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Lung adenocarcinoma (LUAD) is the most common type of lung cancer with high malignancy and easy metastasis in the early
stage. In this study, we aimed to figure out the role of tryptophan metabolic pathway in LUAD prognosis and treatment.
Different molecular subtypes were constructed based on tryptophan metabolism-related genes. Significant prognostic genes and
clinical prognostic characteristics, immune infiltration level, and pathway activity in different subtypes were determined by
algorithms, such as the least absolute shrinkage and selection operator (Lasso), CIBERSORT, Tumor Immune Dysfunction and
Exclusion (TIDE), and gene set enrichment analysis (GSEA). The effect of different gene mutation types on the prognosis of
patients with LUAD was explored. The clinical prognosis model was constructed and its reliability was verified. Of the 40
genes in the tryptophan metabolism pathway, 13 had significant prognostic significance. Based on these 13 genes, three
molecular subtypes (C1, C2, and C3) were established. Among them, C1 had the worst prognosis and the lowest enrichment
score of tryptophan metabolism. At the same time, C1 had the most genetic variation, the highest level of immune infiltration,
and significantly activated pathways related to tumor development. The high-risk and low-risk groups had significant
differences in prognosis, immune infiltration and pathway enrichment, which was consistent with the results of subtype
analysis. Mutation in tryptophan metabolism-related genes leads to abnormal tryptophan metabolism, immune deficiency, and
activation of cancer-promoting pathways. This results in high malignancy, poor prognosis, and failure of traditional clinical
treatments. Through the establishment of risk score (RS) clinical prognosis model, we determined that RS could reliably
predict the prognosis of patients with LUAD.

1. Introduction

Lung cancer is one of the most aggressive and rapidly fatal
tumor types, accounting for more than 25% of all cancer-
related deaths [1]. Based on histological characteristics, it
can be divided into non-small-cell lung cancer (NSCLC)
and small cell lung cancer (SCLC), which account for 85%
and 15% of all cases, respectively [2]. NSCLC further
includes lung adenocarcinoma (LUAD), lung squamous cell
carcinoma, and large cell carcinoma, where LUAD is the
most essential type that accounts for approximately 40% of
NSCLC [3]. Although new drugs for lung cancer treatment

have been developed, they tend to fail due to the gradual
emergence of drug resistance in patients. Key gene muta-
tions and abnormal body metabolism are the genetic factors
that regulate the sensitivity of tumors to cell death-inducing
factors. Therefore, finding key targets that affect body
metabolism may help in developing innovative strategies
for the treatment of LUAD [4].

Tryptophan (Trp) is an essential amino acid for the
human body. Trp and its metabolites play a key role in a
variety of physiological processes, ranging from cell growth
and maintenance to coordinating the body’s response to
environmental and dietary cues [5]. Trp metabolism
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regulates immunity, neuronal function, and intestinal
homeostasis through the kynurenine pathway (KP). More
than 95% of free Trp is degraded through KP ([6, 7], Le
[8]). The imbalance of Trp and its metabolites is related to
a variety of human diseases including depression, schizo-
phrenia, autoimmunity, neurodegeneration, and cancer [9].
In cancer, indoleamine 2,3-dioxygenase 1 (IDO1) and tryp-
tophan 2,3-dioxygenase (TDO) catalyze the first and the
rate-limiting step of tryptophan metabolism. Their abnor-
mal activation leads to antitumor immunosuppression,
which is related to tumor immune tolerance and poor prog-
nosis of patients and has become a critical target of tumor
immunotherapy. In recent years, IDO1 inhibitors have been
studied for cancer immunotherapy in clinical trials, usually
in combination with other drugs, such as immune check-
point inhibitors [10]. The increased expression of IDO1
and TDO in malignant tumors leads to tryptophan depletion
and accumulation of downstream products. This creates an
immunosuppressive microenvironment and enables tumor
cells to escape from effective immune response. Addition-
ally, tryptophan depletion can also inhibit mammalian target
of rapamycin- (mTOR-) mediated molecular stress response
and induce autophagy of Teff. The combination of the cata-
bolic metabolites of tryptophan and kynurenine with endog-
enous aromatic hydrocarbon receptor (AHR) leads to
selective differentiation and proliferation of regulatory cells
(Tregs). At the same time, it prevents the maturation of T
helper 17 cell (Th17) and thus inhibits the infiltration of
dendritic cells and the immune response of cytotoxic T cells
(Tc) [11]. In addition to the immune response induced by
tryptophan and kynurenine, the production of quinolinic
acid, 3-hydroxykynurenine, and other metabolites sup-
presses the transformation of macrophages and inhibits the
proliferation and function of natural killer (NK) cells. These
pathways jointly mediate local and/or systemic immune
inhibition and promote the survival and metastasis of tumor
cells [12]. Immunotherapy can recognize and eliminate
tumor cells by restoring or even activating the natural
immune system of cancer patients. The tryptophan metabo-
lism appears to be a key target of tumor immunotherapy.
However, there are limited reports on the potential biologi-
cal effects of Trp metabolic pathway in LUAD. Therefore,
the aim of this study was to determine the effect of Trp
metabolism-related genes on the prognosis of patients with
LUAD and predict their outcomes.

