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Background: The potential for emergence of antiviral drug resistance during influenza
pandemics has raised great concern for public health. Widespread use of antiviral drugs is
a significant factor in producing resistant strains. Recent studies show that some influenza
viruses may gain antiviral drug resistance without a fitness penalty. This creates the
possibility of strategic interaction between populations considering antiviral drug use
strategies.
Methods: To explain why, we develop and analyze a classical 2-player game theoretical
model where each player chooses from a range of possible rates of antiviral drug use, and
payoffs are derived as a function of final size of epidemic with the regular and mutant
strain. Final sizes are derived from a stochastic compartmental epidemic model that
captures transmission within each population and between populations, and the stochastic
emergence of antiviral drug resistance. High treatment levels not only increase the spread
of the resistant strain in the subject population but also affect the other population by
increasing the density of the resistant strain infectious individuals due to travel between
populations.
Results: We found two Nash equilibria where both populations treat at a high rate, or both
treat at a low rate. Hence the game theoretical analysis predicts that populations will not
choose different treatment strategies than other populations, under these assumptions.
The populations may choose to cooperate by maintaining a low treatment rate that does
not increase the incidence of mutant strain infections or cause case importations to the
other population. Alternatively, if one population is treating at a high rate, this will
generate a large number of mutant infections that spread to the other population, in turn
incentivizing that population to also treat at a high rate. The prediction of two separate
Nash equilibria is robust to the mutation rate and the effectiveness of the drug in pre-
venting transmission, but it is sensitive to the volume of travel between the two
populations.
Conclusions: Model-based evaluations of antiviral influenza drug use during a pandemic
usually consider populations in isolation from one another, but our results show that
strategic interactions could strongly influence a population's choice of antiviral drug use
policy. Furthermore, the high treatment rate Nash equilibrium has the potential to become
socially suboptimal (i.e. non-Pareto optimal) under model assumptions that might apply
under other conditions. Because of the need for players to coordinate their actions, we
at at a high rate; NE, Nash equilibria; ODE, Ordinary differential equation.
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conclude that communication and coordination between jurisdictions during influenza
pandemics is a priority, especially for influenza strains that do not evolve a fitness penalty
under antiviral drug resistance.
© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Case importation is the primary means by which horizontally transmitted infectious diseases of humans can move be-
tween populations. For instance, the 2009 pandemic influenza A (pH1N1) viral strain originated inMexico, but quickly spread
to other countries through international travel (World Health Organizationet al, 2009). pH1N1 spread as much in 6 weeks as
other influenza strains spread in six months (World Health Organization (WHO)et al., 2009). After an imported case of pH1N1
was identified in Germany on 27 April 2009 (only a month after the virus was identified in Mexico City) the global trans-
mission of pH1N1 appeared to be on the horizon (Novel influenza A (H1N1) Investigation Team et al 2009).

If vaccines are not immediately available during an influenza pandemic, antiviral drugs are one of the most effective ways
to reduce the health burden of infections (Ferguson et al., 2005). There are four types of antiviral drugs available to treat
influenza: oseltamivir, zanamivir, amantadine and rimantadine (Ortiz et al., 2008). However, some factors delay the onset of
treatment, and emergence and transmission of antiviral drug viruses may reduce the efficacy of treatment (Handel, Longini,&
Antia, 2009). M2 inhibitors such as amantadine and rimantadine work only against influenza A. In contrast, neuraminidase
inhibitors such as zanamivir and oseltamivir are effective against both influenza A and influenza B (Winquist et al., 1999).
Neuraminidase inhibitors block the function of the viral neuraminidase protein enzyme that prevents the discharge of viruses
from the infected host cell and precludes new host cells from getting infected. The development of oseltamivir resistance is
minimal if it is used at recommended doses for treatment (Aoki, Boivin, & Roberts, 2006). However, high rates of resistance
are possible: 18% prevalence of resistance to oseltamivir has been observed among treated children in Japan (Kiso, Mitamura,
Sakai-Tagawa, Shiraishi, Kawakami, Kimura, Hayden, Sugaya, & Kawaoka, 2004). Also, in 2008, a high level of emergence and
spread of oseltamivir resistance viruses was observed in Europe (Meijer et al., 2009).

A number of mathematical models (primarily, ordinary differential equation models) have explored the potential impact
of the emergence of drug resistant influenza and its spread during an outbreak (Moghadas, BowmanR€ost, & Wu, 2008;
Regoes & Bonhoeffer, 2006; Stilianakis, Perelson, & Hayden, 1998). This research has provided useful insights into the
emergence and spread of drug-resistant influenza. These models predict that the final size of a pandemic can be reduced by
applying an adaptive antiviral strategy with properly timed increases in drug usage, and that chemoprophylaxis of sus-
ceptible individuals is one of the best ways to reduce the force of infection of an epidemic and keep the emergence of drug
resistant viruses low (Lee, Chowell, & Castillo-Ch�avez, 2010). A recent study (Chao, Bloom, Kochin, Antia, & Longini, 2012)
presents a stochastic model of influenza. A stochastic model is a tool for assessing the impact of noise on a dynamical
systems' trajectories, and generates probability distributions of possible outcomes by allowing random variation in one or
more inputs over time. The importance of recognizing stochasticity relates to the fact that some characteristics of the spread
of infectious diseases can depend on random events. In a small population especially, stochasticity is expected to play a
significant role in epidemic dynamics, especially when the number of infected hosts is low and epidemic fade-out is likely to
happen (Isham, 2004).

