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Background: Gastric cancer (GC) is a major public health problem worldwide. In recent
decades, the treatment of gastric cancer has improved greatly, but basic research and
clinical application of gastric cancer remain challenges due to the high heterogeneity.
Here, we provide new insights for identifying prognostic models of GC.

Methods: We obtained the gene expression profiles of GSE62254 containing 300
samples for training. GSE15459 and TCGA-STAD for validation, which contain 200 and
375 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was
used to identify gene modules. We performed Lasso regression and Cox regression
analyses to identify the most significant five genes to develop a novel prognostic model.
And we selected two representative genes within the model for immunohistochemistry
staining with 105 GC specimens from our hospital to verify the prediction efficiency.
Moreover, we estimated the correlation coefficient between our model and immune
infiltration using the CIBERSORT algorithm. The data from GSE15459 and TCGA cohort
validated the robustness and predictive accuracy of this prognostic model.

Results: Of the 12 gene modules identified, 1,198 green-yellow module genes were
selected for further analysis. Multivariate Cox analysis was performed on genes from
univariate Cox regression and Lasso regression analysis using the Cox proportional
hazards regression model. Finally, we constructed a five gene prognostic model: Risk
Score = [(-0.7547) * Expression (ARHGAP32)] + [(-0.8272) * Expression (KLF5)] + [1.09 *
Expression (MAMLD1)] + [0.5174 * Expression (MATN3)] + [1.66 * Expression (NES)]. The
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prognosis of samples in the high-risk group was significantly poorer than that of samples in
the low-risk group (p = 6.503e-11). The risk model was also regarded as an independent
predictor of prognosis (HR, 1.678, p < 0.001). The observed correlation with immune cells
suggested that this risk model could potentially predict immune infiltration.

Conclusion: This study identified a potential risk model for prognosis and immune
infiltration prediction in GC using WGCNA and Cox regression analysis.
Keywords: gastric cancer, weighted gene co-expression network analysis, Cox proportional hazards regression
model, prognostic model, immune infiltration
INTRODUCTION

Worldwide, gastric cancer (GC) is a common malignant tumor
with relatively poor prognosis. The National Central Cancer
Registry of China reported an estimated 679,100 new GC cases
and 498,000 GC related deaths in 2015, making GC second in
both cancer-specific incidence and mortality (1). There are a
large number of patients with GC in China, the majority of
whom have advanced stage disease. Over the past two decades,
the 5-year overall survival of patients with GC has improved (2).
This change is due to increased knowledge about the
pathogenesis of GC, and treatment advances (3, 4). Such
advances include the identification of GC biomarkers and
therapeutic targets (5, 6). However, the limitations of surgery
and cytotoxic chemotherapy mean that it is necessary to identify
novel diagnostic and prognostic GC biomarkers.

We performed weighted gene co-expression network analysis
(WGCNA) to identify gene modules related to the Asian Cancer
Research Group (ACRG) GC molecular subtypes, Lauren
subtypes, and other clinical traits using microarray data from
the Gene Expression Omnibus (GEO) database. Next, we used
Cox regression analysis to identify a prognostic model. Lastly, we
evaluated the correlation between the generated prognostic risk
model and tumor immune infiltration. Our data may offer novel
insight in the search for prognostic biomarkers and the
development of a predictive tool for GC.
MATERIALS AND METHODS

Clinical Samples and Data Acquisition
We systematically searched the GC datasets in the public
database. Finally, this study contains 875 patients with GC.
Two data sets were retrieved from the GEO database,
including 300 samples from the GSE62254 dataset (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse62254) and
200 samples from the GSE15459 dataset (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459). Another
TCGA-STAD cohort contains 375 samples (https://portal.gdc.
cancer.gov). The GSE62254 microarray value was log10-
transformed RMA signal intensity. The GSE15459 microarray
was log10-transformed MAS5.0 signal intensity. And TCGA-
STAD sequence data was FPKM values. We chose to use the
2

GSE62254 dataset to construct a risk model because of the larger
sample size and complete follow-up information, while the 575
cases from the GSE15459 dataset and TCGA-STAD cohort were
used for model validation (Figure 1).

Where available, corresponding clinical data were extracted
and manually organized. The GSE62254 clinical data was obtained
from the primary literature Supplementary Materials, and the
clinical data of GSE15459 and TCGA-STAD cohort were directly
downloaded from the corresponding website in the GEO and
TCGA database respectively.