2. Materials and Methods

2.1. Downloading and Filtering the Training Set and
Verification Set Data. For the training set data, LUAD data
was downloaded from The Cancer Genome Atlas (TCGA)
database using TCGA (https://www.cancer.gov/) GDC API.
The samples lacking clinical data were removed, and the
Ensembl number was converted to the gene symbol. For
the duplicate gene symbol, the middle value was taken.
Finally, 565 primary tumor samples having mutation data,
copy number data, and transcriptome data were included
in the training set (TCGA-LUAD). In the Gene Expression
Omnibus (GEO) database, GSE31210 and GSE72094 were

selected as independent validation set data. After download-
ing the corresponding GPL file, the probes corresponding to
multiple genes were deleted. When multiple probes matched
the same gene, the median value was taken as the gene
expression level. After selection, 226 samples were obtained
from GSE31210 and 398 were obtained from GSE72094.

2.2. Sources and Molecular Subtypes of Tryptophan
Metabolism-Related Genes. The tryptophan metabolism-
related genes were identified from the tryptophan metabolism
pathway “KEGG_tryptophan_metabolism” in the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/
gsea/msigdbs/), which contained 40 tryptophan metabolism-
related genes. Among these, the genes related to tryptophan
metabolism with prognostic significance were identified by
univariate Cox regression. According to the expression pro-
files of genes with prognostic significance, a consistent cluster
was constructed. ConsensusClusterPlus [13] used “km” algo-
rithm and “1-Spearman correlation” as distance measurement
and performed 500 bootstraps. Each bootstrap process
included 80% of patients in the training set. The number of
clusters was set as 2 to 10. The best classification was deter-
mined by calculating the consistency matrix and the consis-
tency cumulative distribution function, and the molecular
subtypes of the samples were obtained.

2.3. Tumor Microenvironment (TME) Analysis. Immune
cells play an indispensable role in the TME. The CIBER-
SORT algorithm (https://cibersort.stanford.edu/) was used
to analyze the difference in the degree of immune cell infil-
tration of 22 kinds of immune cells in the TCGA-LUAD.
Additionally, the ESTIMATE algorithm [14] was used to cal-
culate the immune score and matrix score. Abnormal
expression and function of immune checkpoint molecules
are one of the main causes of tumor. The transcription levels
of a large number of immune checkpoint molecules were
analyzed in different molecular subtypes based on the
expression data of TCGA-LUAD. The Tumor Immune Dys-
function and Exclusion (TIDE) algorithm was used to calcu-
late the difference in immunotherapy sensitivity of the
different subtypes. The higher the TIDE prediction score,
the higher the possibility of immune escape, which suggests
that patients were less likely to benefit from immunotherapy.

2.4. Functional Pathway Analysis. Gene set variation analysis
(GSVA) is an algorithm to explore the relationship between
samples and pathways and performs unsupervised clustering
on samples. To explore the impact of tryptophan metabo-
lism gene mutations on the samples, these genes were
divided into two groups based on whether they were
mutated for pathway difference analysis. At the same time,
gene set enrichment analysis (GSEA) was performed among
the different subtypes based on the candidate gene sets in the
Hallmark database [15], and whether there was a significant
difference in pathways (false discovery rate ðFDRÞ < 0:05)
was analyzed.

