of the

target subject, plus or minus 1 week, was compiled. The infant from

this pool with the nearest head circumference to that of the target
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individual was chosen to be the target's match. An affine transforma-

tion matrix was defined between the 10–5 positions of the match and

the target. This transformation was then applied to the matched

model's 10–5 positions and the nodes of the volumetric and cortical

surface meshes to register them to the space of the target. In a pro-

cess identical to that described previously, the 10–5 positions of this

registered, matched model were projected down to the cortical

surface.

Using Multimodal Surface Matching, a spherical registration

method that allows flexible alignment of a wide variety of different

types of features on the cortical surface (Robinson et al., 2014; Robin-

son et al., 2018), the registration between the cortical surfaces of the

target and the match were computed. Mean curvature features were

chosen to drive the registration, as these features reflect the finer-

scale patterns of cortical folding (Bozek et al., 2018). In this work, sur-

face registrations were computed between equivalent hemispheres

(right and left) of the two different cortices.

For each projection of the matched individual, the cortical surface

node nearest to the projection position was assigned a value of

1, while every other node of the cortical surface of the relevant hemi-

sphere was assigned a value of 0. Based on the registration between

the target and the match's cortical hemisphere, the values assigned to

each node were resampled to the space of the target cortical surface

mesh. The subsequent resampled node values then consisted of

values between 0 and 1. To determine the transformed position of a

given matched model projection on the cortical surface of the target,

a weighted average was computed using the resampled value at each

node as the weight for the position of each node.

This whole process results in two paired distributions of points in

the coordinate space of the target cortical surface. These points rep-

resent the cortical locations underlying the 10–5 positions in the tar-

get individual (i.e., the “true” positions) and the equivalent positions

one would obtain if the match is used instead of the subject-specific

structural prior. The Euclidean distance between each target projected

position and their matched equivalent in the space of the target brain

is defined as the Euclidean localisation error.

For each individual aged 41 weeks PMA (n = 43), the localisation

error values associated with each projection position were interpo-

lated to produce a map of localisation error as a function of position

on the cortical surface. These individual localisation error cortical

maps were transformed and resampled to the space of an age-

appropriate cortical surface atlas (constructed by Bozek et al. (2018))

using Multimodal Surface Matching, and the mean and SD of the

node-wise localisation error values were computed.

F IGURE 3 Flowchart of the
process to compute the Euclidean
localisation error for each individual
acting as the target in a leave-one-out
paradigm
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2.2.1 | Scalp-to-brain distance and extra-cerebral
tissue thickness

The vectors originating at the scalp surface used for computing corti-

cal projections were also used to compute the scalp-to-brain dis-

tance, extra-cerebral thickness and CSF thickness underlying each

10–5 position. Initially, it was noticed that the distribution of scalp

to brain distances for a given individual rarely exceeded 30 mm;

however, a small population of scalp locations lateral to the sagittal

reference curve at the anteroinferior-most regions of the head

appeared at 40 mm and beyond. In such cases, the projection from

the scalp surface did not intersect with the cortical surface that was

immediately underlying the scalp position. As such, if the ray inter-

sected with the cortical surface at a distance greater than 35 mm,

this was deemed to be misleading, and such projection positions

were assigned the position of the nearest cortical surface node to

the scalp location.

The thickness of the extra-cerebral tissue was computed as the

distance to intersection between each ray vector from the 10–5 posi-

tions to the outer CSF surface extracted from the volumetric mesh. In

cases where the nearest node method was used for the cortical pro-

jection, extra-cerebral tissue thickness was calculated as the distance

to the nearest CSF node. The CSF thickness underlying each 10–5

position was computed as the scalp-to-brain distance minus the extra-

cerebral tissue thickness.

3 | RESULTS

3.1 | Model characteristics

3.1.1 | Scalp segmentation

Three different methods to determine the outer scalp boundary were

compared to manual segmentations for a subset of 12 individuals

from the database, consisting of three different infants at 32, 36,

40, and 44 weeks PMA. Compared to manual segmentation, the mean

surface distance across all individuals of all ages was lowest among

those segmented with Betsurf using the T1-weighted image only

(0.266 mm, standard deviation (SD) 0.367 mm), closely followed by

Otsu thresholding, whose SD was lower (0.295 mm, SD 0.254 mm),

followed by Betsurf using both T1- and T2-weighted images

(0.466 mm, SD 0.631 mm). The Hausdorff distance (4.30, 12.5, and

13 mm for Otsu thresholding, Betsurf with T1 only, and Betsurf with

both T1 and T2, respectively) and the modified Hausdorff distance

(0.5, 0.707, and 1.87 mm for Otsu thresholding, Betsurf with T1 only,

and Betsurf with T1 and T2, respectively) are lower for Otsu thresholding,

in addition to its lower surface distance SD. Cumulative distribution func-

tions displaying the data for all three automated segmentation methods

compared to manual are shown in Figure 4.

