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Abstract: Interleukin-12 receptor β1 (IL12RB1)-deficient individuals show increased susceptibilities
to local or disseminated BCG infection and environmental mycobacteria infection. However, the low
clinical penetrance of IL12RB1 deficiency and low recurrence rate of mycobacteria infection suggest
that protective immunity still exists in this population. In this study, we investigated the mechanism
of tuberculosis suppression using the IL12RB1-deficient mouse model. Our results manifested that
Il12rb1−/− mice had significantly increased CFU counts in spleens and lungs, especially when BCG
(Danish strain) was inoculated subcutaneously. The innate TNF-a and IFN-γ responses decreased,
while the IL-17 responses increased significantly in the lungs of Il12rb1−/− mice. We also found
that PPD-specific IFN-γ release was impaired in Il12rb1−/− mice, but the specific TNF-a release was
not compromised, and the antibody responses were significantly enhanced. Moreover, correlation
analyses revealed that both the innate and PPD-specific IFN-γ responses positively correlated with
CFU counts, whereas the innate IL-12a levels negatively correlated with CFU counts in Il12rb1−/−

mice lungs. Collectively, these findings proved that the adaptive immunities against mycobacteria
are not completely nullified in Il12rb1−/− mice. Additionally, our results imply that IFN-γ responses
alone might not be able to contain BCGitis in the setting of IL12RB1 deficiency.

Keywords: IL12RB1; MSMD; IFN-γ; BCG; innate immunity; adaptive immunity

1. Introduction

IL-12 plays a crucial role in regulating both innate and adaptive immunities [1], of
which, downstream signaling through IL-12R is thought to be critical for type 1 immune
responses [2]. IL-12R is a heterodimer consisting of IL-12Rβ1 and IL-12Rβ2, which bind to
IL-12p40 (IL-12b) and IL-12p35 (IL-12a), respectively [2–4]. IL-12Rβ1 is a common chain
shared by the IL-12 and IL-23 receptors, and its deficiency can cause profound defects in
both IL-12 and IL-23 signaling, which renders the hosts susceptible to intracellular microbe
infections [5], such as mycobacteria and salmonella.

The essential role of IL12RB1 in resistance against intracellular bacterial pathogens was
recognized through IL-12Rβ1-knockout mice [6] and identification of IL12RB1-deficient
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individuals [7,8], which collectively showed that IL12RB1 deficiency impaired IFN-γ pro-
duction, a cytokine thought to be critical for the control of mycobacteria infection [9–13]. In
addition, recent studies suggested that the development of Th17 cells (IL-17 producing T
cells) [14] and circulating memory Tfh (T follicular helper) cells [15] might also be impaired
in IL12RB1-deficient patients. Nonetheless, compared with the studies elucidating the
immune regulatory effect of IL-12 [1], relatively little is known about the impact of IL12RB1
deficiency on anti-microbial infection [5]. One of the intriguing phenomena is that, al-
though IL12RB1 deficiency increases the susceptibility to childhood-onset mycobacteriosis
and salmonellosis, the recurrence of mycobacterial disease is rare, while the recurrence
of salmonellosis is much more frequent [16]. Both BCG inoculation and disease were
observed to be effective in preventing subsequent environmental mycobacteriosis [17],
suggesting that protective immunity against mycobacteria could still be established in
IL12RB1-deficient individuals. Further investigations into this phenomenon will not only
expand the understanding regarding the function of IL12RB1, but also provide new clues
for delineating the protective immunities against mycobacteria.

To this end, in this study, we first compared both the innate and adaptive immunities
between wild-type and Il12rb1−/− mice upon inoculating BCG, either intranasally or
subcutaneously. Our results showed that the patterns of both innate and adaptive immune
responses were obviously changed by Il12rb1 deletion. Of note, we found that the levels
of IFN-γ responses correlated positively with BCG CFU counts, while the levels of IL-12a
correlated negatively with BCG CFU counts in Il12rb1−/− mice, which implied that IFN-γ
might not be beneficial for the in vivo containment of BCGitis in the setting of IL12RB1
deficiency.