2.5. Constructing Risk Model by Combining Differentially
Expressed Genes (DEGs) among Molecular Subtypes with
Prognosis Data. The DEGs of C1 vs. non-C1, C2 vs. non-
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Figure 1: Continued.
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C2, and C3 vs. non-C3 were analyzed by using the data of
TCGA expression profile using “limma” package [16]. The
threshold was set as FDR < 0:05 and jlog2 fold changej > 1:5
. The differential genes with prognostic significance were
identified by univariate Cox regression combined with clin-
ical data (P value < 0.01). Next, the least absolute shrinkage
and selection operator (Lasso) regression was performed
using “glmnet” R package [17], and stepwise multivariate
regression analysis was performed using “MASS” R package
[18]. The final genes were regarded as the key prognostic
genes of tryptophan metabolism. At the same time, each
TCGA-LUAD sample was given a risk score (RS) using the
following formula: RS = Σ ðβi × ExpiÞ. Expi is referred to as
the expression level of key prognostic genes of tryptophan
metabolism, and βi is referred to as the Cox regression coef-
ficient of the corresponding gene. The samples were divided
into high- and low-risk groups based on the threshold value
“0.” For the two groups, the Kaplan-Meier method was used
to draw the survival curve for prognostic analysis, and log
rank test was used to determine the significance of the
difference.

2.6. Prediction of the Response to Immunotherapy and
Chemotherapy. Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm [19] was utilized to assess the therapeutic
response to immune checkpoint inhibitors. A TIDE score
was estimated by the enrichment of immunosuppressive
cells, T cell dysfunction, and exclusion. A higher TIDE score
represents less responsive to immunotherapy and a higher
possibility of immune escape. The predictive response to
chemotherapeutic drugs was estimated by pRRophetic R
package [20].

2.7. Statistical Analysis. All statistical methods used in this
study were operated using the R software (version 4.0,
https://www.r-project.org/). A P value of <0.05 was regarded
as statistically significant.

3. Results

3.1. A Large Number of Mutations and Transcriptional
Differences in Tryptophan Metabolism-Related Genes in
TCGA-LUAD. Firstly, 40 tryptophan metabolism-related
genes were obtained from MSigDB (Table S1). The
mutation frequency was calculated based on the mutation
data in TCGA-LUAD. The results showed that a total of
181 samples had tumor mutation burden (TMB), of which
OGDHL gene had the highest mutation frequency,
followed by AOX1 and AOC1. Most of the gene mutations
were missense mutations, in addition to nonsense
mutations and transcription start site mutations
(Figure 1(a)). Meanwhile, GSVA was conducted to explore
the differential pathways in mutant and wild-type
(tryptophan metabolism-related genes) groups. It was
found that the pathways significantly activated in the
mutant group included MYC targets V1/V2, E2F targets,
and G2M checkpoint, whereas the pathways significantly
inhibited in the mutant group included TNFα signaling via
NF-κB and inflammatory response (Figure 1(b)).

The copy number variations (CNVs) of 40 tryptophan
metabolism-related genes were explored in the samples with
tryptophan gene mutations. The results showed that CNVs
appeared in all samples. AANAT had the maximum copy
number amplification frequency and WARS2 had the least
copy number deletion (Figure 1(c)).

Additionally, TCGA-LUAD samples were divided into
three groups according to CNVs, including CNV gain
(amplification group), CNV loss (deletion group), and no
significant change in CNV (diploid group). According to
the grouping, more than half of the genes had significant dif-
ferences. The transcription level of tryptophan metabolism
genes in the CNV amplification group was significantly
higher than that in the CNV deletion group. This suggests
that CNV plays a critical role in the tryptophan metabolism
pathway (Figure 1(d)). We showed the expression levels of
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Figure 1: Mutation frequency and transcription level of tryptophan metabolism-related genes in TCGA-LUAD. (a) Total mutation
frequency of tryptophan metabolism-related genes in TCGA-LUAD. (b) GSEA between mutant and nonmutant groups of tryptophan
metabolism-related genes in TCGA-LUAD. Pathways with normalized enrichment score ðNESÞ < 0 defined as the inhibited group and
NES > 0 as the activated group. (c) Copy number variation map of tryptophan metabolism genes. (d) Difference in transcription levels of
tryptophan metabolism genes among different copy number variants. (e) Transcriptional differences in tryptophan metabolizing genes
between tumor and normal tissues. ns: not significant. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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tryptophan metabolism-related genes in tumor and normal
samples. There were significant differences in most genes,
suggesting the correlation between tryptophan metabolism
and tumor (Figure 1(e)).