The mean surface distance, modified Hausdorff distance and

Hausdorff distance for each segmentation from each individual in the

manually segmented subset is shown in Figure 5, and the resulting

outer scalp boundaries from the different automated segmentation

methods can be visualised in Figure 6. The modified Hausdorff dis-

tance indicates that Betsurf using both T1- and T2-weighted images is

less reliable than the other two methods at all ages, while the

Hausdorff distance indicates Otsu thresholding to be the most consis-

tent at each age investigated. A statistically significant but very slight

negative correlation was found between Otsu segmentation error ver-

sus manual and age (r = −.085, p < .001). However, given its consis-

tent performance and the fact that the mean surface distance was

always less than 1 mm, we determined that it is appropriate to apply

Otsu segmentation to structural data across the range of ages covered

in the database.

3.1.2 | Database of individual structural priors

Example components from the completed database of individual

multi-layered structural priors for neonates at different ages are

shown in Figure 7. The cranial landmarks and 10–5 positions for an

example individual are also shown in Figure 7. Table 1 summarises the

properties and quality indices of the volumetric meshes. The number

of nodes increases with age as one would expect given the increase in

head volume, observable in Figure 7. Across all volumetric meshes in

the database, 81.0% of elements exhibit a qvol value of 0.7 or greater,

indicating that the majority of elements are close to being equilateral.

F IGURE 4 Cumulative distribution plot of the distances to/from
the centre of each manually segmented boundary voxel from/to the
centre of the nearest automated segmentation boundary voxel for
each of the three automated methods. These distances are used as a
measure of the error of the outer scalp boundary relative to manual
segmentation
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The mean Voronoi volume of the volumetric mesh is 0.474 mm3, indi-

cating the high density of the mesh.

3.1.3 | Anatomical features

Figure 8 shows the median thickness of the extra-cerebral tissue,

the thickness of the CSF, and the median scalp-to-brain distance

underlying the 10–5 positions for each individual as a function of

age. Mesh-derived head circumference as a function of age is also

shown in Figure 8. For 204 of the 215 infants in the database, data

were available for the head circumference as measured at time of

scan. Figure 9 displays the measured head circumference plotted

against the head circumference derived from the mesh for these

individuals. There is a high correlation between the two sets of

measurements (r = .90, p < .001).

3.2 | Performance of the model in an example
application

The mean Euclidean localisation error across all projections from the

10–5 positions was determined to be 8.3 mm (median absolute devia-

tion 3.8 mm), while 95% of projection points are within a Euclidean

localisation error of 18.1 mm or less (see Figures 10 and 11).

The localisation error cortical map at 41 weeks PMA is shown in

Figure 12. The localisation error is lowest anteromedially (except for

cortical areas proximate to the longitudinal fissure) and is highest

posteromedially. A localisation error of 11 mm or below is apparent

across almost the entirety of the sensorimotor cortex (except proxi-

mate to the longitudinal fissure) and over the vast majority of the

superior and middle temporal gyri bilaterally. The node-wise SD of the

localisation error is 4.5 mm or below for the vast majority of the sen-

sorimotor cortex and the majority of the cortical surface, while the

overwhelming majority of the temporal lobe has a SD below 5.5 mm.

4 | DISCUSSION

In this work, we have described the production of a database of

215 individual structural priors using data from infants aged

29–44 weeks PMA for use in a range of neuroimaging modalities. For

each individual, our data package includes:

• A voxelised mask of tissues of the head volume.

• A tetrahedral mesh of tissues of the head volume.

• A scalp surface mesh.

• The coordinates of the 10–5 positions and cranial landmarks.

• Cortical surface and white matter meshes, taken from the dHCP

processing pipeline and re-aligned to the space of the tetrahedral

meshes.

More datasets will be made publicly available by the dHCP in

future, and so we plan to subsequently add more head models to our

database once the dHCP datasets are released publicly.