2. Materials and Methods
2.1. Ethical Statement

Mice experiments were carried out at Shanghai Public Health Clinical Center (Shang-
hai, China). All animal experiment protocols were reviewed and approved by Research
Ethics Review Committee of the Shanghai Public Health Clinical Center, affiliated with
Fudan University (Reference number: 2021-A023-03).

2.1.1. Mice and BCG

Il12rb1 gene knockout C57BL/6 (Il12rb1−/−) mouse was constructed by Cyagen Bio-
sciences (Suchow, China) and maintained in the SPF animal facility of Shanghai Public
Health Clinical Center. Wild-type C57BL/6 mice were purchased from SLAC Laboratory
Animal Co., Ltd. (Shanghai, China). All mice used in this study were female and 8–12 weeks
old. The BCG (Danish strain, obtained from Shanghai Biological Products Institute) was
kindly gifted by Dr. Honghai Wang from Fudan University (Shanghai, China).

2.1.2. BCG Inoculation and Sample Collection

Female adult C57BL/6 and Il12rb1−/− mice were inoculated with BCG either in-
tranasally or subcutaneously (Table 1). For intranasal inoculation, the mice were anes-
thetized briefly with isoflurane inhalation, and then 1.5 × 106 CFUs of BCG suspended in
50 µL sterile PBS were instilled into both nostrils of mouse noses. For subcutaneous inocu-
lation, 3 × 106 CFUs of BCG suspended in 100 µL sterile PBS were injected under the lateral
skin of mouse abdomen. After inoculation, the mice were weighed and monitored every
3 days. On day 27, all the mice were euthanized by cervical dislocation, and peripheral
blood, spleen, and lung tissues were collected separately for BCG CFU count and immune
assays. Since the genetic background of the mice was homogenous, except that Il12rb1
gene was negated in Il12rb1−/− mice, 5–6 mice per group should be enough to support the
statistical analysis. The dosage of BCG used in this study was relatively high because it was
intended to be used as a challenge model, rather than a vaccination model. Despite this,
the dosages (1.5 × 106 CFUs/mouse for intranasal inoculation and 3 × 106 CFUs/mouse
for subcutaneous inoculation) used in our study were still within the reasonable range,
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as a higher dosage (5 × 106 CFUs/mouse) was used in a previous study [18]. Euthanasia
and detection were performed at 4 weeks post inoculation because the BCG load should
have dropped dramatically in wild-type mice at this time point [19,20], and the difference
between the wild-type and Il12rb1−/− mice could be readily observed.

Table 1. The design of mouse experiment.

Group Mouse Strain
BCG Dosage
(CFUs/Mouse)

Inoculation
Route

Schedule

Inoculation Euthanasia

1 C57BL/6 (n = 5)
1.5 × 106 Intranasally

Day 0 Day 272 Il12rb1−/− (n = 6)

3 C57BL/6 (n = 6)
3 × 106 Subcutaneously

4 Il12rb1−/− (n = 5)

2.1.3. CFU Counts of BCG in Lung and Spleen

After euthanasia, mouse lung and spleen tissues were collected and homogenized
using a tissuelyser (Cat# SCIENTZ-48, SCIENTZ, Ningbo, China). The homogenized
mixtures were then serially diluted with sterile 1× PBS; then, 100 µL of each diluted sample
was spread on a 7H11 agar plate with four antimicrobials (amphoterincin B 10 mg/L,
polymyxin B 200,000 units/L, carbenicillin 50 mg/L, and trimethoprim 20 mg/L). To
ensure the accuracy of the CFU count, duplicated plates were spread for each sample. The
plates were incubated at 37 ◦C for 3 weeks before counting.