3.2. Molecular Typing Based on Tryptophan Metabolism-
Related Genes. In order to identify tryptophan metabolism-
related genes that have prognostic significance, univariate
Cox regression was performed on 40 tryptophan
metabolism-related genes based on the clinical data of
TCGA-LUAD. The results showed that 13 genes had signif-
icant prognostic significance, of which 6 were risk genes and
7 were protective genes (Figure 2(a)). Based on the expres-
sion profile data, there was positive correlation among the
six protective genes and negative correlation between pro-
tective genes and risk genes (Figure 2(b)). After that, molec-
ular typing was constructed based on 13 prognostic genes,
and the optimal number of clusters determined by the
cumulative distribution function (CDF) was 3. When k = 3,
the clustering results were relatively stable (Figures 2(c)–
2(e)). The different prognosis results among the three
molecular subtypes were analyzed based on the clinical data
of TCGA-LUAD. It was found that C1 had the worst prog-
nosis while C3 had the best prognosis (Figure 2(f)). In addi-
tion, the transcription level of protective genes was the
highest in C3 and that of risk genes was the highest in C1.
This suggests that a decline in the transcription level of pro-
tective genes and a rise in the transcription level of risk genes
would have an adverse impact on the prognosis of patients
(Figure 2(g)). In addition, the “tryptophan metabolism
ssGSEA scores” of different subtypes were calculated. The
results showed that C1 scored the lowest, whereas C3 scored
the highest. This indicates that the activation of tryptophan

metabolic pathway had a positive significance on the prog-
nosis of patients (Figure 2(h)). Meanwhile, according to
the distribution of TNM stage and pathological stage in dif-
ferent subtypes, tumor progression was low in C3, while
high in C1 (Figures 3(a)–3(d)).

3.3. Mutation Differences among Molecular Subtypes. In
order to explore the mutation differences among the molec-
ular subtypes, the molecular characteristics of TCGA-LUAD
were obtained from a previous pan-cancer study [21]. It was
evident that C1 with the worst prognosis had the highest
aneuploidy score, homologous recombination defects, frac-
tion altered, number of segments, and TMB. This indicates
that the higher the mutation frequency, worse is the progno-
sis of patients with LUAD (Figure 4(a)). According to the
pan-cancer research, five different molecular subtypes were
constructed based on 160 immune signatures, and the
reported immune subtype C3 (inflammatory) had the best
prognosis. Additionally, the expression levels of Th17 and
Th1 genes were higher, and the proliferation degree of
tumor cells and CNV level were lower in the immune sub-
type C3 (inflammatory) than other subtypes. Interestingly,
the C3 defined in this study was similar to the immune sub-
type C3, and our results were consistent with previous ones
(Figure 4(b)). Based on the mutation data in TCGA-LUAD,
the mutation frequency of some tumor suppressor genes,
such as TP53, was much higher in C1 than other subtypes.
This again verifies the impact of mutation frequency on
the prognosis of TCGA-LUAD (Figure 4(c)).

3.4. Differences in Immune Infiltration and Sensitivity to
Immunotherapy/Chemotherapy among Molecular Subtypes.
Immune microenvironment is an indispensable component

C1 C2 C3

Ri
sk

Pr
ot

ec
tiv

e

ACAT2

KYNU

WARS2

EHHADH

HADHA

OGDH

GCDH

IDO2

MAOB

INMT

ALDH2

MAOA

CAT

Expr
−4 −2 0 2 4

(g)

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎

0.8

1.2

1.6

2.0

C1 C2 C3
Cluster

tr
yp

to
ph

an
 m

et
ab

ol
ism

 ss
G

SE
A

 sc
or

es

Group
C1
C2
C3

Kruskal−Wallis test p = 9.1e−15

(h)

Figure 2: Construction of molecular subtypes based on tryptophan metabolism genes. (a) Cox regression analysis showed tryptophan
metabolism genes with prognostic significance. (b) Heat map of the correlation between tryptophan metabolism genes and prognostic
genes. (c) CDF curve was constructed based on TCGA-LUAD. (d) CDF delta area curve was constructed based on TCGA-LUAD. (e)
Sample clustering heat map when consensus k = 3. (f) Survival curves of three molecular subtypes. (g) Expression heat map of
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of tumorigenesis and development. The infiltration scores of
22 different immune cells were calculated using CIBER-
PORT algorithm based on the expression profile data of
TCGA-LUAD. 18 of 22 immune cells were differentially dis-
tributed in three subtypes such as CD8 T cells, resting mem-
ory CD4 T cells, M0 macrophages, M1 macrophages, and
M2 macrophages (Figure 5(a)). At the same time, the stro-
mal score and immune score were calculated by ESTIMATE.
Both the stromal and immune score were much higher in C3
than in the other two subtypes (Figure 5(b)).