Ideally, a structural prior would be derived from an individual's

own MRI scan; however, this is often not available and requiring each

individual to undergo an MRI scan undermines the benefits of many

functional imaging techniques that enable neonates to be studied at

the cot-side. The use of an atlas removes the need for each subject to

undergo an MRI scan, addressing the fundamental challenge posed by

imaging modalities that do not simultaneously acquire structural and

functional data.

The structure of the neonatal brain is highly variable across ages

and individuals, which is evident from Figure 7 (see Section 3), dis-

playing example structural models at different ages, with substantial

structural changes occurring from 29 to 44 weeks PMA. A study of

over 300 infants aged 28–44 weeks PMA (Makropoulos et al., 2016)

found that the relative volume of white matter decreases during this

period while the relative volume of cortical grey matter increases.

(Makropoulos et al., 2016) also found that cortical surface area

increases with age. The use of a single model for infants across this

F IGURE 5 The metrics used to evaluate the automated segmentation methods are shown for each infant in the subset evaluated with
manual segmentation
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age range is therefore inappropriate. As stated in Section 1, previous

work has detailed the construction of age-specific atlases that address

these structural changes. However, little is known about age-matching

population-level atlases of the head, or the relation between age- and

size-matching.

Spatially averaging structural data to produce population-level

atlases of the neonatal head results in diminished detail of gyrification,

and so such models of the head do not offer an anatomical volume

representative of an individual head in which a field, such as the spa-

tial distribution of photon migration, can be modelled. The database

F IGURE 6 T1-weighted images from example individuals at 32, 36, 40, and 44 weeks postmenstrual age (PMA). For each individual, the outer
scalp boundaries determined using three different automated segmentation methods are shown (demarcated by the turquoise background)
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of structural priors of individual-level anatomy produced in this work

permits the development of a targeted atlas for a given subject that is

likely to be more representative than a spatially averaged model

exhibiting diminished gyrification. For a given subject, an individual

from the database can be matched on a granular level, based on (for

instance) head size, head shape, age, gender, and the relative positions

F IGURE 7 Example of multi-layered (a) tissue masks and (b) meshes from neonatal infants aged 29–44 weeks postmenstrual age (PMA) (see
colourbar). Tissues represented are extra-cerebral tissue (ECT), cerebrospinal fluid (CSF), cortical grey matter (cGM), white matter (WM),
ventricles, cerebellum, deep grey matter (dGM), brainstem, and hippocampus. The 10–5 positions on the scalp surface from an example infant
aged 41 weeks PMA are shown in (c) in black, while the cranial landmarks are shown in magenta
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of landmarks on the scalp. The fact that individual-level data is being

used means that gyri and sulci remain present in the structural priors,

which is truly representative of individual anatomy.

The structural priors presented in this work can be used in many

functional neonatal imaging modalities. These could be used as a

space to which functional data can be registered, or to solve the for-

ward problem in, for example, EEG, MEG, NIRS, and DOT (Arridge &

Cooper, 2015; Azizollahi et al., 2016; Legon et al., 2018; Mueller

et al., 2017; Pirondini et al., 2018; Ranjbaran et al., 2019; Roche-

Labarbe et al., 2008; Routier et al., 2017). To do this, it is necessary to

determine the position of sources and sensors placed on the scalp sur-

face of a given subject, such as optodes or electrodes. These can be

computed in relation to or in correspondence with the 10–5 positions

provided in our data package, or through the use of a magnetic posi-

tioning device or photogrammetry methods. In addition, the cranial

landmarks are provided for each model in the database; these land-

marks can also be obtained from a subject at the cot-side or bed-side

using an electromagnetic positioning device or photogrammetry

methods and can be used to register a structural prior to the dimen-

sions of a subject.

In the case of DOT, a forward model of photon transport is com-

puted by modelling photon propagation from sources to detectors

through the volume provided by the structural prior, producing a

model of how the measured optical intensity will change given a

change in the optical properties in the head. The inversion of this for-

ward model provides an estimate of how optical properties in the

head change given a change in detected intensity, which can then be

combined with optical data to yield an image of those changes in opti-

cal properties (Arridge & Cooper, 2015).

