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Small factors are the biggest contributors to the biggest changes in an ecosystem which may lead 
to its demise. Simple things such as tweaking the humidity or tampering with the temperature 
can be the downfall of the habitants and the ecosystem itself. These changes can be observed 
right now with the consistent temperature increase on Earth along with the slew of issues that 
come with global warming. A small change in a few degrees in temperature can perish an entire 
food supply and the habitat of many already endangered beings forcing them to either adapt 
or die. Within such an ecosystem the main reason it withstands the test of time boils down 
to one simple thing; reproduction. This creates the natural question of asking oneself: How 
does an ecosystem replenish itself and is able to resist collapsing? To even begin considering 
this thought, one must realise that the size of the population is the key to gaining a deeper 
understanding as two constituents that are important from evolutionary theory are survival and 
reproduction. The case of asexual reproducers, it is not difficult to see any alterations that can 
be introduced to increase reproductivity. Meanwhile, for sexual reproducers, the evolution to 
increase reproductivity can be observed by looking into the generational data of the species. 
A certain group of time-based dynamic systems that are connected to a sexual system are the point 
of contention. The suggested model is a dynamic representation of a hermaphrodite population 
which is described through quadratic stochastic operators. The key findings offer fresh insights 
into the future of hermaphrodite populations, that is perhaps a probable solution to prevent the 
decline of endangered or at-risk species. This demonstrates a fresh perspective on reproduction, 
which is explored through a purely mathematical approach.

1. Introduction

An ecosystem is a delicate balance between living and non-living things that work together to maintain life. Factors like temper-
ature and reproduction are interconnected and can cause the entire system to collapse if disrupted. Even small changes can harm the 
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food supply and endanger many species unless they adapt [1]. Therefore an ecosystem’s longevity boils down to reproduction [2]. 
This raises the question of how an ecosystem replenishes itself and avoids collapse [3].

Evolutionary theory states that survival and reproduction are the main factors that control the size of any population. Sexual 
reproducers have evolved over many generations to increase reproduction whilst asexually reproducing species can easily increase 
their reproductive rate which creates ease in introducing alterations [4,5].

Plenty of research has been conducted to optimize the reproductive rate of sexual reproducers [6–8]. Game theory as well as 
the energy costs and benefits of mating displays are two examples of such research [9]. Another important aspect is sex allocation, 
where resources are allocated differently to male and female reproduction. This theory shows that sexual reproducers decide how to 
allocate resources to each sex [10]. The allocation is different for dioecious species, where the sex of the offspring determines the 
allocation, and sequential hermaphrodites, where the initial sex and time of sex switch determines the allocation [11].

Sex allocation is another crucial aspect to consider. To comprehend the fundamental concept, one must realize that resources 
are distributed differently between male and female reproduction [10]. Therefore, this theory shows that sexual reproducers decide 
how to allocate resources to male versus female reproduction. The allocation is changed in dioecious population where the sex is 
fixed. Consequently the decision to allocate resources lies with the sex of the offspring. In the case of sequential hermaphrodites the 
allocation depends on two factors: the initial sex and the time of the sex switch [11]. Evidently, the underlying question that fuels 
these research topics is the optimisation of reproductivity.

There are many nonlinear (stochastic) models which describe some real life situations (see e.g. [12–16]). Quadratic models are 
one of the simplest ones in the class of these kind of models. Bernstein [17] introduced quadratic stochastic operators that frequently 
appear in many genetic models, especially those related to heredity. Thus, one can conclude that the evolution of populations can 
be determined by quadratic stochastic operators (QSOs) (see [18–25]). A study has been undertaken by Lyubich [2] who has shown 
that a few generations later, the dynamics of a population changes due to selection and reproduction.