In addition, infiltration differences in three immuno-
suppressive cells were calculated in different subtypes.
Firstly, the infiltration level of myeloid-derived suppressor
cells (MDSCs) was the lowest in the C3 subtype. In addi-
tion, T cell exclusion and TIDE exhibited the same trend
as MDSCs. This indicates that C1 with the highest TIDE
score had a greater possibility of escape from immuno-
therapy, which might be related to the high infiltration
of MDSCs (Figure 5(c)). The drug sensitivity of different
molecular subtypes to different chemotherapeutic drugs,
including paclitaxel, cisplatin, docetaxel, and vinorelbine,
was analyzed. The results indicate that C1 had the highest
sensitivity to these four chemotherapeutic drugs
(Figure 5(d)).

3.5. Pathway Differences between Molecular Subtypes. All
candidate gene sets were enriched and analyzed by GSEA
to explore the pathways between different molecular subtypes.
There were 38 pathways that finally met the threshold. In C1,
11 pathways were significantly inhibited and 16 pathways
were significantly activated. The pathways significantly acti-
vated in C1 were cell cycle-related pathways, namely, G2M
checkpoint, E2F targets, and MYC targets V1/V2. These path-
ways were inhibited in C3, whereas the pathways significantly
inhibited in C1 were bile acid metabolism, coagulation, and
early estrogen response. These pathways were activated in
C3. In C2, only one pathway was activated, namely, glycolysis,
whereas 20 pathways were significantly inhibited, which
include interferon gamma response, allograft rejection, and
IL2-STAT5 signaling (Supplement Figure 1A).

3.6. Identifying Key Genes of Tryptophan Metabolism and
Establishing a Prognosis Model. Given that three subtypes
had differential prognosis and molecular features, we then
analyzed the DEGs among them by analyzing C1 vs. non-
C1, C2 vs. non-C2, and C3 vs. non-C3. A total of 562 DEGs
were identified. Of these, 272 genes with great impact on
prognosis were identified by univariate Cox regression,
including 154 risk genes and 118 protective genes
(Figure 6(a)). After that, the 272 prognostic genes were iden-
tified by lasso regression model. When λ = 0:0608, the model
reached the optimal level (Figures 6(b) and 6(c)). Therefore,
10 genes when λ = 0:0608 were selected as the target genes
for the next step. Through stepwise multifactor regression
analysis, the model had sufficient fit. Finally, five genes were
identified as key prognostic genes of tryptophan metabolism,
including FAM83A, MELTF, CDC25C, ABCC2, and
KRT6A (Figure 6(d)).

Based on our prognostic model formula, each sample in
TCGA-LUAD was scored and the risk score was normalized
to z-score. As shown in Figure 7(a), as the RS increased, the
prognosis of patients became worse. The expression of the
five key prognostic genes of tryptophan metabolism also
increased significantly as the RS increases. In addition, a
time-dependent ROC prognostic analysis was conducted
on RS to assess the effectiveness of the model in predicting
the prognostic outcomes in 1, 3, and 5 years. The results
showed that the model had strong predictive ability
(Figure 7(b)). RS equal to 0 was taken as the dividing line.
Samples > 0 were classified as the RS-high group, while
samples < 0 were classified as the RS-low group. By analyz-
ing the difference in prognosis between the two groups, it
was found that the prognosis of the RS-high group was sig-
nificantly worse than that of the RS-low group (Figure 7(c),
P value < 0.0001). In addition, two independent datasets
from GEO database were used as the validation set. The
same prognosis model as TCGA-LUAD was carried out with
the relevant data of the validation set to test the stability of
the clinical prognosis prediction model based on tryptophan
metabolism gene. The results in the validation set showed
that the model was very stable (Figures 7(d)–7(g)).
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Figure 3: Distribution of clinical information in different molecular subtypes. (a–c) TNM staging. (d) Pathological staging. ∗P < 0:05.
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3.7. RS Distribution in Different Clinical Stages and
Molecular Subtypes. According to the clinical data of
TCGA-LUAD and the RS data of the clinical prognosis pre-
diction model of tryptophan metabolism gene, the RS grad-
ually increased with the development of tumor, and the
prognosis worsened. The RS of men was significantly higher
than that of women, and the RS of C3 was much lower than
that of C1 and C2, which is consistent with our previous
analysis. C3 subtypes had the best prognosis and more
women (Figures 8(a) and 8(b)). We compared whether there
were prognostic differences between RS groups in different
clinical pathological feature groups. The results showed that
the prognostic outcomes of the RS-high group were worse
than those of the RS-low group in different clinical sub-
groups, which once again proved the reliability of our model
(Figure 8(c)). In addition, we found that RS and tryptophan
metabolism ssGSEA score showed a negative correlation
trend. Combined with the previous studies, in this study
we inferred that inhibition of tryptophan metabolism would
lead to a rise in RS and ultimately worsen prognosis (Supple-
ment Figure 1B).