To further validate the prognosis with real patient sample
data, we obtained tumor specimens of 105 patients with GC who
underwent radical surgery at the Department of Surgical
Oncology, First Affiliated Hospital of China Medical University
from 2003 to 2010. All patients did not receive preoperative
chemotherapy and radiotherapy, and they were pathologically
confirmed as gastric cancer. The resected tissue was fixed by
formalin and embedded in paraffin for preservation. All patients
have complete clinical, pathological, and follow-up data. This
study was approved by the Ethics and Indications Committee of
China Medical University, and all patients provided written
informed consent.

Data Processing
We obtained RNA expression profiles by downloading series
matrix files in GEO and FPKM values in TCGA database. Data
were normalized by Robust Multi-array Average (RMA) or
Microarray Suite version 5.0 (MAS 5.0) using default
Affymetrix analysis settings. We removed genes that were not
expressed in all samples and used median values for those that
were duplicated. As a result, data for 19572 genes was obtained
from GSE62254. Genes with expression variances in the top 25%
(n = 4893) were selected for subsequent WGCNA analysis.

WGCNA
WGCNA is a systematic bioinformatic method, whose core
algorithm is based on a weighted network and co-expression
network. The regulatory relationship between genes is very
complex and usually many-to-many. In a regulatory network,
there are always a few highly-connected genes, called hub genes.
WGCNA can simplify the interactions of thousands of genes into
several modules of genes, whose expression pattern is similar,
and changed highly coordinately. And then we calculate the
network connection strength between any two genes, called
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weight value. WGCNA constructs a free-scale network through
weighted and co-expression methods to explore the
interrelationship between genes within the corresponding gene
module, and the associations between gene modules and clinical
traits. So, we choose WGCNA to filter out the junk information,
to find the hub genes that met our expectations.

Construction of the Weighted Correlation
Network
After removing eight outliers by sample hierarchical clustering
with the standard R function “hclust”, we constructed a weighted
correlation network using the WGCNA package in R. The
analysis was performed as described previously (7).

An adjacency matrix (aij) was calculated by co-expression
similarity (sij). The aij represents the network connection
strength between genes i and j, and sij is defined as the
absolute value of the correlation coefficient between the
expression profiles of genes i and j. The topological overlap
matrix (TOM) calculated from aij, suggests a neo-distance
between those genes. The formulas used were:

sij = jcor(xi, xj),  aij = power(sij, b) = sijb

TOMij =
Su≠i,j(aiu ∗ auj) − aij

min Su≠iaiu,Su≠jauj
� �

+ 1 − aij

In our study, the soft power of b = 3 (scale-free R2 = 0.903)
was set as the soft threshold for the scale-free network. Soft
Frontiers in Oncology | www.frontiersin.org 3
threshold selection depends on scale independence and mean
connectivity. Subsequently, the co-expression network clusters
genes with similar expression patterns within the same module
using Dynamic Branch Cut methods. We merged modules with
highly correlated eigengenes, with a minimum module merging
height of 0.2. Correlations between clinical traits and gene
modules were displayed in a heatmap plot. Modules with the
highest correlation coefficient and the lowest significant p-value
were chosen for further analysis. To validate stability, we
calculated the gene significance and module membership.
Cytoscape 3.7.1 software was used to visualize significant
module and hub genes using cytoHubba (8) and MCODE (9).

Prognostic Model Construction Using the
Cox Proportional Hazards Regression
Model
A total of 1,198 genes of the hub module (the green-yellow
module), with corresponding overall survival, were analyzed by
univariate Cox survival analysis. This analysis revealed 476
significant genes (p < 0.01). The glmnet package from R was
used for Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression analysis (1,000 iterations) to reduce
candidate variables and prevent overfitting (10). Nine genes from
LASSO analysis were analyzed by multivariate Cox proportional
hazards regression using the survival R package. The risk model
was completed, and genes were divided into high- and low-risk
groups based on the mean risk score. The formula of the risk
score model is:
FIGURE 1 | Flow chart of data acquisition, analysis, and validation.
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riskscore =o
n

i=0
gi ∗ ci

where gi refers to the regression coefficient for each gene in the
multivariate Cox hazard model analysis and ci represents the
mRNA expression of the corresponding genes.

The prognostic model was validated using the GSE15459
dataset. For all above statistical analyses the significance level was
p < 0.01.