If a community of organisms is closed with respect to reproduction, then it is called a free population. In this community, each 
individual reside to one of the types from the set 𝐸 ∶= {1, … , 𝑚}, and each organism is sexually reproducing and considered the 
direct offspring of its parents (father and mother). Therefore, this research considers these types, following [2]. Let the types of the 
parents be given by 𝑖 and 𝑗. Such a parent pair determines the probability 𝑞𝑖𝑗,𝑘 of type 𝑘 for the first generation of direct descendants. 
Furthermore, it is referred as the heredity coefficient. It is evident that 𝑞𝑖𝑗,𝑘 ≥ 0 and

𝑞𝑖𝑗,𝑘 = 𝑞𝑗𝑖,𝑘,

𝑚∑
𝑘=1

𝑞𝑖𝑗,𝑘 = 1, 𝑖, 𝑗, 𝑘 ∈𝐸. (1)

Initially the population’s distribution is described by the vector 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑚). Here, each 𝑥𝑘 is represents the fraction of the type 
𝑘 in the total population. It is notices that the vector 𝐱 belongs to

𝑆𝑚−1 =
{
𝐱 = (𝑥𝑘) ∈ℝ𝑚 ∶

∑
𝑖∈𝐸

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, 𝑖 ∈𝐸

}
,

which is the set of all probability distributions on 𝐸. In the case of random interbreeding (i.e. panmixia), the pairs 𝑖 and 𝑗 appear 
with the probability 𝑥𝑖𝑥𝑗 . Consequently, the type 𝑘 in the next generation is calculated as

(𝐱)𝑘 =
𝑚∑

𝑖,𝑗=1
𝑞𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 , 𝑘 ∈𝐸. (2)

So, one defines the mapping 𝐱 ↦ (𝐱) which is the evolutionary operator called quadratic stochastic operator (QSO). Selection and 
reproduction are two significant factors that contribute to the change of state in the following generations during the evolution of a 
population. A zygotic organism that is bisexual with a sexual differentiation of gametes is not excluded in the model that involves a 
quadratic stochastic operator, even in the case of hermaphroditism [2]. Organisms that can be both sexes and self-fertilize in some 
cases are referred to as simultaneous hermaphrodites [26].

A given 𝐱(0) ∈ 𝑆𝑚−1, one defines its trajectory {𝐱(𝑛)} under  by

𝐱(𝑛+1) =
(
𝐱(𝑛)

)
, 𝑛 ≥ 0.

One can see that 𝐱(𝑛) =𝑛(𝐱(0)). The main aim of the current article is to explore the asymptotic behaviour of trajectories associated 
with a class of random QSO. The fact that this problem remains unsolved even in low-dimensional contexts highlights the need for 
further study into the dynamics of quadratic stochastic operators.

According to Ulam’s conjecture [27], which is based on numerical calculations, the sequence of averages

1
𝑛

(
𝐱 +(𝐱) +⋯+𝑛−1(𝐱)

)
(3)

converges for every QSO  and any 𝐱 ∈ 𝑆𝑚−1. However, Zakharevich’s findings, as published in [28] demonstrates that the limit of 
(3) does not exist for the mapping of 𝑆2 described by

(𝑥1, 𝑥2, 𝑥3) =
(
𝑥21 + 2𝑥1𝑥2, 𝑥22 + 2𝑥2𝑥3, 𝑥23 + 2𝑥1𝑥3

)
, (𝑥1, 𝑥2, 𝑥3) ∈ 𝑆2. (4)
2

The findings, suggest that Ulam’s conjecture is generally false. Moreover, [29–31] present various extensions of the mapping (4).
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Recently, in [22], almost surely converge of random dynamics of QSOs to one of the vertices of the simplex has been established 
which contrasts to the deterministic set-up of the trajectories. The reader is referred to [32], for a recent development on the theory 
of quadratic stochastic operators. Therefore, the purpose is to explore a particular class of discrete-time dynamical systems produced 
by non-Volterra QSOs. The goal is to create deterministic and random dynamical models for a hermaphrodite population with the 
help of non-Volterra QSOs, utilising techniques from discrete-time dynamical systems. The primary outcome of this study is going to 
shed light into the future of populations of this type.