2.1.4. Real-Time PCR Detection of Cytokine Transcription in Lung Tissue

The left lower lobes of lungs were preserved in RNA protect liquid, and the total RNA
was extracted using the RNeasy mini kit (Cat# 74104, Qiagen, Hilden, Germany), according
to the manufacturer’s protocol. Reverse transcriptions of total RNA were performed
using the HiScriptIII RT SuperMix for qPCR (+gDNA wiper) kit (Cat# R323-01, Vazyme,
Nanjing, China). Primers for tnf -a, il-1, il-2, cxcl-2, myd88, ifn-γ, il-17, il-4, il-6, il-12a, il-
12b, il-10, inos, hif -1a, and gapdh were synthesized by Sangon Biotech (Shanghai, China)
(Table S1). Real-time PCR mix was prepared according to the manufacturer’s instruction
(TB Green Premix Ex Taq II kit, Cat# RR820A, Takara, China). PCR reactions were run
for 40 cycles using the ABI 7500 Real-Time PCR system (Cat# 4351105, ABI, Foster city,
CA, USA) under the following conditions: 95 ◦C pre-denaturation for 30 s, 1 cycle; 95 ◦C
denaturation for 5 s, 60 ◦C annealing, extension for 30 s, and 40 cycles. Gapdh gene was
used as an internal control. According to a previous study [21], gapdh is one of the top
10 constantly expressed housekeeping genes, which are expressed in multiple mouse
tissues (including the lung tissue). The qPCR primers used in this study were synthesized,
according to open databases and previous reports [22]. We assume that the amplification
efficiencies for all the tested genes are comparable, while calculating the delta delta CT.
The transcription levels were calculated according to the following formula: 2−∆CT =
2Ct value of GAPDH –Ct value of the cytokine [23].

2.1.5. Measurement of PPD-Specific IgG in Mouse Serum

An in-house ELISA protocol was developed using purified PPD (purified protein
derivative of M. tuberculosis H37Rv) protein (Cat# DAG2684, ABACE-BIOLOGY, Beijing,
China) as coating antigen. Experiment procedure was established according to our previous
work [24].

2.1.6. IFN-γ ELISPOT Assay

Antigen-specific release of IFN-γ was measured using a mouse IFN-γ ELISPOT kit
(BD Bioscience, Cat# 551083). Mouse splenocytes and peritoneal macrophages were freshly
isolated and seeded into each well at 2 × 105 cells/well and 1 × 105 cells/well, respectively.
The cells were stimulated with PPD (at a final concentration of 5 µg/mL) for 20 h in a
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37 ◦C/5% CO2 incubator. Spots representing IFN-γ producing cells were enumerated by
using an automated ELISPOT plate reader (ChampSpot III Elispot Reader, Saizhi, Beijing,
China).

2.1.7. Cytokine Beads Array (CBA) Assay

The concentration of TNF-a, IL-2, IL-17A, and IL-21 in the culture supernatant of
IFN-γ ELISPOT assays were measured using a cytokine beads array (CBA) kit (Cat# 558266,
BD Bioscience, San Jose, CA, USA). Briefly, 50 µL of supernatant or cytokine standard
was mixed with 50 µL detection beads and incubated in dark for 1 h at room temperature.
Subsequently, 50 µL PE labeled detection reagent was added to each sample and incubated
in dark for 2 h at room temperature. Finally, the beads were washed with 1 mL wash buffer
and resuspended in 300 µL wash buffer. Flow cytometry analyses were performed using
LSR Fortessa (BD, Franklin lakes, NJ, USA).

2.1.8. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 9 (GraphPad Software,
Inc., La Jolla, CA, USA). The distribution of the data was verified by the method of Shapiro–
Wilk test. Comparisons between two groups were conducted by the methods of parametric
t-test for normally distributed data and non-parametric t-test for non-normally distributed
data. Correlation analyses were done by Pearson correlation (for normally distributed data)
or Spearman’s rank correlation (for non-normally distributed data). Heatmap clustering
analysis was conducted using an online tool (Heatmapper, www.heatmapper.ca) (clustering
method: complete linkage; distance measurement method: Spearman rank correlation).
p < 0.05 was considered as statistically significant.