3.8. Predictive Responses of Two Risk Groups to
Immunotherapy and Chemotherapy. The MDSC score of
the RS-high group was higher than that of the RS-low group.
According to previous analysis, the immune infiltration level
of C3 was much higher than that of other subtypes, and C3
accounted for a very small proportion in the RS-high group.
This indicates that immune infiltration in the RS-high group
was significantly inhibited. Subsequently, we evaluated the
response of two risk groups to immunotherapy. Immune

checkpoint blockade is a promising immunotherapy for
treating metastatic cancer patients, and its efficiency is
associated with the expression of immune checkpoints.
We compared the expression of immune checkpoints in
two risk groups and observed that 22 of 47 immune
checkpoints including CD274 (PD-L1) and PDCD1 (PD-
1) were differentially expressed between two risk groups
(Figure 9(a)). Additionally, the T cell exclusion score was
significantly high in the RS-high group, indicating that
the immune level in the RS-high group was significantly
low. The scores of MDSCs and T cell exclusion showed
a significant positive correlation with RS (Figures 9(b)
and 9(c)). After assessing the responsiveness of the RS
group to the four traditional chemotherapy drugs, we
found that the RS-high group was more sensitive to these
drugs. This indicates that the effect of these four chemo-
therapy drugs was better in the RS-high group than in
the RS-low group (Figure 9(d)).

3.9. Improvement of Prognosis Model and Survival Prediction
by RS Combined with Clinical Characteristics. The influence
of different variables on prognosis was analyzed by univari-
ate/multivariate Cox regression. Both forest map and nomo-
gram showed that TNM and pathological stage were
significant prognostic factors, and RS was a significant risk
prognostic factor (hazard ratio, HR = 1:76 (1.53-2.03), P
value < 0.0001, Figures 10(a)–10(c)). Then, a calibration
curve was constructed to assess the model’s evaluation of
the prediction effect of the actual results. It showed that
the predicted calibration curve of the three calibration points
at 1, 3, and 5 years was close to the standard curve. This
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indicates that the fitting between the actual probability and
the probability predicted by the model was very good
(Figure 10(d)). Through the decision curve analysis (DCA)
to evaluate the reliability of the model, we found that the

benefits of RS and nomogram were significantly higher than
the extreme curve. Compared with other clinicopathological
features, nomogram and RS showed strong ability to predict
survival (Figures 10(e) and 10(f)).
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Figure 5: Difference in immune infiltration between different subtypes. (a) Difference in infiltration of 22 kinds of immune cells between
different subtypes. No statistical test was performed on naïve CD4 T cells as almost no detection of their enrichment. (b) Difference in
immune infiltration between different subtypes was calculated based on the ESTIMATE algorithm. (c) Difference in infiltration of
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4. Discussion