2. Gonochoristic system

In this section, we start discussing the concept of 𝐹 -QSO. As we mentioned earlier, the set 𝐸 is expanded by adding an “empty-
body” element “0”, so one denotes 𝐸0 =𝐸 ∪ {0}. Now, the sets of “females” and “males” are interpreted as 𝐹 = {1, 2, … , 𝑚1} (𝑚1 < 𝑚) 
and 𝑀 =𝐸 ⧵ 𝐹 = {𝑚1 + 1, … , 𝑚}, respectively. One defines the heredity coefficients by

𝑞𝑖𝑗,𝑘 =

{
𝛿𝑘0, if (𝑖, 𝑗) ∈

(
(𝐹 ∪ {0}) × (𝐹 ∪ {0})

)
∪
(
(𝑀 ∪ {0}) × (𝑀 ∪ {0})

)
;

≥ 0, if
(
𝑖 ∈ 𝐹

)
∧
(
𝑗 ∈𝑀

)
, for all 𝑘,

(5)

where 𝛿𝑖𝑗 is the Kronecker symbol. The coefficients in (5) have a clear biological interpretation: a “child” 𝑘 is produced when its 
parents belong to the different sets 𝐹 and 𝑀 . It’s important to note that, in some cases, the coefficient 𝑞𝑖𝑗,0 can be positive if one or 
both of the parents are ill and unable to produce a child. The first and second equalities in (5) indicate that if the parents have the 
same gender or one is an empty-body, then their offspring will always be an empty-body. The third equality of (5) means that if the 
parents have different genders and neither is an empty-body, then their offspring can be any one of a type 0, … , 𝑚. The QSO in this 
scenario is expressed as follows:

 ∶

⎧⎪⎪⎨⎪⎪⎩
𝑥′0 = 1 − 2

𝑚1∑
𝑖=1

𝑚∑
𝑗=𝑚1+1

(
1 − 𝑞𝑖𝑗,0

)
𝑥𝑖𝑥𝑗 ;

𝑥′
𝑘
= 2

𝑚1∑
𝑖=1

𝑚∑
𝑗=𝑚1+1

𝑞𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 , 𝑘 ∈𝐸.

(6)

As per [33], the QSO defined by (6) is referred to as the 𝐹 -quadratic stochastic operator.
This section discusses the sexual system of gonochorism, where the organism is either male or female and does not undergo any 

sex change, as per [34]. Conversely, in a hermaphroditic population, individuals can act as either male or female and maintain only 
one active gonadal tissue, as observed in species like Lythrypnus dalli [35]. More precisely, fish and mammals are usually gonochoric, 
as per [36,37], while nematodes are mostly hermaphroditic.

Theorem 2.1 ([33]). If the heredity coefficients {𝑞𝑖𝑗,𝑘} adhere to (5), then, for any 𝐱(0) ∈ 𝑆𝑚, the trajectory {𝐱(𝑛)}∞
𝑛=0 of the operator defined 

by (6) approaches to the single fixed point 𝐞0 ∶= (1, 0,0,… ,0
⏟⏞⏞⏟⏞⏞⏟

𝑚

) at an exponential rate.

3. Hermaphrodite system

This section is concerned with hermaphrodites, where the way of expressing the reproductive role can vary. For instance, males 
can change to females (protandry) or females can change to males (protogyny), as stated in [38–40]. The clownfish (genus Am-
phiprion) is an example of a colourful reef fish that lives in a symbiotic relationship with sea anemones, while wrasses (Family 
Labridae) are a type of reef fish where protogyny is prevalent.

Let us consider the setting 𝐸0 =𝐸 ∪ {0}, and

𝐹1 = {1,2,3,… ,𝑚1}, 𝑀1 = {𝑚1 + 1,… ,𝑚}.

In this case, 𝐹1-QSO can be expressed as shown in (6).
Assume that 𝜎 be a permutation of 𝐸. Then, we consider the permutations of 𝐹1 and 𝑀1 as follows:

𝐹2 = {𝜎(1), 𝜎(2), 𝜎(3),… , 𝜎(𝑚1)}, 𝑀2 = {𝜎(𝑚1 + 1),… , 𝜎(𝑚)}.