Most previous models on the emergence of antiviral drug resistance focus on dynamics in a single population in isolation
from other populations, however, there are conditions under which decisions about antiviral drug use in one population can
affect other populations, which calls for the use of tools like game theory. Game theory is the study of decision-making where
players make choices that affect the outcomes (payoffs) for other playersethe formalization of strategic interactions in a
group (Osborne, 2004). The Prisoner's Dilemma, for instance, is a two player game in which each player can choose between
two strategies, either cooperate or defect. Each player earns a high payoff r when both cooperate, but if only one of them
cooperates, the one who defects will gain a very high payoff twhile the cooperator will get a very low payoff s. If both defect,
both receive moderate payoff u (where t > r > u > s). It can be shown that both players would be better off if they cooperated
(since r > u) but what actually happens is that both players, if thinking strategically, will defect (since t > r). As a result, a
situationwhere both players defect is the Nash equilibriumethe expected outcome of the game. This game captures the clash
between individually optimal versus socially optimal actions. In the case of antiviral drug use during a pandemic, there may
be strategic aspects of antiviral drug use decisions of multiple populations connected through travel. For instance, consider
two populations connected through travel, where a decision-maker in each population must decide how antiviral drugs will
be distributed in their population. Under certain epidemiological circumstances, it maymake sense for the two populations to
cooperate (in the sense of the Prisoner's Dilemma) with one another by both treating their infected individuals at a low level
and thereby avoiding emergence of drug resistance. However, one population may defect by adopting a higher treatment
level, thereby increasing the chance that a drug resistant strain is created and spread to the other population. The incentive for
this strategy is the reduction in the final size of the epidemic. However, defection is available to both populations, and thus
both have the incentive to defect by treating at a high level. If a drug resistant influenza strain is as transmissible as the non-

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


K. Jnawali et al. / Infectious Disease Modelling 1 (2016) 40e5142
resistant strain (i.e., no fitness penalty), then it is possible for a socially suboptimal Nash equilibrium to develop where both
players use antiviral influenza drugs at a high rate, when the socially optimal behaviour is actually for both players to treat at a
low rate. Because the evolution of antiviral drug resistance without a fitness penalty has been observed (Bloom, Ian Gong, &
Baltimore, 2010; Butler et al., 2014), this is a possibility that should be explored in mathematical models.

Most previous game theoretical analyses in epidemiology have looked at vaccinating decisions or social distancing de-
cisions (Bauch & Earn, 2004; Geoffard & Philipson, 1997; Reluga, 2010), although strategic, multi-population aspects of
antiviral drug use during a pandemic has explored this interaction in a limited setting in Jnawali, Morsky, & Bauch, (2016).
This previous research assumes a 2-player, 2-strategy game where each player can only adopt one of two strategies: low
treatment rate or high treatment rate. The payoffs of the model were fixed parameters representing final epidemic sizes for
the four strategy combinations. This research showed how to formalize strategic interactions in antiviral drug use, and
explored some of the possible consequences. For instance, conditions for two Nash equilibria were determined (i.e., both
Defect-Defect and Cooperate-Cooperate are Nash equilibria), and it was also found that travel connections had a great impact
on possible strategic outcomes such as defection or cooperation. However, the previous analysis was limited because of three
simplifying assumptions: it did not use a disease transmission model to determine the final epidemic sizes and therefore the
payoffs; players were limited to choosing between two discrete levels of antiviral drug use; and the approach did not capture
stochasticity in disease transmission. As a result of the first and third limitations in particular, the existence of two Nash
equilibria as might occur in a coordination game could not be deduced with as much confidence as would be permitted by a
mechanistic stochastic model of disease transmission and emergence of antiviral drug resistance.

Here, we relax these three simplifying assumptions of the previous research by developing a mechanistic, stochastic
disease transmission model to study this strategic interaction, still in the context of a 2-player game theoretical model. The
playersedecision-makers in the two populations who limit antiviral drug supply and therefore determine usage levelsemay
pick from a set of strategies; the strategies chosen by each player determine the payoffs. The set of strategies that each
population may choose from are the treatment rate of infectious persons. For each treatment rate there is a payoff as a
function of the final size of the epidemic in that population. A population can treat their citizens once they get infected.
However, a population cannot treat infectious people from the other population, and thus is susceptible to imported in-
fections. Further, a very high treatment level will reduce the final size of the regular strain, but will increase the chances that a
mutant strain is created and possibly spread to the other population as well. This dynamic is thus similar to the Prisoner's
Dilemma. In the next section we describe the Model structure.
2. Material and methods

2.1. Model structure

We developed a discrete time Markov model of influenza transmission, antiviral drug use, and antiviral drug resistance
evolution in two well-mixed populations connected through travel. Individuals may be treated with antiviral drugs, or not
treated. They may also be either infected with the regular drug sensitive strain, or with the mutant drug resistance train. The
population consists of susceptible (S), infected, and recovered individuals (R). Infected individual are categorized into infected
with the regular strain and untreated (I), infected with regular strain and treated (It), infected with the mutant strain and
untreated (Im), and infected with mutant strain and treated (Itm). A diagram of these interactions is depicted in Fig. 1.