Functional and Pathway Enrichment
Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed to identify
the potential biological functions of the 476 genes identified
using univariate cox analysis from the R package clusterProfiler,
with the following parameters: pvalueCutoff = 0.05, qvalueCutoff
= 0.05 (11).

Immunohistochemistry
To explore the role of the model-related genes in GC tissue, we
performed immunohistochemistry (IHC) staining for two genes
with the highest absolute value of the coefficient in the
risk formula.

IHC staining was performed in steps as the standard protocol
(12, 13). Sections were deparaffinized using xylene and hydrated
through an ethanol gradient. Incubation in 3% H2O2 for 20 min to
inactivate endogenous peroxidase. After antigen retrieval using 0.01
mol/L sodium citrate buffer for 1.5 min at high pressure and 10%
normal goat serum blocking for 30 min, sections were incubated
with a primary antibody against NESTIN (1:100, Abcepta, San
Diego, CA, USA), KLF5 (1:200, Proteintech, Rosemont, IL, USA) at
4°C overnight. Subsequently, sections were incubated with
secondary goat anti-rabbit antibody for 30 min and
counterstained with hematoxylin. We use the product of two
scores based on the percentage of positive cells (0: <5%, 1: 5%–
25%, 2: 25%–50%, 3: 50%–75%, and 4: >75%) and the staining
intensity (0: negative, 1: weak, 2: moderate, and 3: strong) to
evaluate IHC staining. We regarded the scores of 6–12 as high
expression, while the scores of 0-4 were low expression.

CIBERSORT and TIMER
The LM22 gene signature matrix and CIBERSORT algorithm
can estimate the relative proportions of 22 human immune cell
phenotypes, including T cells, B cells, NK cells, macrophages, DC
cells, mast cells, and granulocytes, in complex bulk tumor tissue
(14). CIBERSORT adaptively selects genes from the input matrix
to deconvolve a given mixture using linear support vector
regression (SVR) based on the LM22 signature matrix. The
LM22 was validated using external datasets of each cell subset,
and CIBERSORT results were well-matched (93%) with the
phenotypes of these datasets (14). The input matrix of
reference gene expression signatures was prepared using the
standard annotation file. The CIBERSORT algorithm runs in R
with 100 permutations using the LM22 signature, and p < 0.05
Frontiers in Oncology | www.frontiersin.org 4
was set as the cutoff for statistically significance. TIMER
algorithm can estimate the abundances of six immune
infiltrates and evaluate the correlation of gene expression with
immune infiltration level (15).
Statistical Analysis
The Levene’s test was used to test whether the variances of two or
more independent samples are equal. The Shapiro-Wilk
normality test was used to determine the normality of
variables. When there were two sets of variables, the unpaired
student t-test was used to compare variables with normal
distribution, and the Mann-Whitney U test (also called the
Wilcoxon rank-sum test) was used to compare variables with
non-normal distribution. The Kruskal-Wallis test was used as a
non-parametric test to estimate the statistical differences between
multiple groups of variables. The Spearman correlation test was
employed to estimate the correlation between two non-normally
distributed continuous variables.

The Kaplan-Meier survival curve was generated using the R
package “survival” and “survminer”. The R package “timeROC”
was used to plot time-dependent receiver operating characteristic
(ROC) curves and calculate the area under the curve (AUC),
which evaluates the diagnostic accuracy of risk-score, stage, and
the combination of risk-score and stage.

The hazard ratios for univariate and multivariate analyses
were calculated using the Cox proportional hazards regression
model. A multivariate Cox regression model was used to
determine independent prognostic factors. All Cox regression
was performed by R package survival, and the glmnet package
was used for LASSO Cox analysis. All statistical analyses were
conducted using R 3.6.2 and SPSS 26.0 software, and p < 0.05 was
considered statistically significant.
RESULTS

