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Abstract

Objective: VEGFR1 and 2 signaling have both been increasingly shown to mediate complications of ischemic retinopathies,
including retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). This
study evaluates the effects of blocking VEGFR1 and 2 on pathological angiogenesis and vascular leakage in ischemic
retinopathy in a model of ROP and in choroidal neovascularization (CNV) in a model of AMD.

Materials and Methods: Neutralizing antibodies specific for mouse VEGFR1 (MF1) and VEGFR2 (DC101) were administrated
systemically. CNV was induced by laser photocoagulation and assessed 14d after laser treatment. Retinal NV was generated
in oxygen-induced ischemic retinopathy (OIR) and assessed at p17. NV quantification was determined by measuring NV
tufts and vascular leakage was quantified by measuring [3H]-mannitol leakage from blood vessels into the retina. Gene
expression was measured by real-time quantitative (Q)PCR.

Results: VEGFR1 and VEGFR2 expressions were up-regulated during CNV pathogenesis. Both MF1 and DC101 significantly
suppressed CNV at 50 mg/kg: DC101 suppressed CNV by 7365% (p,0.0001) and MF1 by 6466% (p = 0.0002) in a dosage-
dependent manner. The combination of MF1 and DC101 enhanced the inhibitory efficacy and resulted in an accumulation
of retinal microglia at the CNV lesion. Similarly, both MF1 and DC101 significantly suppressed retinal NV in OIR at 50 mg/kg:
DC101 suppressed retinal NV by 5468% (p = 0.013) and MF1 by 5067% (p,0.0002). MF1 was even more effective at
inhibiting ischemia-induced BRB breakdown than DC101: the retina/lung leakage ratio for MF1 was reduced by 73624%,
p = 0.001 and for DC101 by 1264%, p = 0.003. The retina/renal leakage ratio for MF1 was reduced by 52628%, p = 0.009 and
for DC101 by 1364%, p = 0.001.

Conclusion: Our study provides further evidence that both VEGFR1 and 2 mediate pathological angiogenesis and vascular
leakage in these models of ocular disease and suggests that antagonist antibodies to these receptor tyrosine kinases (RTKs)
are potential therapeutic agents.
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Introduction

Pathological angiogenesis/neovascularization (NV) and vascular

leakage/permeability due to blood-retinal barrier (BRB) break-

down are the two major sight-limiting complications in ROP, DR,

and AMD. The mechanisms by which pathological angiogenesis

and BRB dysfunction develop in these ischemic retinopathies have

been investigated extensively and a number of target molecules

that stimulate the vascular complications due to the ischemia or

diabetes and agents that can suppress the pathological processes

have been identified and characterized. Among them, VEGF has

been identified as a key angiogenic and vasopermeability factor

that is up-regulated in ischemic retinopathies, such as ROP, AMD,

and DR, where it can promote BRB breakdown and NV [1–6].

Even relatively minor states of hypoxia can result in the induction

of VEGF [7–10] through a family of hypoxia-inducible transcrip-

tion factors (HIFs) that bind to a hypoxia response element (HRE)

in the VEGF promoter [10]. Using mice with a deletion of the

HRE of the VEGF promoter, which renders them incapable of up-

regulating VEGF in response to HIF, there was almost a total

inhibition of retinal NV and vascular leakage due to BRB

breakdown in a model of OIR and of CNV in a model of AMD

[11], showing that these activities are mediated through HIF-

induced VEGF in these models. In the eye, VEGF can be

expressed by multiple cell types including Müller cells, retinal

pigment epithelium (RPE), endothelial cells, glial cells, ganglion

cells and photoreceptors, and its mutation or over-expression

specifically in certain cell types is desired to investigate the role of

VEGF from different cell sources. For instance, with the

conditional knockout tool Cre/LoxP system, VEGF was mutated

specifically in Müller cells, leading to dramatic suppression of

retinal NV, inflammation, and vascular leakage due to BRB
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breakdown in ischemia and/or diabetes [12]. In contrast, VEGF

over-expression in certain cells can lead to pathological conse-

quences. One example is V6 VEGF transgenic mice, which over-

express VEGF in the photoreceptors under control of the

rhodopsin promoter, which leads to increased retinal NV and

BRB breakdown [13]. In V6 mice, the outer retina is primarily

affected, but if the source of VEGF is in the inner retina, such as

astrocytes, Müller cells, or ganglion cells, the inner retina is

primarily affected, showing that the source of VEGF is important,

as well as its levels and time of expression [14].

The development of antagonists, chemical compounds, or other

small molecules (i.e., small interfering (si)RNA) to neutralize VEGF

has dramatically advanced the field of anti-angiogenic therapy and

anti-VEGF therapy has now become widely used to treat

angiogenesis-dependent disorders such as cancer and retinopathies

like neovascular AMD [15,16]. Despite the clinical benefits, some

challenges exist for anti-angiogenic therapy, which was described in

detail in the literature [17–21]. Briefly, they include (i) half of

patients don’t respond to anti-VEGF therapy due to the existence of

other angiogenic factors, (ii) drug resistance to anti-VEGF therapy

as a result of the selective up-regulation of other angiogenic factors

and/or prevention of drug from arriving at the targeted endothelial

cell sites due to surrounding pericytes and/or extracellular matrix,

(iii) repetitive delivery of anti-VEGF agent is often needed to

effectively suppress neo-vessels due to their failure to regress and/or

recurrence of these abnormal vasculatures, and (iv) VEGF is also a

survival factor for vascular endothelial cells and neurons and

adverse side effects have been occasionally reported for anti-VEGF

therapy. Additionally, the multiple VEGF isoforms resulting from

alternative splicing and the complexity and interaction of its

receptor signaling systems provide a new dimensional challenge to

manage anti-VEGF therapy.