3. Results
3.1. IL12RB1 Deficiency Compromised the In Vivo Containment of BCG Especially When
Inoculated Subcutaneously

In this study, we first observed the influence of IL12RB1 deficiency on the in vivo
containment of BCG. To mimic BCG vaccination and natural exposure to environmental
mycobacteria, BCG was administered either subcutaneously (S.Q) or intranasally (I.N).
After inoculation, the mice were weighed regularly. We observed a transient weight
loss in wild-type mice on day 3, while the body masses of Il12rb1−/− mice increased
steadily, until the end of experiment (Figure S1). CFU counts showed that BCG inoculated
subcutaneously was almost totally cleared in both the lungs and spleens of wild-type mice,
while the bacterial loads in Il12rb1−/− mice stayed at high levels (Figure 1a,b). For the
mice being inoculated intranasally with BCG, significantly higher bacterial loads were
also observed in the spleens of Il12rb1−/− mice (Figure 1d). The average BCG counts in
the lungs of Il12rb1−/− mice after intranasal inoculation tended to be higher than that of
wild-type mice, but they did not reach statistical significance (Figure 1c). We noted that the
CFU counts were low in few intranasally inoculated IL12RB1-deficient mice, which was
probably due to the natural protection against BCG infection in the respiratory tract.

3.2. Profiling of Cytokine Transcription in Lung Tissue Revealed Significantly Altered Innate
Responses upon BCG Inoculation in Il12rb1−/− Mice

To gain insight into the influence of IL12RB1 deficiency on innate immune responses
against BCG, total RNA was extracted from the lung tissue of each mouse, and the transcrip-
tion levels of 14 innate factors were analyzed by qPCR. Our data showed that the innate
immune responses of Il12rb1−/− mice differed obviously from those of wild-type mice
(Figure 2a and Figure S2). The heatmap clustering discriminated most of the wild-type mice
from the Il12rb1−/− mice, except one KO mouse (309.KO) and one WT mouse (313.WT).
While responses triggered by different inoculation routes could not be clearly separated,
either within the knockout or within the wild-type mice (Figure 2a). Of note, we found that
the transcription levels of IFN-γ were significantly lower in Il12rb1−/− mice, regardless of

www.heatmapper.ca
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inoculation routes (Figure 2b,e). Moreover, our result showed that the transcription levels
of TNF-a decreased, while the transcription levels of IL-17 increased in Il12rb1−/− mice
after being inoculated with BCG subcutaneously (Figure 2c,d). Similar patterns were also
observed in intranasally inoculated Il12rb1−/− mice, although the differences were not
statistically significant (Figure 2f,g).
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Figure 1. Comparisons of BCG bacterial burden in lungs and spleens of mice. The mice were
euthanized 4 weeks after BCG inoculation. The lungs and spleens were harvested and homogenized
for the CFU count of BCG. (a) Comparison of CFU counts in lungs of Il12rb1−/− (n = 5) and C57BL/6
mice (n = 6) inoculated with BCG subcutaneously. (b) Comparison of CFU counts in spleens of
Il12rb1−/− (n = 5) and C57BL/6 mice (n = 6) inoculated with BCG subcutaneously. (c) Comparison
of CFU counts in lungs of of Il12rb1−/− (n = 6) and C57BL/6 mice (n = 5) inoculated with BCG
intranasally. (d) Comparison of CFU counts in spleens of of Il12rb1−/− (n = 6) and C57BL/6 mice
(n = 5) inoculated with BCG intranasally. Statistical analyses were performed by the two-tailed t-test
method (*, p < 0.05; **, p < 0.01).