The daily, one-step transition probabilities in the Markov model are:
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Fig. 1. Diagrammatic Illustration of the Model: (a) Compartmental model of disease transmission. The population is partitioned into three classes: Susceptible (S),
Infectious (I), and Recovered (R). There are four compartments for infected individuals I; Im ; It ; Itm and two for recovered individuals R and Rm. (b) This diagram
shows how the people of different populations go from one compartment to another.
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where P(S,I) is the transition probability from the susceptible compartment (S) to the infected by the normal strain
compartment (I); P(S,Im) is the transition probability from the susceptible compartment (S) to the infected by the mutant
strain compartment (Im), and similar meanings apply for the other transitions, f is the relative transmissibility of treated
infected individuals, and p is the probability that a susceptible-infected contact results in a new infection. All other pa-
rameters concerning disease natural history in infected persons are summarized in Table 1, and we explain each of the
processes described by the above equations in the following subsections. Parameter values were set according to available
literature whenever possible, or calibrated to available empirical targets. We assumed five initially infected individuals
(I(0) ¼ 5) unless otherwise noted.
2.2. Transmission probability and case importation

We assume that susceptible individuals can be infected by either the regular strain or the mutant strainwith the same rate
of transmission, p, following the observation that drug resistant influenza strains can often spread without a fitness penalty
(Bloom et al., 2010; Butler et al., 2014). Influenza has a high person-to-person transmission rate. f is the relative trans-
missibility of treated infected individual. We used the final size of the epidemic as 21% (Ross et al., 2010) to calibrate the value
of p by varying p from 0 to 1 across multiple model realizations and choosing the value of p that minimized the difference����R∞
N � 0:21

����. We repeated this grid sweep procedure until p was determined through error minimization down to three

decimal places.



Table 1
Variables and Parameters, values and descriptions: We use the following parameter values as our base case for model
simulations.

Variables Description

I Infected untreated
It Infected treated
Im Infected untreated with mutant strain
Itm Infected treated with mutant strain

Parameters Description Value Reference

P Transmission between S and I 0.335/day Calibrated
P Transmission between S and Im 0.335/day Calibrated
F Relative transmissibility of treated infected individual .25�1 (Chao et al., 2012)
М Probability of treatment 0�0.5/day Assumption
Р Probability of mutation from I to Im 10�6/day (Chao et al., 2012)
r' Probability of mutation from Im to I 10�6/day (Chao et al., 2012)
U Probability of mutation from It to Im

t 0.04/day (Chao et al., 2012)
u' Probability of mutation from Itm to It 0/day (Chao et al., 2012)
r Probability of recovery from I to R 0.25/day (Regoes & Bonhoeffer, 2006)
rt Probability of recovery from It to R 0.5/day (Regoes & Bonhoeffer, 2006)
rm Probability of recovery from Im to Rm 0.25/day (Regoes & Bonhoeffer, 2006)
rtm Probability of recovery from Itm to Rm 0.375/day (Regoes & Bonhoeffer, 2006)
t Rate of infected people move from one population to another 0.01/day Assumption

K. Jnawali et al. / Infectious Disease Modelling 1 (2016) 40e5144
2.3. Antiviral drug treatment

Once an individual becomes infected they may be treated with some probability. The probability of treatment per unit
time, m, is the same for the regular and mutant strains. We assume m2[0,0.5] per day, ranging from no treatment at all to a
relatively rapid treatment rate of 50% of infected cases moving into drug treatment per day (m ¼ 0.05/day).

2.4. Natural disease history/recovery

In untreated individuals, resistance to the drug is gained with probability r ¼ 10�6 per day and lost at the same rate (Chao
et al., 2012). We assume that treatment carries a small probability of generating a drug-resistant mutant strain. In treated
individuals, resistance is gained with probability u ¼ 0.04 per day and lost at u' (we will take u' ¼ 0 for our analysis) (Chao
et al., 2012).We note the probability that antiviral drug treatment causes emergence of a drug-resistant influenza strain varies
widely across subtypes, and in some cases it can even emerge de novo. Hence, our model is restricted to an influenza strain
where de novo emergence of drug resistance is rare, and treatment carries a very low but non-negligible probability of causing
evolution of drug resistance. There are two compartments R and Rm for recovered individuals after getting infected by the
regular strain and the mutant strain respectively. The probability of recovery from infected untreated to recovered is r, which
is the same as the probability of recovery from infected untreated with mutant strain to recovered, rm. Moreover, the
probability of recovery from infected treated to recovered is rt, and the probability of recovery from infected treated with
mutant strain to recovered is rtm. We assume the inequality rm ¼ r< rtm < rt holds true (Regoes & Bonhoeffer, 2006). Once an
individual recovers, s/he will no longer be susceptible.