Then, the corresponding 𝐹2-QSO is governed by

𝜎 ∶
⎧⎪⎨ 𝑥′0 = 1 − 2

∑
𝑖∈𝐹2

∑
𝑗∈𝑀2

(
1 − 𝑞𝜎

𝑖𝑗,0

)
𝑥𝑖𝑥𝑗 ;

′ ∑ ∑ 𝜎
(7)
3

⎪⎩ 𝑥
𝜋
(𝑘) = 2

𝑖∈𝐹2 𝑗∈𝑀2

𝑞
𝑖𝑗,𝜋(𝑘)𝑥𝑖𝑥𝑗 , 𝑘 = 1,2,… ,𝑚,
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where

𝑞𝜎
𝑖𝑗,𝜎(𝑘) = 𝑞𝜎

𝑗𝑖,𝜎(𝑘) ≥ 0, 𝑘 ∈𝐸0;
𝑚∑

𝑘=0
𝑞𝜎
𝑖𝑗,𝜎(𝑘) = 1, for all 𝑖 ∈ 𝐹2, 𝑗 ∈𝑀2. (8)

The evolution operator for the examined case is defined by a fixed natural number 𝑡 as follows: if 0 < 𝑛 ≤ 𝑡, where 𝑛 is natural, 1
is applied, and if 𝑛 > 𝑡, 𝜎 is applied. Consequently, its trajectory of the evolution operator is represented by

𝑛(𝐱) ∶=
⎧⎪⎨⎪⎩
𝑛
1(𝐱), if 𝑛 ≤ 𝑡

𝑡
1◦

𝑛−𝑡
𝜎

(𝐱), if 𝑛 > 𝑡.
(9)

Theorem 3.1. When the heredity coefficients {𝑞𝑖𝑗,𝑘} and {𝑞𝜎
𝑖𝑗,𝜋(𝑘)} satisfy conditions (6) and (8), respectively, the operator given by (9) has 

a single fixed point 𝐞0. Additionally, its trajectory {𝐱(𝑛)}∞
𝑛=0 exponentially converges to 𝐞0, for every 𝐱(0) ∈ 𝑆𝑚.

Proof. This theorem’s proof relies on the next theorem’s proof (refer to the following section). □

4. Hermaphrodites system: multiple sex

Sequential hermaphroditism is when organisms experience multiple sex changes throughout their lifetime [39,40]. For instance, 
the California sheephead wrasse is a coral reef fish that can change from male to female if they are unsuccessful in reproduction and 
from female to male to maintain flexibility when they exhibit submissive behaviour. However, other wrasse species such as the moon 
wrasse, the yellowhead wrasse, and the bluehead wrasse can only change from female to male, while the humphead wrasse can only 
change from male to female. In other words, each organism in these species will undergo a gender change at some point in their life.

Suppose that 𝜋𝑠 is a permutation of 𝐸, and 𝜓𝑠 ∶ 𝐸 → 𝐸 is a mapping, for any natural 𝑠. Let 𝐸0 = 𝐸 ∪ {0} be as before. Now, we 
consider the following sets

𝐹𝑠 = {𝜋𝑠(1), 𝜋𝑠(2), 𝜋𝑠(3),… , 𝜋𝑠(𝜓𝑠(𝑚1))}, 𝑀𝑠 = {𝜋𝑠(𝜓𝑠(𝑚1 + 1)),… , 𝜋𝑠(𝑚)}.

Then the corresponding 𝐹𝑠-QSO with the matrix 𝐪𝜋𝑠 =
(
𝑞
𝜋𝑠
𝑖𝑗,𝑘

)
𝑖,𝑗,𝑘∈𝐸0

has the form

𝜋𝑠
∶
⎧⎪⎨⎪⎩
𝑥′0 = 1 − 2

∑
𝑖∈𝐹𝑠

∑
𝑗∈𝑀𝑠

(
1 − 𝑞

𝜋𝑠
𝑖𝑗,0

)
𝑥𝑖𝑥𝑗 ;

𝑥′
𝜋𝑠+1(𝑘)