3.3. PPD-Specific T Cell Responses Were Partially Impaired in Il12rb1−/− Mice

To understand the influence of IL12RB1 deficiency on adaptive cellular immunities
against BCG, we measured the PPD-specific T cell responses using an antigen presentation-
improved ELISPOT assay. Our data showed that the numbers of PPD-specific IFN-γ
secreting cells in spleens of Il12rb1−/− mice was lower than those of wild-type mice
(Figure 3a–d), especially when BCG was inoculated subcutaneously (Figure 3b, p = 0.001).
In addition to counting the number of spots forming cells, we also analyzed the optical
intensities of spots, which reflect the quantities of IFN-γ secreted by T cells. Our data
showed the average intensities of the IFN-γ spots formed after PPD stimulation were
significantly lower in Il12rb1−/− mice than those in wild-type mice (Figure 3e,f). In contrast
to PPD stimulation, both the numbers and optical intensities of the spots generated after
PMA/ionomycin stimulation showed no significant difference between Il12rb1−/− and
wild-type mice (Figure 3g,h). To further characterize the PPD-specific cellular immune
responses, we analyzed the concentrations of TNF-a, IL-2, IL-17A, and IL-21 secreted into
the culture supernatant during IFN-γ ELISPOT assay using a CBA kit. Among the four
cytokines tested, PPD-specific production was only observed for TNF-a. As being depicted
in Figure 3i, the levels of secreted TNF-a were comparable between the Il12rb1−/− and
wild-type mice.
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Figure 2. Hierarchical clustering analysis for transcriptions of multiple innate factors in lung tissue
and cytokines differentially transcribed in lung tissues of Il12rb1−/− and C57BL/6 mice after BCG
inoculation. Transcription levels of 14 innate factors in lung tissues of Il12rb1−/− (n = 11) and
C57BL/6 mice (n = 11) were measured by real time PCR. And the general response patterns were
visualized by heatmap clustering analysis (a). The transcription levels of IFN-γ (b,e), TNF-a (c,f),
and IL-17A (d,g) in lung tissues were compared between Il12rb1−/− and C57BL/6 mice after being
inoculated with BCG, either subcutaneously or intranasally. Statistical analyses were performed by
the two-tailed t-test method (*, p < 0.05, **, p < 0.01).
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Figure 3. The evaluation of PPD-specific immune response. Peritoneal macrophages were added to
ELISPOT plates to enhance antigen presentation. (a,d) Representative images of spots formed after
being stimulated with APC only, APC+PPD, or PMA+ionomycin. Numbers of PPD-specific IFN-γ
secreting cell were compared between Il12rb1−/− and C57BL/6 mice after being inoculated with
BCG, either subcutaneously (b) or intranasally (c). The comparisons of the average optical intensities
of spots stimulated by PPD between Il12rb1−/− and C57BL/6 mice after being inoculated with BCG,
either subcutaneously (e) or intranasally (f). (g,h) showed the comparisons of IFN-γ secreting cell
numbers and the average optical intensities of spots between Il12rb1−/− and C57BL/6 mice after
PMA+ionomycin stimulation. (i) The cell culture supernatant in the wells of ELISPOT plates was
collected for CBA assay. Levels of TNF-a were compared between Il12rb1−/− and C57BL/6 mice
inoculated with BCG, either subcutaneously or intranasally. All the above data were shown as
mean ± SD. Statistical analysis were performed by the method two-tailed t-test (*, p < 0.05,
**, p < 0.01, ***, p < 0.001). PPD-specific binding antibodies were detected by ELISA. Optical den-
sity (OD) values were compared between Il12rb1−/− and C57BL/6 mice (j). Data are shown as
mean ± SD. Statistical analyses were performed by the two-way ANOVA method (*, p < 0.05,
**, p < 0.01).

3.4. PPD-Specific Antibody Responses Were Significantly Enhanced in Il12rb1−/− Mice

PPD-specific antibodies in mouse serum were detected by ELISA. As shown in
Figure 3j, Il12rb1−/− mice exhibited stronger binding antibody responses against PPD
than wild-type mice in both the subcutaneous and intranasal inoculation groups. We
also evaluated the antibody avidity by the method of avidity ELISA assay, which showed
that the antibody avidity levels were similar between the Il12rb1−/− and wild-type mice
(Figure S3).
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3.5. IL-12a Correlated with Better Containment of BCG in Il12rb1−/− Mice