Although groups of immunotherapy clinical trials have
made promising outcomes for advanced LUAD treatment,
still a large fraction of LUAD patients benefit little from
the immunotherapy. The paves to find targeted and person-
alized therapy should never been stopped. Tryptophan
catabolism is considered as a potential therapeutic target
for cancer treatment in the recent years [22]. In this study,
we obtained 40 tryptophan metabolism-related genes from

the MSigDB. Of these, 13 genes significantly correlated with
the prognosis of LUAD, suggesting that these genes might
play an essential role in the tryptophan metabolism pathway.
Then, three molecular subtypes were constructed based on
13 tryptophan metabolism-related prognostic genes. Six risk
genes were significantly overexpressed in C1, whereas seven
protective genes were significantly overexpressed in C3,
which was consistent with their prognostic outcomes that
C1 had the worst prognosis and C3 had the longest overall
survival. This not only showed the rationality of the
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molecular typing model but also that these genes affected the
prognosis of patients through tryptophanmetabolic pathways.
After observing the parameters related to gene mutation such
as TMB, we found that mutation frequency in C3 was much
lower than that in other subtypes. This indicates that gene
mutation frequency is one of the factors that affect prognosis
of patients. Combined with the previous ssGSEA score of tryp-
tophan metabolism, we found that the ssGSEA score of tryp-
tophan metabolism had a positive correlation with various
gene mutation frequencies. This suggests that gene mutation
frequency would affect tryptophan metabolism and thus affect
prognosis. Tryptophan metabolism-related gene mutations
occurred in most LUAD patients, and CNVs play an indis-
pensable role in regulating the transcription level of trypto-
phan metabolism genes.

By evaluating the infiltration level of different immune
cells in the molecular subtypes, we found that the immune
infiltration level was the highest in C3 subtype, whereas C1
with the worst prognosis was accompanied by immunosup-
pression. This suggests that disorders of the tryptophan met-
abolic pathway would lead to loss of immune function in the
TME and thus promote the development of tumor and affect
the prognosis of patients. Several studies have shown that
IDO1 inhibits T cell response by promoting activation or
differentiation of Treg cells [23, 24]. Additionally, kynurenine
induces Treg cells by activating aromatic hydrocarbon recep-
tor (AHR), a ligand activated transcription factor that has a
great impact on immune cells and participates in the differ-
entiation of Treg cells [25–27]. MDSCs inhibit T cell func-
tion, which have strong immunosuppressive activity in the

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Type
1−Years, AUC = 0.8, 95% CI (0.56−1.03)
3−Years, AUC = 0.72, 95% CI (0.61−0.83)
5−Years, AUC = 0.74, 95% CI (0.65−0.83)

(d)

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

140 128 69 12 1
86 68 34 7 0
0 2.5 5 7.5 10

Time (years)

G
ro

up
s

Number at risk

Groups
groups = Low
groups = High

groups = High
groups = Low

(e)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Type
1−Years, AUC = 0.71, 95% CI (0.63−0.79)
2−Years, AUC = 0.71, 95% CI (0.65−0.77)
3−Years, AUC = 0.65, 95% CI (0.56−0.74)

(f)

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

221 195 147 44 19 4 0
177 137 95 24 10 1 0groups = High

groups = Low

0 1 2 3 4 5 6
Time (years)

G
ro

up
s

Number at risk

Groups
groups = Low
groups = High

(g)

Figure 7: Establishment and validation of the clinical prognosis model. (a) Distribution of risk factors of 5 key genes. (b) ROC curve verifies
the reliability of the model. (c) Survival curves under different RS groups. (d–g) ROC curve and survival curve of the two validation sets
show the accuracy of the clinical prognosis model.
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Figure 8: Distribution of clinical characteristics in different RS groups. (a) Differences among clinicopathological groups according to RS in
TCGA-LUAD. (b) Clinicopathological features between RS groups in TCGA-LUAD. (c) The survival curves of different clinical features
according to RS. ns: not significant. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗∗P < 0:0001.
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Figure 9: Predictive response of two risk groups to immunotherapy and chemotherapy. (a) The expression of immune checkpoints in
two risk groups. (b) Analysis of immune cell scores in RS groups. (c) Correlation analysis between scores of different immune cells
and RS. (d) IC50 box diagram of paclitaxel, cisplatin, docetaxel, and vinorelbine in different RS groups. ns: not significant. ∗P < 0:05,
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function of CD8+ T cells, NK cells, B cells, and other
immune cells. In contrast, MDSCs promote tumor angio-
genesis and epithelial mesenchymal transition (EMT),
secrete matrix metalloproteinases, and differentiate into
osteoclasts to promote invasion and metastasis of tumor
cells [28, 29]. The scores of MDSCs and T cell exclusion
were the lowest in C3, which indicates that C3 had the most
active immune function and the least possibility of immune
escape. This also means that the immunotherapy strategy
would be more effective in C3. This view was further sup-
ported by the TIDE score. In contrast, the sensitivity to the
four traditional chemotherapeutic drugs was the highest in

C1, which indicates that activation of the tryptophan meta-
bolic pathway was related to improving the responsiveness
to chemotherapeutic drugs.