= 2
∑
𝑖∈𝐹𝑠

∑
𝑗∈𝑀𝑠

𝑞
𝜋𝑠
𝑖𝑗,𝜋𝑠(𝑘)

𝑥𝑗𝑥𝑗 , 𝑘 = 1,2,… ,𝑚,
(10)

where the coefficients {𝑞𝜋𝑠
𝑖𝑗,𝑘

} satisfy the conditions

𝑞
𝜋𝑠
𝑖𝑗,𝜋𝑠(𝑘)

= 𝑞
𝜋𝑠
𝑗𝑖,𝜋𝑠(𝑘)

≥ 0, 𝑘 ∈𝐸0;
𝑚∑

𝑘=0
𝑞
𝜋𝑠
𝑖𝑗,𝜋𝑠(𝑘)

= 1, ∀𝑖 ∈ 𝐹𝑠, 𝑗 ∈𝑀𝑠, 𝑠 > 0. (11)

Denote 𝜋 = {𝜋𝑠
, 𝑠 = 1, … , 𝑚!}. The set 𝜋 can be compactly embedded into ℝ(𝑚+1)3 (since QSO 𝜋𝑠

is determined by a cubic 
matrix 𝐪𝜋𝑠 ). The Borel 𝜎-algebra on the set 𝜋 is denoted .

Let (Ω, 𝔉, ℙ) be a probability space. A measurable mapping 𝐺 ∶ Ω →𝜋 is said to be a random 𝐹 -quadratic stochastic operator if 
𝐺−1() ⊂𝔉, where

Assume that for each 𝜋𝑠
∈𝜋 is assigned a positive probability 𝑝𝑠 (1 ≤ 𝑠 ≤ 𝑚!), 𝑝1 +⋯ + 𝑝𝑚! = 1. Now, to start the process, one 

chooses an initial state 𝐱(0) ∈ 𝑆𝑚 and selects an operator from 𝜋 . The probability of choosing 𝜋𝑠
is 𝑝𝑠 (1 ≤ 𝑠 ≤ 𝑚!). The randomly 

chosen operator is denoted by 𝑇1, and the state at time 𝑛 = 1 becomes 𝐱(1) = 𝑇1
(
𝐱(0)

)
. At time 𝑛 = 2, a new operator 𝑇2, is chosen 

independently from 𝜋 according to the assigned probabilities. The state at time 𝑛 = 2 then becomes 𝐱(2) = 𝑇2
(
𝐱(1)

)
= 𝑇2𝑇1

(
𝐱(0)

)
.

This process allows us to create a random dynamical system, which can be expressed as

𝐱(𝑛+1) = 𝑇𝑛+1
(
𝐱(𝑛)

)
= 𝑇𝑛+1𝑇𝑛⋯𝑇1

(
𝐱(0)

)
, 𝑛 ≥ 1.

The sequence {𝑇𝑛 ∶ 𝑛 ≥ 1} is a collection of independent QSOs from 𝜋 with the common distribution 𝑃 = {𝑝1, … , 𝑝𝑚!}.

Theorem 4.1. Assuming 𝑃 = {𝑝1, … , 𝑝𝑚!} is a shared distribution on the set 𝜋 , we have

ℙ
(
lim
𝑛→∞

𝑇𝑛(𝐱) = 𝐞0
)
= 1,
4

which means that every trajectory converges almost surely.
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Proof. Given 𝐱 ∈ 𝑆𝑚, let us define

𝜑𝑛(𝐱) =
𝜋𝑛(𝜓𝑛(𝑚1))∑
𝑖=𝜋𝑛(1)

𝜋𝑛(𝑚)∑
𝑗=𝜋𝑛(𝜓𝑛(𝑚1+1))

𝑥𝑖𝑥𝑗 . (12)

By employing (10), (11) and (12), for each 𝑘 ∈𝐸, one finds

𝑥
(𝑛+1)
𝜋𝑛+1(𝑘)

= 2
𝜋𝑛(𝜓𝑛(𝑚1))∑
𝑖=𝜋𝑛(1)