Pre-Processing of RNA Sequence Data
and Clinical Data
In total, GC microarray and clinical data from 500 patients were
downloaded from the GSE62254 and GSE15459 datasets. For the
training cohort, the RNA sequence expression matrix from
GSE62254, composed of 19572 genes from 300 patients, after
removal of abnormal and duplicate values. Genes with
expression in the first quarter of variance was selected for
further WGCNA analysis.
Identification of Modules Associated With
Clinical Traits by WGCNA
The sample dendrogram and trait heatmap described the clustering
landscape of GSE62254 sample (Figure 2A). After sample
hierarchical clustering, eight outliers were removed (Figure S1A),
and the soft threshold was set as b = 3 (scale-free R2 = 0.903) based
on scale independence and mean connectivity (Figure S1B).
February 2021 | Volume 11 | Article 554779
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Wemergedmodules with similarity above 0.8 (Figure S1C). Finally,
the dynamic tree cut showed a gene cluster dendrogram containing
12 co-expressionmodels (Figure 2B). The co-expressionmodels are
represented by black, brown, cyan, green, green-yellow, magenta,
midnight-blue, pink, purple, tan, turquoise, and yellow and contain
215, 745, 63, 293, 1198, 92, 37, 116, 91, 69, 1527, and 447 genes,
respectively. The scatter diagram illustrated the relationship
between the gene significance (GS) for ACRG subtype and the
module membership (MM) in green-yellow module, with a
correlation coefficient of 0.74 (Figure 2C). We constructed a
cluster dendrogram and heatmap based on the topological
overlap matrix (Figure 2D). The module-trait relationship also
revealed that the green-yellow module was strongly related to
clinical traits, especially the ACRG molecular subtype (Figure 3).
Frontiers in Oncology | www.frontiersin.org 5
Based on these analyses, we considered the “green-yellow” module,
containing 1198 genes, the target module for further analysis.
Visualization of the Module Genes
With Cytoscape
The interrelationship (edges) of all 1,198 genes (nodes) were too
complex to comprehensively visualize in Cytoscape, so we selected
the top 500 genes based on the weight values of the nodes. The
network was constructed by cytoHubba and MCODE plugins.
cytoHubba contained 11 scoring methods, including the newly
developed algorithm named Maximal Clique Centrality (MCC).
We selected the top 15 hub genes ranked by the MCC (Figure 4A),
and MCODE identified one key module containing 24 hub genes
A B

DC

FIGURE 2 | Identification of the weighted gene co-expression network analysis (WGCNA) hub module and relationship with clinical traits. (A) Sample cluster
dendrogram and heatmap of corresponding clinical traits. Each branch represents a sample of gastric cancer (GC). (B) Dendrogram of genes clustered into 12
colored modules based on a dissimilarity measure (1-TOM). Each branch represents a gene. (C) The correlation between green-yellow module and Asian Cancer
Research Group (ACRG) subtype. MM, module membership; GS, gene significance. (D) The cluster dendrogram and heatmap of network based on the topological
overlap matrix.
February 2021 | Volume 11 | Article 554779

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Prognostic Model for Gastric Cancer
from the network (Figure 4B). A total of ten genes were identified
using the methods: FBXL7, DDR2, BNC2, FERMT2, TSHZ3,
EFEMP2, LRRC32, HTRA1, ITGBL1, and FBN1.
GO Enrichment and KEGG Pathway
Analysis
Univariate Cox regression was performed with 1,198 genes from
the green-yellow module, and showed that 476 genes were
significantly related to overall survival (Table S1). To identify
the functional categories and biological pathways of these genes,
we performed GO enrichment and KEGG pathway analysis
using the “clusterProfiler” of R package. The enriched
biological process was mainly involved in the extracellular
matrix (ECM), TGF-b, and chondroitin sulfate. The enriched
cellular components were mainly the extracellular matrix,
basement membrane, and endoplasmic reticulum lumen. The
Frontiers in Oncology | www.frontiersin.org 6
molecular functions mainly included extracellular matrix
structural constituents and types of protein binding. The
KEGG pathway analysis revealed enrichment in ECM-receptor
interaction, focal adhesion, PI3K-Akt signaling pathway, and
proteoglycans in cancer (Figures 5A, B).
Construction and Validation of the Cox
Regression Model
We further performed LASSO regression analysis using “glmnet”
from the R software package. First, we analyzed the trajectory of
each independent variable, shrinking some coefficients and
setting others to zero. Cross-validation was also employed for
model construction, and the confidence interval under each
lambda is presented in Figure 6A. The candidate genes were
narrowed down to eight genes with lambda = 0.1287 (Figure
6B). Then, the multivariate Cox regression analysis was applied
FIGURE 3 | Heatmap of the correlation between MEs and clinical traits. The background colors of the cells represent the strength of correlations, from red to green.
The numbers in the cells represent the correlation coefficient, and the numbers in parentheses represent p-values. ME, module eigengene.
February 2021 | Volume 11 | Article 554779
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further. Finally, we identified five genes (Table 1) for the
prognostic model:

Risk Score ¼½( − 0:7547) ∗Expression (ARHGAP32Þ
+½( − 0:8272) ∗Expression (KLF5)�
+ ½1:09 ∗ Expression (MAMLD1)�
+ ½0:5174 ∗ Expression ðMATN3Þ + ½1:66 ∗Expression(NESÞ�

We then used the median risk score to divide the 292 patients
into high risk (n = 146) and low risk (n = 146) groups.