The most significantly activated pathway in C1 was G2M
checkpoint. It has been reported that the highly active G2M
pathway in breast cancer is more invasive and metastatic
and is significantly related to the survival rate of patients
with breast cancer [30]. However, this pathway was signifi-
cantly inhibited in C3 subtype, suggesting that tryptophan
metabolism genes could promote tumor metastasis by affect-
ing the G2M checkpoint pathway [30]. MYC is a key marker
of malignant tumor metastasis. It has been reported that
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Figure 10: RS was identified as a reliable variable for predicting patient survival. (a, b) Univariate/multivariate Cox regression analysis for
different clinical variables and RS. (c) A nomogram model based on different clinical variables and RS. (d) Calibration curve of nomograph
for 1, 3, and 5 years. (e) Decision curve of nomograph. (f) Compared with other clinicopathological features, nomogram shows that RS has
the strongest ability to predict survival.
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high MYC V1/V2 score is related to malignant cell prolifer-
ation and worse clinical and pathological features in metas-
tatic breast cancer. Meanwhile, MYC V1 score is related to
high-frequency mutation load. In the mouse lung model of
KRAS G12D-driven adenoma, it was found that coactivation
of MYC would induce highly proliferative and invasive ade-
nocarcinoma characterized by angiogenic and immunosup-
pressive stroma [31, 32].

A prognostic risk model was constructed based on five
genes, namely, FAM83A, MELTF, CDC25C, ABCC2, and
KRT6A. CDC25C directs dephosphorylation of cyclin B-
bound CDC2 and triggers mitosis and inhibits p53-
induced growth arrest. In addition, CDC25C could directly
dephosphorylate CDK1 and activate its kinase activity, indi-
cating that it plays a key role in the regulation of cell division
[31]. FAM83A was involved in cell proliferation and epider-
mal growth factor receptor signaling pathway [33]. Melano-
transferrin (MELTF) was identified as a prognostic
biomarker in gastric cancer, and the suppression of MELTF
reduces the invasion ability of gastric cancer cells [34].
ABCC2 polymorphisms are widely reported to be associated
with chemotherapeutic drug response in cancer treatment
[35, 36]. KRT6A was reported to promote NSCLC cell
growth and invasion through the MYC-regulated pentose
phosphate pathway and to promote EMT and cancer stem
cell transformation in LUAD [37, 38].

After confirming the robust RS model through the vali-
dation set, we found that high RS was often accompanied
by worse prognosis, while samples in C3 generally had low
RS. The scores of MDSCs, T cell exclusion, and TIDE were
higher in the RS-high group than in the RS-low group. This
indicates that the RS-high group had obvious immunosup-
pression and T cell dysfunction, which resulted in immune
escape and tumor invasion. At the same time, RS was signif-
icantly negatively correlated with the tryptophan metabo-
lism ssGSEA score. This indicates that when tryptophan
metabolism is significantly activated, RS significantly
decreases, restoring the immune function and improving
the prognosis of patients.

5. Conclusion

In LUAD, mutation, abnormal expression, or dysfunction of
tryptophan metabolism genes leads to abnormality of the
tryptophan metabolism pathway. This in turn promotes
immunosuppression, immune escape, and occurrence and
development of tumors. Ultimately, an abnormal trypto-
phan metabolism pathway worsens prognosis of LUAD
patients.
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Additional Points

Contribution to the Field Statement. Of the 40 genes in the tryp-
tophan metabolism pathway, 13 had significant prognostic sig-

nificance. Based on these 13 genes, three molecular subtypes
(C1, C2, and C3) were established. Among them, C1 had the
worst prognosis and the lowest enrichment score of tryptophan
metabolism. At the same time, C1 had the most genetic varia-
tion, the highest level of immune infiltration, and significantly
activated pathways related to tumor development. The high-
risk and low-risk groups had significant differences in progno-
sis, immune infiltration, and pathway enrichment, which was
consistent with the results of subtype analysis.
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