𝜋𝑛(𝑚)∑
𝑗=𝜋𝑛(𝜓𝑛(𝑚1+1))

𝑞
𝜋𝑠
𝑖𝑗,𝜋𝑛(𝑘)

𝑥𝑖𝑥𝑗

≤ 2
𝜋𝑛(𝜓𝑛(𝑚1))∑
𝑖=𝜋𝑛(1)

𝜋𝑛(𝑚)∑
𝑗=𝜋𝑛(𝜓𝑛(𝑚1+1))

𝑥𝑖𝑥𝑗 = 2𝜑𝑛

(
𝐱(𝑛)

)
. (13)

Now, 𝜑𝑛+1
(
𝐱(𝑛+1)

)
can be estimated:

𝜑𝑛+1
(
𝐱(𝑛+1)

)
≤

1
4

⎛⎜⎜⎝
𝜋𝑛+1(𝜓𝑛+1(𝑚1))∑

𝑖=𝜋𝑛+1(1)
𝑥𝑖 +

𝜋𝑛+1(𝑚)∑
𝑗=𝜋𝑛+1(𝜓𝑛+1(𝑚1+1))

𝑥𝑗

⎞⎟⎟⎠
2

= 1
4

(
1 − 𝑥

(𝑛+1)
0

)2
. (14)

The expression for 𝐱(𝑛+1)0 together with (14) implies

𝜑𝑛+1(𝐱(𝑛+1)) ≤
(

𝜋𝑛(𝜓𝑛(𝑚1))∑
𝑖=𝜋𝑛(1)

𝜋𝑛(𝑚)∑
𝑗=𝜋𝑛(𝜓𝑛(𝑚1+1))

(
1 − 𝑞

𝜋𝑛
𝑖𝑗,0

)
𝑥𝑖𝑥𝑗

)2

≤

(
𝜋𝑛(𝜓𝑛(𝑚1))∑
𝑖=𝜋𝑛(1)

𝜋𝑛(𝑚)∑
𝑗=𝜋𝑛(𝜓𝑛(𝑚1+1))

𝑥𝑖𝑥𝑗

)2

=
(
𝜑𝑛(𝑥(𝑛))

)2
, 𝑛 ≥ 0. (15)

Note that 𝜑𝑛

(
𝐱(𝑛)

)
≤ 1∕4 for any 𝑛 = 0, 1, … . Hence, by (15) one gets

𝜑𝑛(𝑥(𝑛)) ≤
(1
4

)2𝑛
(16)

This together with (13), (16) yields

lim
𝑛→∞

𝑥
(𝑛)
𝜋𝑛(𝑘)

= 0, for every 𝑘 ∈𝐸

which means

lim
𝑛→∞

𝐱(𝑛) = 𝐞0,

for every 𝐱(0) ∈ 𝑆𝑚. The last equality yields that 𝐞0 is the only fixed point of the evolution operator. This completes the proof. □

5. Conclusions

This paper introduces a novel dynamical model for a hermaphrodite population, where all types of individuals change their 
gender within each generation. This behaviour is observed in populations of bidirectional hermaphrodites, such as coral-dwelling 
wrasses.

The key discovery is Theorem 4.1, which aids in comprehending the future of these organisms. The model described in Equation 
(6) predicts the distribution of the species over time using a dynamic approach, as shown by Theorem 2.1. However, it is important 
to note that the model only accounts for genetic factors and not environmental ones. Theorem 4.1 states that the “empty body” will 
most likely dominate the future of this population type, as seen in Equation (10).

The mathematical findings confirm that a bidirectional hermaphroditic population of Labridae, like the Green Wrasse, which is 
classified as a threatened animal on the Red List (IUCN 2021), faces extinction. Despite the fact that individuals change gender to 
preserve and boost the population size, the population ultimately dwindles towards extinction.

Lastly, this model does not take into account parameters such as birth, mortality, immigration, etc. If included, these parameters 
may pose a challenge in creating the model and may not be mathematically feasible. Nevertheless, more sophisticated models that 
5

incorporate other factors can serve as a foundation for future expansion of this paper.
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