2.5. Demographic processes

We ignored the birth and death rate throughout the whole epidemic, since the timescale of birth and death is very slow
compared to the timescale of an epidemic. We let both populations have an equal number of 100,000 individuals. Air travel
has greatly accelerated the spread of influenza and other diseases transmitted by person-to-person contact. As an example,
populations with a higher volume of airline travel to and fromMexico experienced earlier outbreaks of pandemic H1N12009
(Kenah, Chao, Matrajt, Elizabeth Halloran, & Longini, 2011). Therefore we assume that infectious individuals can transmit to
susceptible individuals living in the same locale, or to susceptible individuals in another population by traveling at a per capita
rate t. Infected persons can also travel, since many individuals infected with influenza can be either pre-symptomatic or
asymptomatic, We assumed that t is the same for both populations (i.e. traveling rate from population 1 to population 2 and
vice-versa).

2.6. A two population game

The strategic interaction between the two populations was formulated as a classical two-player gamewhere each player is
characterized by a strategy set and payoff functions describing the payoff for a given strategy, contingent onwhat strategy the
other player chose. Using these assumptions and the transmissionmodel, the Nash Equilibriumwas then determined through
numerical simulation of the Markov model.
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2.6.1. Game description
The players of the game are two populations, population 1 and population 2, who choose a treatment rate (per capita

probability m of treatment per unit time) for their members (or rather, we posit a central authority that recommends a policy
of antiviral drug use and possibly also limits the supply of antiviral drugs accordingly). The populations may choose a
treatment rate, 0 � m � 0:5/day. We constrain m � 0:5 under the assumption that the process of visiting a physician, obtaining
a diagnosis of influenza, and initiating treatment with antiviral drugs takes time, and therefore a treatment rate of more than
50% of currently infected persons per day would be unrealistic. The “currency” of the game is the final size of the epidemic of
regular or mutant strains, measured by the number of individuals in the Recovered compartment at the end of the epidemic.
The payoff, Pi, of population i that adopts treatment rate, mi, is

Pi
�
mi;mj

�
¼ �aFri

�
mi;mj

�
� ð1� aÞFmi

�
mi;mj

�
(13)

where Fri and Fmi are the final epidemic sizeethe number of individuals recovered from infection during the outbreakefor the
regular and mutant strains respectively, when population i treats at the rate mi and j at the rate mj a is the weighting factor
which is used to control and balance the priorities of preventing infection by both strains. We constrain a < 0.5 under the
assumption that the mutant strain is less desirable than the regular strain, either on account of being drug-resistant or
perhaps also on account of being more virulent. We note that the payoff function is negative, because maximizing payoff for a
currency such as this is the same as minimizing harmful health impacts. Alternatively, one could formulate the currency in
terms of some health-quality units such as quality-adjusted life-years (QALY), and subtract the QALY impacts of infection from
a baseline QALY representing average remaining quality-adjusted life-years of a typical individual (Wells, Klein, & Bauch,
2013). However, this would amount to the same expression as Eq. (13).

2.6.2. Nash equilibrium
If each player has chosen a strategy and no player can improve his or her payoff by changing strategies while the other

players keep theirs unchanged, then the current set of strategy choices constitute a Nash equilibrium, which game theorists
assume to be the strategymost likely to be adopted by all players. Herewe seek to identify the Nash equilibrium antiviral drug
treatment rate. Since our game is a two-player symmetric game (assuming both players have the same initial conditions of
infected individuals) with continuous strategy set 0 � m � 0:5, a strategy m* is defined as a strict Nash equilibrium if and only
if

P1ðm�;m�Þ> P1ðm;m�Þ (14)

for any alternative strategy m s m*, such that a higher payoff cannot be achieved by switching strategies to m s m*. The same
equation applies to population 2.

2.6.3. Algorithm for determining Nash equilibrium
To find the Nash equilibrium for the game, we use a Cournot model of best response functions. A player's best response is

the strategy that produces the greatest output for him/her given that what other players are doing. A curve which joins all
these points is the best response curve. A pair of solution sets to such curves is a Nash equilibrium which is the point of
intersection of the curves for each player (Fudenberg& Tirole,1991). For each value of m2 from 0 to 0.5, we identify m�1ðm2Þ that
maximizes P1(m1,m2). The curve composed of these m�1ðm2Þ’s is the best response curve of population 1 against population 2's
decision of m2. Similarly, for all values of m1 from 0 to 0.5, we find m�2ðm1Þ that maximizes P2(m2,m1). The curve of m�2ðm1Þ’s is the
best response curve of population 2 against population 1's decision of m1. The Nash equilibrium is the intersection of these two
best response curves.