Appropriate properties need to be assigned to the nodes

(or elements) of the structural prior, which may vary in correspon-

dence with tissue type as is the case for optical properties, magnetic

permeability and electrical conductivity. For the volumetric structural

priors (tissue masks and tetrahedral meshes) presented in this

work, we provide tissue assignments for the extra-cerebral tissue in

addition to the eight intra-cerebral tissue types of grey matter, white

matter, and CSF as defined through the dHCP structural pipeline

(Makropoulos, Robinson, et al., 2018). Though the motivations for this

work arise from our research in DOT, the constraints imposed by a

lack of structural information is not unique to DOT, and it is hoped

that the structural priors presented in this work will prove useful in

other imaging fields.

4.1 | Extra-cerebral tissue segmentation

In this work, we have endeavoured to ensure that the head models

produced represent the realistic anatomy of individual infants and

quantify the error associated with extra-cerebral tissue segmentation.

In order to build the database, a series of methods for automated seg-

mentation of the extra-cerebral tissue were evaluated by comparison with

manual segmentations from a subset of individuals. The error associated

with the use of our preferred method (Otsu thresholding) is typically less

than 0.5 mm at the outer scalp boundary, which is acceptable given the

resolution of the associated MRI images and the typical resolution of

DOT (Cooper et al., 2012; Ferradal et al., 2014, 2016).

Few publications exist that focus on the segmentation of neonatal

extra-cerebral tissue. Ghadimi et al. (2008) produced probabilistic

TABLE 1 Features of the volumetric meshes for each age in the database

Age

Mean

q_vol ± SD

Mean Voronoi

volume ± SD (mm3)

Mean N

nodes ± SD (×106)
Mean N

elements ± SD (×106)
Mean N

faces ± SD (×106)
N

subjects

29 0.803 ± 0.115 0.473 ± 0.210 0.62 ± 0.00 3.59 ± 0.00 1.06 ± 0.00 1

30 0.802 ± 0.116 0.468 ± 0.210 0.63 ± 0.11 3.67 ± 0.66 1.08 ± 0.12 4

31 0.802 ± 0.116 0.466 ± 0.210 0.70 + 0.22 4.12 ± 1.32 1.22 ± 0.33 2

32 0.800 ± 0.117 0.472 ± 0.210 0.77 ± 0.04 4.50 ± 0.20 1.35 ± 0.78 3

33 0.802 ± 0.116 0.474 ± 0.210 0.82 ± 0.10 4.81 ± 0.62 1.40 ± 0.13 10

34 0.802 ± 0.116 0.476 ± 0.208 0.95 + 0.07 5.55 ± 0.40 1.60 ± 0.10 10

35 0.802 ± 0.116 0.477 ± 0.209 1.05 ± 0.08 6.16 ± 0.49 1.78 ± 0.11 16

36 0.801 ± 0.116 0.476 ± 0.208 1.07 ± 0.14 6.29 ± 0.83 1.83 ± 0.18 16

37 0.801 ± 0.117 0.475 ± 0.207 1.17 ± 0.08 6.90 ± 0.50 2.01 ± 0.12 13

38 0.799 ± 0.117 0.482 ± 0.206 1.20 ± 0.11 7.10 ± 0.67 2.12 ± 0.16 17

39 0.800 ± 0.117 0.477 ± 0.207 1.34 ± 0.11 7.94 ± 0.67 2.31 ± 0.17 19

40 0.800 ± 0.117 0.479 ± 0.206 1.36 ± 0.09 8.06 ± 0.52 2.37 ± 0.10 26

41 0.799 ± 0.117 0.479 ± 0.206 1.39 ± 0.10 8.21 ± 0.58 2.44 ± 0.14 39

42 0.799 ± 0.117 0.468 ± 0.205 1.46 ± 0.13 8.69 ± 0.75 2.58 ± 0.21 24

43 0.799 ± 0.117 0.472 ± 0.206 1.54 ± 0.12 9.15 ± 0.73 2.73 ± 0.22 8

44 0.798 ± 0.117 0.471 ± 0.204 1.56 ± 0.12 9.27 ± 0.73 2.78 ± 0.24 7
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atlases for scalp and skull using T1-weighted images from three sub-

jects aged 39–42 weeks PMA that were manually segmented and

transformed to the space of the GRAMFC atlas (Kazemi, Moghaddam,

Grebe, Gondry-Jouet, & Wallois, 2007). To segment scalp and skull for

a given subject, the T1-weighted image was normalised to the

GRAMFC atlas, and the probabilistic scalp and skull atlases were then

used to identify scalp and skull points, followed by a level-set based

reconstruction to obtain closed surfaces. Daliri et al. (2010) applied a

similar method by constructing a probabilistic atlas whereby six images

(normalised to the space of the GRAMFC atlas) were manually seg-

mented to produce atlases for scalp and skull tissues. A Bayesian classi-

fier was then used to weight local features of the MR image against

those of the probabilistic atlas, with the weighted features then being

fed to a Hopfield Neural Net to obtain an estimation of the skull layer.