Next, Kaplan-Meier curves (Figure 7A) showed that our
predictive model was significant using both the high-risk and
low-risk groups (p = 6.503e-11). Patients in the high-risk group
were considered to have a poor prognosis, while patients in the
low-risk group seemed to have a better prognosis. Through the
risk coefficient obtained by the formula, we predicted the survival
probability of each sample and compared it with the actual
survival probability of patients (3 or 5 years). We drew the ROC
curve and got the AUC value using SurvialROC method in R.
The 3- and 5-year area under the ROC curve were 0.728 and
0.738, respectively, suggesting a moderate potential for the
prognostic signature in survival monitoring (Figure 7B).
Focusing on the distribution of the survival status of these two
Frontiers in Oncology | www.frontiersin.org 7
groups, we can observe the stratification of survival status. The
heatmap of five model genes showed that MATN3, MAMLD1,
and NES were highly expressed in the high-risk group, and that
KLF5 and ARHGAP32 were expressed at low levels in the low-
risk group (Figures 7C, D).

To confirm the robustness of the prognostic model, the same
gene expression formula was used to analyze the GSE15459
dataset and TCGA cohort. Kaplan-Meier curves (Figures 7E, F)
showed that patients of GSE15459 with low-risk had an
obviously better 5-year survival rate than did those with high-
risk (p = 0.02277); the same with the condition in TCGA cohort
(p = 0.034). These results suggest that the prognosis was
significantly better for patients in the low-risk group than for
those in the high-risk group.

Furthermore, the TNM levels, including depth of tumor
invasion, regional lymph nodes, and metastatic diseases, were
incorporated into our prognostic model to construct a combined
model. According to the ROC painted by the R package
“SurvivalROC”, we accessed the prediction efficiency of this
model. The AUC of the “Risk Score” , “pStage” , and
“combined” three models, was 0.738, 0.723, and 0.794,
respectively (Figure 7G). The ROC of the combined model
was significantly higher than that of the other two models.

Moreover, multivariate Cox stepwise proportional hazards
analysis identified clinical traits pStage (HR, 1.64, p = 0.021), and
A B

FIGURE 4 | Visualization of the co-expression genes of green-yellow module in Cytoscape. (A) The network containing the top 15 genes ranked by Maximal Clique
Centrality (MCC) algorithm of cytoHubba plugins. (B) The top 500 green-yellow module genes based on weight values. The gene module inside red circle was
identified by MCODE plugins.
February 2021 | Volume 11 | Article 554779
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risk-score (HR, 1.678, p < 0.001) as independent predictors of
prognosis. Although Lauren subtypes, T, N, M, and pStage were
regarded as independent prognostic factors using univariate
analysis, only pStage and risk-score were significant in the
multivariate analysis (Figures 8A, B).
Frontiers in Oncology | www.frontiersin.org 8
IHC Staining of 105 Patients
Of the IHC analysis of 105 patients with GC, we found that NES-
and KLF5-positive expression rates were 51.4% (54/105) and
41.0% (43/105), respectively (Figure 9A). Survival analysis
suggested that patients with high expression of NES had a
A

B

FIGURE 5 | Functional enrichment analysis. (A) GO enrichment analysis including biological process, cellular component, molecular function analysis; (B) KEGG
pathway enrichment analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
February 2021 | Volume 11 | Article 554779
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worse prognosis (p < 0.001), while the high expression of KLF5
associated with a better prognosis (p < 0.001, Figure 9B).
Clinical Relevance of the Prognostic
Model
Relationships between the prognostic model risk score and
clinical and demographic characters, including gender, age, T,
N, M, pStage, Lauren subtype, and ACRG molecular subtype
were analyzed. Our results show that the risk score was
significant with T, N, M, pStage, Lauren subtype, and ACRG
molecular subtype. The test statistics and p values are shown in
the following table (Table 2). Our results show that the risk score
of this model was significantly correlated with clinical traits, such
as T stage, N stage, M stage, pStage, Lauren subtype, and ACRG
molecular subtype. However, no risk score differences were
observed for gender and age (Figures 10A–F).