We ran 10,000 simulations and averaged the payoff across all 10,000 simulations at each value of m1 and m2 tested, in order
to find the best response for population 2 for each treatment rate for population 1. In addition, we found 100 such points for
100 different treatment rates for population 1 to produce the best response curve for population 2. Similarly, we repeat the
process to find the best response for population 1 for each treatment rate for population 2. Moreover, we ran 5000 simu-
lations for the output of other results (plots). Initially, we introduced 5 infected people in population 1 and observed closely
how disease spread into population 2 in 400 days. Some parameters such as m,u,t, and f are varied to uncover the impact of
these parameters on disease transmission and Nash equilibria.
3. Results

3.1. Epidemic dynamics

On average, for the parameter values in Table 1, the epidemic curves are fairly similar in the two populations although the
epidemics start and end somewhat earlier in population 1 (Fig. 2(a)) than population 2 (Fig. 2(b)), on account of the infection
being introduced first in population 1. The final size in population 1 for the regular strain is higher than in population 2,
whereas the final size for the mutant strain in population 2 is higher than population 1. The epidemic peak for the regular



Fig. 2. The number of people infected in population 1(a) and population 2(b) in 400 days if m1 ¼ m2 ¼ 0.035 and f ¼ 0:85. The solid black line represents the total
number of infected with the regular strain while dashed grey line is for the mutant strain. Also, 5 people is infected in population 1 with total of 100,000
population.
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strain is much higher than for the mutant strain in the population 1, where the epidemic began. These dynamics occur
because both regular and mutant strains compete for the same pool of susceptible hosts, and recovery from one type of strain
confers immunity to the other type of strain, the regular strain spreads quite rapidly before the mutant strain arises in
population 1, and individuals in population 2 experience case importations of both types of strains from population 1.

Additional time series show how the epidemic unfolds for different treatment rates, m, and mutation rates, u in population
1 (Figs. 3 and 4).When treatment is zero, m¼ 0, we observed an epidemic with nomutants, as expected. For m¼0.1, we observe
a greatly reduced epidemic of the regular strain, compared to the no treatment case, but we also observe a sizeable epidemic
of the mutant strain. Larger treatment rates, such as m ¼ 0.2 and m ¼ 0.3, result in further reductions in the percentage of
regular and mutant strain infections.

We also explore the average final size for regular and mutant strains as a function of the treatment rate, in population 1
(Fig. 5). The final size curve is produced for the total number of infected in 350 days in population 1. The curve shows that if
the treatment rate increases then the total number of infected with the regular strain decreases gradually and goes to zero
before the treatment rate reaches 0.25. On the other hand, the final size of the mutant strain increases, peaks at m ¼ 0.12, and
then declines when treatment levels are increased further. This occurs because infections with the mutant strain can not
move to the compartment of individuals treatedwith the regular strain, since u'¼ 0. Supplementary Fig. S1 shows the average
total population of infected with both strains in population 1 with the standard deviation above and below. It shows that the
deviation decreases if the treatment level increases.
3.2. Baseline scenario

Fig. 6 depicts the best response curves for our baseline scenario (Table 1 parameter values). A player's strategy that
produces the most favorable payoff if the other player's strategy is known is called a best response. The best response curve is
composed of these values for the full range of possible opponent strategies. A Nash equilibrium (NE) occurs at the in-
tersections of the best response curves of the players, since these represent points where each player cannot improve their
payoff by changing strategies unilaterally. One curve is the best response of population 2 vs. population 1 and the other is the
best response of population 1 vs population 2.

Herewe have two Nash equilibria at (m1,m2)¼ (0.0255,0.0345) (both treat at a low rate) and (m1,m2)¼ (0.5,0.5) (both treat at
a high rate). A strategy where both populations treat at a very high rate is a Nash equilibrium, since very high treatment rates
can significantly reduce the final sizes of both regular and mutant strains (Figs. 3e5). However, a strategy where population 1
treats at a very high rate while population 2 treats at a low rate (or vice versa) is not a NE, since population 2 will receive case
imports of the mutant strain from population 1 but will not be using antiviral drugs to reduce infections. A strategy where
both populations treat at a low rate is a NE because when a < 0.5, it is worthwhile to restrict treatment only to the severest
infections and thereby avoid or limit the emergence of drug resistance, and if the other population cooperates by doing the
same, then emergence of antiviral drug resistance will be avoided.



Fig. 3. Time Series Plots: This plot is produced for different treatment rate, m and u. Also, the solid black line represents for the regular strain and the dashed grey
line is for the mutant.
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3.3. Impact of travel rate (t), mutation rate (u), and relative transmissibility (f)

We explored how the low-treatment and high-treatment NE depend on model parameter values in a series of sensitivity
analyses for the travel rate (t), mutation rate (u) and relative transmissibility (f).