The database of neonatal head models we present was made

using previously validated segmentations of neonatal MR images that

retained brain tissues and CSF (Makropoulos, Robinson, et al., 2018).

As such, the outer boundary of the cerebral tissues was taken as the

inner skull boundary, and so only the outer scalp boundary was sought

to produce a combined skull and scalp segmentation; the extra-

cerebral tissue. The studies described above present a method to sep-

arate skull and scalp tissue in infants, however the methods would be

unfeasible for the purposes of our work. First, the authors rely on

manual segmentation of the outer and inner skull boundaries, a time-

consuming method which can only provide data from a small number

of individuals in a reasonable time frame. Second, the skull/scalp

boundary is difficult to discern on a neonatal MRI scan, rendering such

methods both subjective and difficult to validate. Further, for optical

applications, the optical properties of the skull and scalp are relatively

similar (absorption coefficient and reduced scattering coefficients of

0.018 and 1.9 mm−1 for scalp, and 0.016 and 1.6 mm−1 for skull

(Dehaes et al., 2013)).

F IGURE 8 Median tissue thickness values underlying the 10–5 positions and head circumference as a function of age for all individuals in the
database
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Despite this, the lack of distinct segmentations for skull and scalp

in our models remains a limitation of this work, particularly for EEG

applications where scalp and skull have different conductivity proper-

ties (Azizollahi et al., 2016; Roche-Labarbe et al., 2008; Routier et al.,

2017). Another limitation to note with regard to the extra-cerebral tis-

sue is that our models do not include any information on the structure

of the fontanels. With regard to optical properties, it is known that

the inclusion of the fontanel in a head model improves the accuracy

of the recovery of absorption changes (Dehaes et al., 2013) and is

known to improve source localisation in EEG (Roche-Labarbe et al.,

2008). Computed tomography data is required to discern the fonta-

nels from bone (which cannot be achieved with MRI data alone) and

such data did not exist for the individuals whose data were used to

produce the database presented in this work. Some literature values

are available for the thickness of extra-cerebral tissue and CSF,

though they are somewhat difficult to compare to the current work.

(Beauchamp et al., 2011) conducted a study of the brain-to-scalp dis-

tances of subjects aged from birth to 12 years, derived from MRI data.

This included data from 14 neonates, which yielded a highly variable

pattern of brain-to-scalp distances, with mean values ranging from

approximately 5 to 10 mm between individuals. (Brigadoi & Cooper,

2015) computed the extra-cerebral tissue and CSF thickness underly-

ing each surface node as well as overall scalp-to-brain distances for

each age of the Brigadoi et al. head model (Brigadoi et al., 2014). The

median values of CSF thickness of the Brigadoi et al. model are notably

higher than those for individuals from our database at corresponding

ages. The opposite is true for extra-cerebral tissue thickness, which is

consistent with the author's assertion that their models likely under-

estimate the thickness of the extra-cerebral tissue. The close corre-

spondence demonstrated here between segmentations completed

manually and by our preferred automated method, as well as the high

correlation between measured and mesh-derived head circumference

measures, underpins our confidence that the models in our new data-

base accurately represent extra-cerebral tissues.

F IGURE 9 Head circumference measurements taken in vivo (x-
axis) plotted against head circumference measurements taken from
volumetric meshes (y-axis). The line of one-to-one proportion is
shown

F IGURE 10 Histogram displaying the distribution of the
Euclidean localisation error of each cortical projection position,
combining data from each individual

F IGURE 11 Histogram displaying the distribution of the
Euclidean localisation error of the cortical projection positions per
individual (see colourbar) and the median values for each individual
(plotted as a white line)
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Over half of the prospective datasets (366 of 634) acquired as

part of the dHCP cohort and used in this work had to be excluded.

The reason for the vast majority of these exclusions (86% of 366) was

that the extra-cerebral tissue extended out of the field of view in the

T1-weighted MR images. This is often found in clinical MRI scans

where the duration of the scan is limited. In order to produce an accu-

rate representation of non-brain tissues, we required that all extra-

cerebral tissues were visible across the image volume. An interpola-

tion method could potentially have been used to correct for the miss-

ing extra-cerebral tissue in these excluded datasets. However, this

process would have required its own optimisation and validation and,

given the large number of individuals that were acceptable, it was

determined that it was better to rely solely on complete structural

datasets.