Immune Infiltration of the Five Identified
Genes and Model Risk Score

We analyzed the relationship between the prognostic model
genes and six immune cell infiltration using the TIMER
algorithm. All five genes were significantly related to immune
cells (Figures S2–S6), especially CD8+ T cells, CD4+ T cells,
macrophages, and dendritic cells. ARHGAP32 was negatively
Frontiers in Oncology | www.frontiersin.org 9
related to CD8+ T cells and dendritic cells, KLF5 was negatively
related to macrophages, MATN3 and MAMLD1 were highly
positively related to macrophages, andNES was positively related
to CD4+ cells (Figures 11A–E).

We used CIBERSORT to estimate the immune cell
proportion in each patient sample, and to assess the
relationship between the risk score and immune infiltration
using Spearman correlation test. We found that B cell subsets,
including plasma cells, naïve B cells, and memory B cells, and
CD4 memory activated T cells was related to the risk score.
Moreover, M2 type macrophages, monocytes, and activated NK
cells were also significantly correlated with risk score. The results
showed a negative correlation between the risk score and plasma
cells, memory B cells, CD4+ memory activated T cells, and
activated NK cells. M2 macrophages, naïve B cells, and
monocytes are positively correlated with the risk score
(Figures 12A–H).
DISCUSSION

Many genetic prognostic models of GC have been published,
most of which are based on genetic difference analysis followed
by Cox regression analysis. This study is based on weighted co-
expression network and detailed gene set analyses to obtain
A B

FIGURE 6 | Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis. (A) LASSO coefficient profiles; (B) Genes from univariate Cox
regression analysis were narrowed down by the lasso algorithm.
TABLE 1 | The multivariate Cox regression analysis.

Gene symbol Coefficient HR Low 95% CI High 95% CI P value

ARHGAP32 −0.7547 0.4702 0.1828 1.2095 0.1175
KLF5 −0.8272 0.4373 0.2018 0.9476 0.0360
MAMLD1 1.0900 2.9743 1.0344 8.5517 0.0431
MATN3 0.5174 1.6776 1.0210 2.7567 0.0412
NES 1.6600 5.2595 1.9137 14.4552 0.0013
Feb
ruary 2021 | Volume 11 | Article
 554779
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meaningful modules and construct a prognostic model. The
correlation between this model and immune infiltration was
evaluated, and our results suggest a significant correlation
between immune infiltration and prognosis in patients with GC.
Frontiers in Oncology | www.frontiersin.org 10
Because of the high heterogeneity of GC, and the
development of molecular detection technology, attention on
the molecular classification of GC is increasing. We chose
ACRG/GSE62254 for WGCNA analysis, because it contains a
A B

D

E F

G

C

FIGURE 7 | Predictive effects of prognostic models. (A, B) Kaplan-Meier curves and receiver operating characteristic (ROC) curves of GSE62254; (C, D) High- and
low-risk group gene expression heatmap, Risk Score rank, and survival status distribution; (E, F) Kaplan-Meier curves of GSE15459 and TCGA cohort;
(G) Comparison of ROC curves between Risk Score model, pStage, and Combined model.
February 2021 | Volume 11 | Article 554779
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large number of ACRG cases (N = 300) and comprehensive
clinical information and is divided into four widely recognized
subtypes: MSI; MSS/TP53+; MSS/TP53-; and MSS/EMT. The
green-yellow module was strongly related to the ACRG
molecular subtype.