In Fig. 7(a), we plot the NE versus t. As t increases, the low-treatment and high-treatment NE begin to converge toward
one another, mostly on account of an increase in the treatment rate for the low treatment NE. The convergence occurs because
when treatment rates are higher, case importations constitute a higher proportion of a population's payoff function. However,
the number of case importations is not under a player's controleit is determined entirely by the strategy adopted by the other
population. Therefore, for the lower treatment NE, as the travel rate increases, the number of case imports from the other
player also increases for a given treatment rate, and a player shifts their own optimal treatment rate upwards since they are
experiencing case imports of drug-resistant mutants anyway. As the travel rate increases to very high levels, the two pop-
ulations increasingly resemble a single, homogeneouslymixing population. In the limit of a single (isolated) populationwith a
single decision-maker, there would only be a single equilibrium treatment rate that corresponds to an optimization of Eq.
(13). The differences between the treatment rates of each population at the high treatment NE as well as the low treatment NE
is due to the asymmetry in the initial conditions of the populationsethe infection is initiated only in population 1.

Fig. 7(b) displays the NE vs u, which shows howmutation rate affects the NE. For higheru, the risk of generatingmutants is
greater, causing a decrease in payoff if mutants are generated. In contrast to the response to increasing t, the response to
increasing u is that both high and low NE move toward lower treatment rates, while the relative difference in treatment
between low and high treatment NE is roughly conserved. This occurs because when mutation rates are high, players are less
willing to risk generating mutations (all else being equal) and so the NE treatment rate declines. Interestingly, the spread
between low and high NE is relatively constant as u increases, so the presence of the social dilemma is not sensitive to the
value of the mutation rate, at least for the parameter values we explored.

Finally, Fig. 7(c) depicts the NE for various values of the relative transmissibility of treated individuals, f. We observe that
the treatment level at both low and high treatment NE is higher for higher f. This occurs because if treatment is less effective
in preventing transmission, there will be a higher final size of both mutant and regular strains, and hence players will wish to
increase their treatment rate in an attempt to reduce the final size and prevent more cases. However, this result is also
interesting and unanticipated, since higher treatment rates will also generate a higher probability of mutation to antiviral



Fig. 4. Time Series Plots: This plot is produced for different treatment rate, m and u. Also, the solid black line represents for the regular strain and the dashed grey
line is for the mutant.

Fig. 5. Final Size Plot: The total number of people got infected in population 1 in 350 days for different treatment rate if f ¼ 0:85. The solid line represents for
the regular strain and the dashed line is for the mutant. See supplementary figure S1 for errorbars.
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drug resistance. The optimal outcome depends on the tension between the objectives of decreasing the final size through
more antiviral drug usage, versus preventing the evolution of antiviral drug resistance through less antiviral drug usage. As for
u, the spread between treatment rates at low and high NE is not significantly affected by changes in f.

In summary, the existence of low- and high-treatment Nash equilibria is sensitive to the travel rate, but not the mutation
rate or the relative transmissibility of treated individuals.
4. Discussion

Here we developed and investigated the predictions of a game theoretical model where two populations choose from a
continuum of antiviral drug treatment rates, m1 and m2, and where each population must weigh the undesirable possibility of
generating drug-resistant mutants through treatment and/or receiving case imports of the drug-resistant mutant from the
other population, despite a conservative approach. The model was a stochastic, mechanistic simulation model that incor-
porated empirical estimates for parameter values and each population's choice was determined according to game theory.



Fig. 6. Best Response Curve produced for various treatment rate for population 1 and population 2.

Fig. 7. High and low Nash equilibrium curve for population 1 and population 2 produced for different t (a), u (b), and f (c). The solid black like represents for m1
and grey dash line is for m2.
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We identified two Nash Equilibria, one corresponding to both populations adopting a high treatment rate and one cor-
responding to both populations adopting a low treatment rate. Notably a mixture where one population adopts a high
treatment rate and the other adopts a low treatment rate cannot occur, according to the predictions of a Nash equilibria. They
tend to both adopt high rates, or both low rates, because of the influence of the other player. Therefore this analysis shows that
strategic interactions can strongly influence what treatment rate strategy a population may decide to adopt, in populations
open to travel. The populations may choose to maintain a low treatment rate that does not increase the incidence of mutant
strain infections or to create more resistant cases by choosing a higher treatment level.

Interestingly, because the final size for both mutant strain and regular strain are so small under the high treatment NE, the
high treatment NE cannot be interpreted as a socially suboptimal Nash equilibrium, as was suggested in our previous game
theoretical analysis that did not use a transmission model (Jnawali et al., 2016). However, this result depends on the
assumption that the antiviral drug reduces transmission of both regular and mutant strains to an equal extent. Under other
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conditions, it is known that abundant use of antiviral drugs can result inwidespread transmission of the drug resistant strain,
and a nontrivial final epidemic size of the resistant strain (Lipsitch, Cohen, Murray,& Levin, 2007). Under model assumptions
where transmission of the resistant strain is less affected by antiviral drugs than transmission of the regular strain, the high
treatment NE may therefore be socially suboptimal (i.e., non-Pareto optimal). This is a topic for future research. We also note
that this work establishes the existence of two Nash equilibria more strongly than our previous research (Jnawali et al., 2016),
because it is based on a mechanistic model for infection transmission and drug resistance evolution, rather than imposing
fixed parameter values representing the final size and the risk of generatemutants through antiviral drug usage, for which we
must then guess as to how they respond to changing treatment levels.