4.2 | Error incurred by using an individual-matched
structural prior

This work describes the construction of a database of structural priors

but it was also essential to quantify the error associated with an appli-

cation of this database. For simplicity, we chose to test the utility of

an individual-matching approach using a leave-one-out analysis. At

41 weeks PMA, the localisation error associated with this application

was approximately 11 mm or less across the majority of the motor

cortex and the majority of the superior and middle temporal gyri bilat-

erally. The median localisation error across all 10–5 positions across

all subjects is 8.3 mm. Assuming a circular areal distribution of error,

this suggests a geodesic point spread function of approximately

216 mm2, with this extending to 460 mm2 with an increase of one

median absolute deviation (3.8 mm) above the mean. For context,

Bozek et al. report the average area of the posterior portion of the

superior temporal gyrus to range from 1,175 mm2 at 36 weeks PMA

to 1,525 mm2 at 44 weeks PMA. The frontal and temporal areas have

been shown to be important in infant social development (Singh,

Okamoto, Dan, Jurcak, & Dan, 2005; Tsuzuki et al., 2007), and our

analysis provides evidence that using a matched brain from this data-

base could potentially offer spatial precision at the gyral level in these

areas.

There are three sources of error in atlas-guided DOT, as stated by

Cooper et al. (2012). The first is that there are anatomical differences

between the matched model and the target subject. To reduce this

error, future work will identify the factors that are the best indicators

of a match, which may include (but are not limited to) head circumfer-

ence, head size, age, gender, and features derived from the cranial

landmarks such as nasion-to-inion distance. The second source of

error is the imperfect registration of the matched model to the target's

space. In this work, an affine registration was employed to spatially

register the matched model to the target's space. In the adult, the

error due to affine registration is estimated at 4–7 mm (Singh

et al., 2005; Tsuzuki et al., 2007). It is difficult to disentangle the affine

registration error from the error introduced due to anatomical differ-

ences and, as such, future work will need to investigate factors that

could affect these sources of error in combination. In practice, it will

be difficult to acquire all 10–5 positions. Feasibly, the registration of a

structural prior to the subject space will rely on positions of cranial

landmarks (Nz, Iz, Ar, Al, and Cz); as a result, a limitation of this work

is the more constrained affine transformation as compared to real

world applications of this process. The third source is the error inher-

ently associated with image reconstruction in DOT. The example

F IGURE 12 For each individual
aged 41 weeks postmenstrual age
(PMA), the Euclidean localisation error
was interpolated across the cortical
surface using the value at each
projection position. The interpolated
localisation error maps for each of
these individuals were registered to
the surface of a 41-week PMA

cortical surface atlas and averaged.
Here, the node-wise values of the
mean and SD are displayed
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application described and tested in this work was deliberately simple

so as to be generalisable across neuroimaging techniques, and so this

work does not evaluate the error that image reconstruction could

introduce.

A limitation of our approach is the determination of the positions

of the cranial landmarks. There is ambiguity in the definitions of the

cranial landmarks, leading to issues with reproducibility in determining

their positions. This is particularly the case for the inion (Jurcak,

Tsuzuki, & Dan, 2007). As such, there exists rater-originated error in

the determination of cranial landmarks positions and (by extension)

the 10–5 positions calculated for each individual in the database.

4.3 | Comparison to previous work

The database of structural priors presented in this work confers sev-

eral advantages over the population-level atlas produced by Brigadoi

et al., the most realistic model available for use in place of a subject-

specific model. The database of structural priors presented in this

work was completed using MRI data of a superior resolution

(0.5 mm × 0.5 mm × 0.5 mm in this work, 0.86 mm × 0.86 mm × 1 mm

in Brigadoi et al.), and the segmentation used to build the model were

obtained using a more up-to-date segmentation algorithm (Makropoulos

et al., 2014; Makropoulos, Robinson, et al., 2018). We have also included

a validation of a method to segment the extra-cerebral tissue which was

not included in the work published by Brigadoi et al.