To identify the immune factors that potentially contributed to the in vivo control of
BCG in Il12rb1−/− mice, we performed correlation analyses among multiple immune
factors and CFU counts. Our results showed that the transcription levels of the TNF-a,
IL-4, and IFN-γ positively correlated with CFU counts in lung tissues (Figure 4a,b,d), while
IL-12a showed a remarkable negative correlation with pulmonary BCG counts (Figure 4c).
Consistent with the observation in lung tissues, the number of PPD-specific IFN-γ secreting
splenocytes also positively correlated with the BCG counts in spleen (Figure 4e). There was
a trend of negative correlation between the PPD-specific TNF-a release and BCG counts
in the spleen, but it was not statistically significant (p = 0.4181) (Figure 4f). Other factors,
such as the transcription levels of IL-1, IL-2, CXCL-2, Myd88, IL-17, IL-6, IL-12b, IL-10,
INOS, and HIF-1a, did not correlate significantly with the CFU counts in the lungs (data
not shown). PPD-specific IgG did not correlate with the bacterial loads either (Figure S4a,b).
Correlation analyses were also performed between the innate factors and CFU counts in
the wild-type mice; significant correlations were observed between the TNF-a, IL-2, IL-10,
IL-17, HIF-1a, and INOS mRNA levels and CFU counts in the lungs (Figure S5).
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Figure 4. Correlation analyses BCG CFU counts and responses of multiple cytokines in Il12rb1−/−

mice. Transcription levels of TNF-a (a), IL-4 (b), IL-12a (c), and IFN-γ (d) correlated significantly
with CFU counts in lung tissue. PPD-specific IFN-γ responses correlated positively with CFU counts
in spleen (e), while no significant correlation was observed between PPD-specific TNF-a response
and CFU counts in spleen (f). Normally distributed data was analyzed by the method of Pearson
correlation, otherwise Spearman’s correlation was used (*, p < 0.05).

Correlation analyses between the transcription levels of various factors in lungs
showed that significant correlations widely existed between different factors (Figure S6).
Of note, IL-12b correlated with IL-6, TNF-a, IL-2, IL-10, CXCL-2, IFN-γ, HIF-1a, and INOS,
while IL-12a only correlated with TNF-a.

4. Discussion

IL12RB1 is the common chain shared by the IL-12 and IL-23 receptors [25,26]. The
deficiency of IL12RB1 impairs IFN-γ immunity against mycobacteria by abolishing the
functions of both IL-12 and IL-23 [27,28], which leads to increased susceptibility to weak
pathogenic or environmental mycobacteria. Cumulative evidence showed that IL12RB1
deficiency can cause disseminated BCG infection (BCGosis) [16,17,29,30]. Even though hun-
dreds of IL12RB1-related MSMD kindreds have been reported worldwide [5,16,17,31–34],
the incomplete clinical penetrance of IL12RB1 deficiency and low recurrence rate of my-
cobacteria infection [16,27] suggest that protective immunity still exists in these individuals.
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Previous studies investigated the association between single nucleotide polymorphism in
the IL-12R gene and vaccine immunity [35,36]. However, the impact of IL12RB1 deficiency
on innate and adaptive immunities against BCG has not been adequately elucidated. Aim-
ing to fill this gap, we characterized the innate and adaptive immunities upon BCG inocula-
tion in Il12rb1−/− mice by comparing with wild-type mice. We found that Il12rb1 knockout
attenuated the innate immune responses upon BCG inoculation, either intranasally or
subcutaneously, among which, the transcriptions of IFN-γ and TNF-a were significantly
reduced, while transcription of IL-17 increased in the lung tissues of Il12rb1−/− mice. The
enhanced IL-17 response was unexpected and inconsistent with previous reports, showing
that Th17 response was impaired by IL12RB1 deficiency [14,27,37,38]. We cannot exclude
the potential impairment of IL12RB1 deficiency on Th17 mediated immune responses, be-
cause the transcription of IL-17 was measured using total RNA extracted from lung tissue
in this study, which might obscure the potential difference in Th17 responses. The observed
enhancement of IL-17 transcription might derive from an IL-23 independent resource [39].
In addition, multiple previous studies suggest that neutrophils also contribute to IL-17
production [40–46], but it is unlikely that observed enhancement of IL-17 transcription was
derived from neutrophils in IL12RB1-deficient mice because available evidence indicates
that the IL-12 signaling is essential for neutrophil function [47–49].