There are several limitations of our model, which future studies should aim to relax. For instance, in this model we only
considered the first wave of an epidemic. Thus, we ignored the possibility of other waves (although our model is capable of
exhibiting subsequent waves). Moreover, we only considered two populations, although in real-world pandemics, a large
number of interconnected populations of differing sizes are making decisions about antiviral drug treatment. Future work
could develop N-populationmodels. Finally, we neglected social processes and the internal decision-making structure of each
population, whereas future work could divide each population into decision-makers and influenza patients.

We used a stochastic model since all model realizationseincluding ones where the infectionwent extinct due to stochastic
effects before causing a large outbreakewere used to compute payoff functions. Stochastic fade-out is an important feature of
real outbreaks especially in their early stages, and in our model the emergence of an initially rare drug resistant mutant is a
stochastic process that also hinges upon the adopted level of antiviral drug usage. Deterministic models are less suited to this
situation since they cannot be used to predict extinction probabilities. However, it would also be worthwhile to explore
whether using an ordinary differential equation (ODE) model instead would be fruitful in circumstances where stochastic
effects are not important, since ODEs are easier to analyze and thus can generate more insight.

5. Conclusions

We conclude that, because influenza can evolve resistancewithout a fitness penalty, strategic multi-population interaction
should be further studied. Furthermore, because of the potential for socially suboptimal outcomes in situations where fitness
penalties do not arise and for parameter values permitting higher rates of mutant transmission at high rates of antiviral drug
treatment, this work suggests the need for better inter-jurisdictional coordination in the event of future influenza pandemics.

Competing interests

CTB has received research grants from GlaxoSmithKline Vaccines for the study of influenza vaccination.

Authors' contributions

KJ designed the model, analyzed the model, and wrote the manuscript. BM contributed to model analysis and writing the
manuscript. KP contributed to model simulations and analysis. CTB conceived the study and contributed to model design,
analysis, and writing the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This work was supported by a research grant to CTB from the Canadian Institutes of Health Research and the Natural
Sciences and Engineering Research Council of Canada. The funders had no role in the design, analysis, writing, or decision to
submit the manuscript for publication.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.idm.2016.07.003.

References

Aoki, F. Y., Boivin, G., & Roberts, N. (2006). Influenza virus susceptibility and resistance to oseltamivir. Antiviral Therapy, 12(4 Pt B), 603e616.
Bauch, C. T., & Earn, D. J. D. (2004). Vaccination and the theory of games. Proceedings of the National Academy of Sciences of the United States of America,

101(36), 13391e13394.
Bloom, J. D., Ian Gong, L., & Baltimore, D. (2010). Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science,

328(5983), 1272e1275.
Butler, J., Hooper, K. A., Petrie, S., Lee, R., Maurer-Stroh, S., Reh, L., et al. (2014). Estimating the fitness advantage conferred by permissive neuraminidase

mutations in recent oseltamivir-resistant A (H1N1) pdm09 influenza viruses. PLoS Pathogens, 10(4), e1004065.
Chao, D. L., Bloom, J. D., Kochin, B. F., Antia, R., & Longini, I. M. (2012). The global spread of drug-resistant influenza. Journal of The Royal Society Interface,

9(69), 648e656.
Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., et al. (2005). Strategies for containing an emerging influenza pandemic in

southeast asia. Nature, 437(7056), 209e214.
Fudenberg, D., & Tirole, J. (1991). Game theory (Vol. 393, p. 1991). Massachusetts: Cambridge.
Geoffard, P.-Y., & Philipson, T. (1997). Disease eradication: Private versus public vaccination. The American Economic Review, 87(1), 222e230.

http://dx.doi.org/10.1016/j.idm.2016.07.003
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref2
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref2
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref4
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref4
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref4
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref5
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref5
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref5
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref7
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref7
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref9
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref9
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref9
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref10
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref10
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref10
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref11
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref14
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref14


K. Jnawali et al. / Infectious Disease Modelling 1 (2016) 40e51 51
Handel, A., Longini, I. M., Jr., & Antia, R. (2009). Antiviral resistance and the control of pandemic influenza: The roles of stochasticity, evolution and model
details. Journal of Theoretical Biology, 256(1), 117e125.