In addition, the models in the database are compatible with sur-

face registration techniques. In this work, we have not included a

comparison of the error incurred by using a matched individual atlas

with the error incurred by using a population-level neonatal atlas

(such as that constructed by Brigadoi et al.). Given that the cortical

surfaces in these models are smooth, there is very little local variation

in sulcal depth and curvature. Therefore, one cannot rely on these fea-

tures to yield a meaningful mapping from an individual cortical surface

exhibiting gyrification to that of a population-level atlas exhibiting

gyrification to a much lesser degree. Such a registration would be

prone to a high level of error which would be impossible to discern

from the error incurred by using a population-level atlas. This lack of

gyrification means that the use of surface registration techniques such

as FreeSurfer and Multimodal Surface Matching may not be appropri-

ate to quantify the error incurred by using a population-level atlas

with respect to the use of a subject-specific model. The compatibility

of our models with these surface registration methods is a distinct

advantage of the database of structural priors presented in this work

as surface registrations can be used to meaningfully validate their

application.

There exist cortical atlases, such as those constructed by Bozek

et al. (used as a common space for analysis in this work), which make

use of structural data at the population level and manage to preserve

gyrification detail by averaging in the cortical surface space. However,

in order to model the spatial distribution of a field within the head, a

structural prior that represents a volume is required.

Macroanatomical labelling is of great benefit to functional neuro-

imaging methods as it allows an anatomical label to be associated with

the location of cortical activation. The dHCP datasets used in this

study include cortical parcellation maps that label 17 discrete cortical

regions per hemisphere for each individual (Gousias et al., 2012;

Makropoulos, Robinson, et al., 2018). These parcellation maps are also

provided for each individual in our publicly available database. In addi-

tion, other neonatal cortical surface parcellation atlases, such as that

published by de Macedo Rodrigues et al. (2015) and Alexander

et al. (2017), can be registered to each individual using surface regis-

tration, expanding the range of parcellations that can be used to label

the anatomical location of functional activation. Such parcellation

atlases will be instrumental in order to apply our models to the study

of, for example, functional connectivity.

4.4 | Future work

In this study, we have described the construction and validation of a

database of neonatal head models and have demonstrated a simple

example application of how the resulting head model database can be

applied. We have not sought to demonstrate best practice in using

this database; in future we hope to test multiple different methods to

determine what the best practice approach is for using an individual-

level head model database with DOT data. The database of structural

priors presented in this work provides a novel opportunity for such

ideas to be tested and validated.

We have not attempted to provide macroanatomical labelling of

the positions of the cortical projections. Using a 12-month-old infant

template, Tsuzuki et al. (2017) demonstrated that the 10–10 system

(a lower density derivative of the 10–5 system) is sufficient to pre-

dict underlying macroanatomical cortical structures. Future work

involving the database of structural priors described here could

investigate whether such a consistent relationship is present in the

neonatal population, using cortical projection and scalp projection

protocols used in Tsuzuki et al. (2017), Kabdebon et al. (2014), and

Matsui et al. (2014). This would aid the interpretation of the location

of activation measured transcranially by modalities such as fNIRS

and EEG.

The obvious limitation of implementing the database in this work

through a matched-individual approach is that the use of an individual

atlas may bias the resulting images, since the structural prior does not

incorporate anatomical variation across infants at a particular age. To

address this bias, the database presented could also permit a probabi-

listic approach that makes use of head models from multiple individ-

uals. For a given subject, a pool of closely matched individuals from

the database could be compiled, and each of these head models could

be spatially registered and used to reconstruct an image. The resulting

reconstructed images could then be averaged in an arbitrarily chosen

individual space using surface-based registration techniques such as Mul-

timodal Surface Matching and FreeSurfer, so that the resulting image is

influenced by a degree of anatomical variation in a well-targeted
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population without being biased towards a specific individual's anatomy.

Alternatively, the pool of best-matching individuals compiled from the

database permits the production of a population-level atlas from a more

demographically constrained cohort.

5 | CONCLUSION

We have described the construction of a database of multi-layered,

individual-level models of the neonatal head for infants aged

29–44 weeks PMA, and have demonstrated a simple application of

this database. Given that no similar database exists for neonatal

head anatomy at the individual level, we anticipate that this data-

base will be of use across a range of neuroimaging, neu-

romonitoring, and neurostimulation techniques, and particularly in

DOT. In future, we aim to evaluate different applications of the

database to determine best practice to find a matching head model

or a subset of matching head models that minimises the localisation

error. This database is now freely available at www.ucl.ac.uk/

dot-hub.
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