We selected the top 500 genes, based on edge weight
coefficients, for Cytoscape visualization. We found 10 genes
that were significant in both cytoHubba and MCODE plugins.
These 10 genes have been shown to affect oncogenesis and tumor
development through various mechanisms. For example, DDR2
promotes GC peritoneal dissemination through collagen
deposition by stromal fibroblasts in the microenvironment
(16). Another report showed that DDR2 mediates stromal and
cancer cell interaction in mesenchymal stem cells and metastasis
growth in breast cancer (17, 18). EFEMP2 significantly inhibits
the invasion and metastasis of tumor cells and the process of
epithelial-mesenchymal transition (EMT) through the Wnt/b-
catenin pathway in lung, bladder, and breast cancers (19–21).
Similarly, ITGBL1 is involved in tumor cell invasion and
metastasis through the KRAS/EMT pathway (22). Extracellular
vesicles enriched in ITGBL1 can activate fibroblasts, which
induce metastasis by secreting proinflammatory cytokines (23).
Frontiers in Oncology | www.frontiersin.org 11
Tumor development and metastasis are multistep and
complex processes that involve the interaction of the tumor
microenvironment, composed of tumor cells and stromal cells
(24). Functional enrichment analysis of the 476 genes revealed
that ACRG molecular subtype was related to the ECM,
chondroitin sulfate, and TGF-b for molecular functions. KEGG
pathway analysis results revealed that PI3K-Akt signaling
pathway, focal adhesion, ECM-receptor interaction, and
glycosaminoglycan biosynthesis were valuable target pathways
in GC pathogenesis research. All above characteristics are related
to GC oncogenesis and metastasis mediated by the ECM and its
receptor, integrins. The cancer-associated ECM, surrounding
tumor and stromal cells, is a complex part of the tumor
microenvironment that main ly conta ins co l lagen ,
proteoglycans (including chondroitin sulfate and heparan
sulfate), ECM proteins (including MMPs), and other factors.
In cancer cells, abnormal integrin activity promotes oncogenesis
through ECM remodeling or by interfering with intracellular or
extracellular signaling transduction (25). Integrin consists of 18
a and 8 b subunits. The PI3K/AKT pathway is preferentially
activated in response to avb3 integrin, which inhibits tumor cell
apoptosis by targeting the pro-apoptotic Bcl-2 related protein
A

B

FIGURE 8 | Independent prognosis effect of Risk Score model. (A) univariate Cox regression analysis; (B) multivariate Cox regression analysis.
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(25). The ECM can provide normal tissue/cells for structural
support and signal transduction to maintain physiological
activity, but the signaling cascades mediating cell-ECM
interactions can remodel the ECM structure and function to
promote the growth, adhesion, invasion, and migration of
tumor cells.

We applied WGCNA to identify the hub modules and to
select appropriate genes for further analysis. In this study, genes
within the green-yellow module were selected to construct the
gene prognostic model risk scoring system. Finally, we
establ ished a five gene prognostic model that was
Frontiers in Oncology | www.frontiersin.org 12
independently validated with an external dataset and shown to
be accurate.

Of the five genes within the novel risk model, there have been
no reports about the function or mechanism of ARHGAP32 and
MAMLA1 in GC. The other three genes play important roles in
the molecular mechanisms of GC progression. Krüppel-like
factor 5 (KLF5) is a zinc-finger transcription factor, which
regulates cell growth, proliferation, differentiation, and
tumorigenesis in several cancers, including GC. Kwak et al.
found that KLF5 expression increased in early GC, small GC,
and N0 stage GC (26). These findings indicate patients with early
stage GC, or without lymph node metastasis, may benefit from
increased KLF5 expression after GC surgery. These results
suggest that high levels of KLF5 expression may be related to a
relatively better prognosis. However, Fujii et al. identified KLF5
as a stemness-associated reprogramming factor (27). They also
considered that KLF5, induced by CDX1, converts gastric
epithelial cells to intestinal stem/progenitor-like cells, which
have properties similar to those of cancer stem cells.
Acquisition of stemness makes epithelial cells dedifferentiate
and transdifferentiate to stem/progenitor cells. Chia et al. also
found that KLF5 expression can be induced by metaplasia-
inducing factors such as CDX1 and Helicobacter pylori
infection. Moreover, KLF5, GATA4, and GATA6 represent
lineage-survival oncogenes in GC with a synergistic effect (28).
A B

FIGURE 9 | Expression of NES and KLF5 in gastric cancer (GC) tissue and Kaplan-Meier analysis. (A) Low and high expression of NES and KLF5 in GC specimens;
(B) Kaplan‐Meier survival curves based on NES and KLF5.
TABLE 2 | The relationships between the risk score and clinical traits.

Variables P value

Risk Score

Gender1 0.630
Age1 0.136
T Stage2 0.000
N Stage2 0.011
M Stage3 0.000
pStage2 0.000
ACRG Subtype2 0.000
Lauren Subtype1 0.001
1Unpaired Student t-test.
2Kruskal-Wallis H Test.
3Mann-Whitney U Test.
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In short, KLF5 is related to several pathological processes,
including a neoplastic change in the stomach.

MATN3 is a non-collagenous ECM component and induces
the expression of MMPs, indicating that MATN3 can regulate
ECM degradation. Wu et al. found that highMATN3 expression
indicates a poor prognosis and is involved in the process of GC
growth and metastasis (29).