Isham, V. (2004). Stochastic models for epidemics. http://www.ucl.ac.uk/statistics/research/pdfs/rr263.pdf.
Jnawali, K., Morsky, B., & Bauch, C. (2016). Strategic interactions in antiviral drug use during an influenza pandemic. PLoS Currents: Outbreak (in press).
Kenah, E., Chao, D. L., Matrajt, L., Elizabeth Halloran, M., & Longini, I. M., Jr. (2011). The global transmission and control of influenza. PLoS One, 6(5), e19515.
Kiso, M., Mitamura, K., Sakai-Tagawa, Y., Shiraishi, K., Kawakami, C., Kimura, K., et al. (2004). Resistant influenza a viruses in children treated with osel-

tamivir: Descriptive study. The Lancet, 364(9436), 759e765.
Lee, S., Chowell, G., & Castillo-Ch�avez, C. (2010). Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation. Journal of

Theoretical Biology, 265(2), 136e150.
Lipsitch, M., Cohen, T., Murray, M., & Levin, B. R. (2007). Antiviral resistance and the control of pandemic influenza. PLoS Medicine, 4(1), e15.
Meijer, A., Lackenby, A., Hungnes, O., Lina, B., Van Der Werf, S., Schweiger, B., et al. (2009). Oseltamivir-resistant influenza virus A (H1N1), europe, 2007-08

season. Emerging Infectious Diseases, 15(4).
Moghadas, S. M., Bowman, C. S., R€ost, G., & Wu, J. (2008). Population-wide emergence of antiviral resistance during pandemic influenza. PLoS One, 3(3),

e1839.
Novel influenza A (H1N1) Investigation Team, et al. (2009). Description of the early stage of pandemic (H1N1) 2009 in Germany, 27 april-16 june 2009. Euro

surveillance: bulletin Europ�een sur les maladies transmissibles¼ European Communicable Disease Bulletin, 14(31).
Ortiz, J. R., Kamimoto, L., Aubert, R. E., Yao, J., Shay, D. K., Bresee, J. S., et al. (2008). Oseltamivir prescribing in pharmacy-benefits database, United States,

2004e2005. Emerging Infectious Diseases, 14(8), 1280.
Osborne, M. J. (2004). An introduction to game theory (Vol. 3). Oxford University Press New York.
Regoes, R. R., & Bonhoeffer, S. (2006). Emergence of drug-resistant influenza virus: Population dynamical considerations. Science, 312(5772), 389e391.
Reluga, T. C. (2010). Game theory of social distancing in response to an epidemic. PLoS Computational Biology, 6(5), e1000793.
Ross, T., Zimmer, S., Burke, D., Crevar, C., Carter, D., Stark, J., et al. (2010). Seroprevalence following the second wave of pandemic 2009 h1n1 influenza. PLoS

Currents, 2.
Stilianakis, N. I., Perelson, A. S., & Hayden, F. G. (1998). Emergence of drug resistance during an influenza epidemic: Insights from a mathematical model.

Journal of Infectious Diseases, 177(4), 863e873.
Wells, C. R., Klein, E. Y., & Bauch, C. T. (2013). Policy resistance undermines superspreader vaccination strategies for influenza. PLoS Computational Biology,

9(3), e1002945.
Winquist, A. G., Fukuda, K., Bridges, C. B., & Cox, N. J. (1999). Neuraminidase inhibitors for treatment of influenza a and b infections. MMWR Morbidity

Mortality Weekly Report, 48(RR-14).
World Health Organization (WHO), et al. (16 Jul 2009). Changes in reporting requirements for pandemic (H1N1) 2009 virus infection. pandemic (H1N1) 2009

briefing note 3 (revised). Geneva: WHO.
World Health Organization, et al. (2009). New influenza A (H1N1) virus: Global epidemiological situation, june 2009. The Weekly Epidemiological Record,

84(25), 249e257.

http://refhub.elsevier.com/S2468-0427(16)30011-2/sref16
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref16
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref16
http://www.ucl.ac.uk/statistics/research/pdfs/rr263.pdf
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref18
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref19
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref20
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref20
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref20
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref21
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref21
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref21
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref21
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref22
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref23
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref23
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref24
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref24
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref24
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref29
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref29
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref29
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref29
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref30
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref30
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref30
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref31
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref32
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref32
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref33
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref34
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref34
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref35
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref35
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref35
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref36
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref36
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref38
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref38
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref39
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref39
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref40
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref40
http://refhub.elsevier.com/S2468-0427(16)30011-2/sref40

	Emergence and spread of drug resistant influenza: A two-population game theoretical model
	1. Introduction
	2. Material and methods
	2.1. Model structure
	2.2. Transmission probability and case importation
	2.3. Antiviral drug treatment
	2.4. Natural disease history/recovery
	2.5. Demographic processes
	2.6. A two population game
	2.6.1. Game description
	2.6.2. Nash equilibrium
	2.6.3. Algorithm for determining Nash equilibrium


	3. Results
	3.1. Epidemic dynamics
	3.2. Baseline scenario
	3.3. Impact of travel rate (τ), mutation rate (ω), and relative transmissibility (φ)

	4. Discussion
	5. Conclusions
	Competing interests
	Authors' contributions
	Acknowledgments
	Appendix A. Supplementary data
	References