BCG-specific IFN-γ release was also found to be significantly tempered by Il12rb1
deletion in this study. However, the intrinsic capability of T cells to produce IFN-γ might
remain intact, because the secretion of IFN-γ was not hampered when stimulated with PMA
and ionomycin. Moreover, our results also showed that BCG-specific TNF-a release was not
impaired in Il12rb1−/− mice, despite the reduced innate TNF-a response observed in the
lungs, reflecting that IL-12 may utilize different mechanisms to regulate innate and adaptive
immunities [50,51]. In addition to cellular responses, we also found that the BCG-specific
binding antibody responses increased significantly. This observation was consistent with a
previous study [15], which implied that the immune system might upregulate antibody
response in compensation for the loss of cellular immune function.

Furthermore, in order to identify potential protective immune factors under the
genetic setting of IL12RB1 deficiency, we performed correlation analyses between the CFU
counts of BCG and multiple parameters. Unexpectedly, we found that both the innate
and BCG-specific IFN-γ responses correlated positively with CFU counts, whereas the
innate IL-12a response was shown to be negatively associated with CFU count in lung
tissue. Supplementation of IFN-γ represents an attractive therapy for IL12RB1-deficient
MSMD patients [52]. Nonetheless, our data suggests that IFN-γ did not help to control
mycobacterial infection (Figure S4c,d), which is supported by a clinical report showing that
IFN-γ treatment did not reduce serum mycobacterial activity [53]. Alternatively, our result
indicated that IL-12a was negatively associated with CFU counts in IL12RB1 knockout mice,
which suggested that it might benefit the containment of disseminated BCG infection for
IL12RB1-deficient patients. We explored the therapeutic effect of IL-12a by supplementing
the IL12RB1-deficient mice with it; however, the BCG loads were not significantly reduced
(data not shown). We speculated that IL-12a might be necessary, but insufficient, for the
control of BCG in these mice. As the genetic background of BCG is different from other non-
attenuated mycobacteria, the characteristics of in vivo dissemination might be different.
However, the patterns of host immune responses might be similar. Therefore, we speculate
that the above conclusions might also be applied to other mycobacterial infections.

Several limitations should be noted for this study. First, the BCG load and immune
responses were not dynamically monitored, which made it impossible to compare the
compacities of wild-type and Il12rb1−/− mice in controlling BCG infection at a time point
either earlier or later than 4 weeks post infection. Second, as the PPD-specific total T cell
responses were measured using the method of IFN-γ ELISPOT and CBA assays, the specific
CD4 and CD8 T cell responses could not be evaluated separately. Fourth, the mechanism
underlying the negative correlation between the IL-12a and BCG CFU counts is not clarified
in the current study. Further investigation into these issues may shed new light on the
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function of IL-12 signaling in anti-mycobacteria immunity and find a new therapy for
IL12RB1 caused MSMD.

5. Conclusions

The present study proved that, while the general innate immune response decreased,
the adaptive immunities (including IFN-γ responses) against mycobacteria were not com-
pletely nullified in Il12rb1−/− mice. More importantly, our results implied that IFN-γ
responses alone might not be able to contain BCGitis in the setting of IL12RB1 deficiency.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines10071147/s1. Figure S1: Kinetics of body weight change after BCG inoculation.
Figure S2: qPCR analysis for transcriptions of multiple innate factors in lung tissue of Il12rb1−/−

and C57BL/6 mice after BCG inoculation. Figure S3: Avidity analyses of PPD-specific antibodies in
mouse serum. Figure S4: Correlation analyses between BCG CFU counts and PPD-specific IFN-γ
or antibody responses. Figure S5: Correlation between BCG CFU counts and responses of multiple
cytokines in C57BL/6 mice. Figure S6. Correlation analyses among the transcription levels of factors
in lungs of IL12RB1-deficient mice. Correlations between normally distributed data were analyzed
by the method of Pearson correlation, otherwise Spearman’s correlation was used. Table S1: Primers
for qPCR assay of mouse cytokines.
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