NES (Nestin), a cytoskeleton-associated class VI IF protein, is a
neuronal stem/progenitor cell marker expressed in progenitor cells
of various tissues, including central nervous system tumors, lung
cancer, and breast cancer. Recent reports support a link between
NES and malignant characteristics and suggest that abundant NES
expression is correlated with increased malignancy and poorer
prognosis in different cancers. Moreover, NES regulates the EMT
and malignant prognosis in GC (30).

OurWGCNA analysis-based prognostic signature demonstrates
favorable clinical viability. Notably, our risk model shows moderate
prognostic predictions and correlates with ACRG molecular
subtype, Lauren subtype, T, N, M, and pStage. Furthermore, this
risk model is related to the tumor microenvironment via the ECM.
We performed correlation analysis to confirm the correlation
between the model and immune cells. Immune infiltration
Frontiers in Oncology | www.frontiersin.org 13
conditions, using the TIMER website tool, showed that KLF5 was
negatively correlated with macrophages, while MATN3, NES, and
MAMLD1 were positively correlated with macrophages.MAMLD1,
NES, MATN3 were positively correlated with CD4+ T cell, and
KLF5was negatively correlated with CD4+ T cells. Macrophages are
one of the main components of the tumor immune
microenvironment. Tumor-associated macrophages secrete a
variety of cytokines, degrade and reconstitute the extracellular
matrix, and promote tumor cell migration and invasion. M2 type
macrophages were also recruited by tumor cells to suppress
inflammatory and immune responses. CD4 + T cells play an
important role in maintaining tumor immunity. Moreover, we
identified a relationship between our risk model and additional
immune cell subtypes. Our risk model was positively correlated with
M2 macrophages, naïve B cells, and monocytes, and negatively
correlated with CD4+ memory activated T cells, plasma cells,
memory B cells, and activated NK cells. These results indicate
that the higher infiltration levels of M2 macrophages, naïve B cells,
and monocytes, and lower infiltration levels of memory activated
CD4+ T cells, plasma cells, and memory B cells might be observed
in high-risk patients. The data in this study suggests that this risk
model is not only a potent predictor of prognosis in patients with
A B

D E F

C

FIGURE 10 | The correlation between the Risk Score and (A) T stage; (B) N stage; (C) M stage; (D) pStage; (E) Asian Cancer Research Group (ACRG) molecular
subtype; (F) Lauren subtype. (*p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance).
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GC but also has the potential to predict immune infiltration levels.
However, the role of immune infiltration in the GC
microenvironment remains unclear, and corresponding
mechanisms need to be experimentally verified in the future.

This study was designed to identify a prognostic risk model of
GC using WGCNA and Cox regression analysis. In summary,
ARHGAP32, KLF5,MAMLD1,MATN3, and NES are considered
hub genes of this risk model, and validation results using an
Frontiers in Oncology | www.frontiersin.org 14
external dataset show significantly different prognostic
outcomes. The correlation between the risk model and
immune infiltration suggests that hub genes may influence the
tumor microenvironment through interacting with immune
cells. This study was limited by the size of the validation
dataset, and thus we were unable to further identify the
reliability of this model. The predictive effects and specific
mechanisms of this risk model require further research.
A

B

D E

C

FIGURE 11 | Part of relationships between model genes and immune cells evaluated by TIMER. (A) ARHGAP32 with CD8+ T cell and dendritic cell; (B) KLF5 and
macrophage; (C) MATN3 and macrophage; (D) MAMLD1 and macrophage; (E) NES and CD4+ T cell.
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FIGURE 12 | The relationships between the prognostic model and immune infiltration estimated by CIBERSORT. The correlation was performed by using Pearson
correlation analysis. (A) T cells gamma delta; (B) naïve B cells; (C) M2 macrophages; (D) monocytes; (E) resting mast cells; (F) plasma cells; (G) memory B cells;
(H) CD4+ memory activated T cells.
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Supplementary Figure 1 | (A) Sample cluster dendrogram. Red line represents
height of 31. (B) Analysis of scale-free independence and mean connectivity to
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select optimal soft-threshold power. (C) Clustering of MEs. The red line represented
height of 0.2. ME, module eigengenes.
Supplementary Figure 2 | -S6 The relationships between the prognostic model
and infiltration of six types of immune cells (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells), which are estimated by TIMER
algorithm. Figure S2, ARHGAP32; Figure S3, KLF5; Figure S4, MAMLD1; Figure
S5, MATN3; Figure S6, NES.
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