VEGFR1 and 2 share high sequence homology, are both

tyrosine kinase receptors (TKRs) and transmit signaling from

several members of the VEGF family. VEGF-A is the common

ligand for both receptors, but PlGF and VEGF-B are specific for

VEGFR1 and VEGF-E is specific for VEGFR2 [20–24]. It has

been long believed that VEGFR2 is the primary receptor by which

VEGF mediates its permeability and angiogenic activities and that

VEGFR1 is less potent and may act as a negative regulator for

VEGFR2, especially during embryonic angiogenesis [25]. How-

ever, the accumulating evidence suggests that VEGFR1 signaling

plays an important role in angiogenesis as well, particularly in

pathological conditions [26,27]. An antibody to PlGF, a ligand of

VEGFR1, but not VEGFR2, is highly effective at suppressing

tumor angiogenesis and choroidal neovascularization (CNV) in an

experimental model of AMD and its efficacy is enhanced when

used in combination with an antibody to VEGFR2, providing

evidence that both receptors play a role [28]. Targeting VEGFRs,

particularly VEGFR2, has provided clinical benefits for patients

suffering from angiogenesis-dependent disorders, such as cancer,

but this treatment has been confined to patients with cancer and is

not yet available for the treatment of eye diseases (http://www.

angio.org/ua.php). Anti-PlGF, however, is in clinical trials for

cancer and ocular disease. Direct signal transduction and

synergistic interactions with VEGFR2 are involved in the

mechanisms by which VEGFR1 regulates pathological angiogen-

esis and vascular permeability [28]. Further cross-talk between

VEGFR1 and 2 adds to the complexity. The present study was

conducted to try to resolve some of the confusion about the

respective roles of VEGFR1 and 2 and give further insight into

how they participate in pathological angiogenesis and vascular

leakage by blocking VEGFR1 and/or 2 signaling with specific

neutralizing antibodies to VEGFR1 and 2 in laser-induced CNV

and hypoxia-induced retinal NV models. The data from the

present study is of significance to help design better therapeutic

strategies for targeting the two TKRs to treat ischemic

retinopathies.

Methods

Antagonist antibodies & systemic administration
MF1 and DC101 were provided by ImClone System (New York,

NY), a wholly owned subsidiary of Eli Lilly and Company. The

targets and specificity of MF1 have been described [27], as have

those for DC101 in vitro [29] and in vivo [30]. Intraperitoneal (i.p.)

injections of 12.5 mg/kg, 25 mg/kg, 50 mg/kg MF1, 50 mg/kg

DC101, or 25 mg/kg MF1+25 mg/kg DC101 in PBS were

administered for both CNV and ROP models. An equal volume

of PBS or an equal concentration of non-specific rat antibody in

PBS were used as controls and the results of both controls were

identical. The doses were based on the results of other studies

[28,31–33]. For the timing in CNV, the mice were treated right

after laser treatment and followed by every other day (7 treatments

in total), and for that in OIR, the mice were treated on P12

(immediately after the mice are removed from hyperoxic conditions)

and on P15 (when the mice are in normal air for 3 days) (2

treatments in total).

Mice
Animal use was in accordance with the approved protocols by

the Institutional Animal Care and Use Committee of Johns

Hopkins University School of Medicine and the guidelines of the

Association for Vision and Ophthalmology. The 6–8-week old and

15 or 16 day pregnant C57BL/6 mice were purchased from

Charles River (Wilmington, MA) and housed at the Wilmer

Woods Animal Facility of Johns Hopkins University.

Real-time quantitative (Q) PCR
Real-time QPCR was performed in 96-well plates with the Bio-

Rad IQ5 system, as described previously with some modifications

[34,35]. Each 20 ml of reaction contained 10 ml of 26SYBR

Green Supermix, 20 nM of target gene primer mix, and 20–50 ng

of a cDNA template. QPCR conditions included an initial

denaturing step for 3 min at 95uC, followed by 40 cycles (95uC
for 15 sec, 58uC for 20 sec, and 72uC for 25 sec). Primers were

optimized by melting curve profiles and agarose gel analysis. The

quantification was calculated using comparative threshold cycles

(CT): the data were normalized by subtracting the difference of the

threshold cycles (CT) between the gene of interest’s CT and the

housekeeping gene Cycophilin’s CT (DCT = gene of interest CT-

Cycophilin CT) for each sample. The DCT difference between two

samples was designated as DDCT (DDCT = sample1 DCT2

sample2 DCT). The fold change of the two samples was calculated

as 22DDCT. The sequences of primers were cited from published

literature: cycophilin, VEGF, PlGF, VEGFR1 and 2 were

obtained from Robinson, et al. [36]. VEGF-B was obtained from

Zhong, et al. [37]. SDF-1, CXCR-4, Ang2, Tie2, CD117, SCF,

Epo, and EpoR were obtained from Yoshida, et al. [38]. For

statistical analysis, 3 replicates from 5 animals were performed on

each treatment or PBS control group (PBS acts as control because

non-specific antibodies were used in the pilot studies and were

found to be show the same results as PBS).

Mouse model of choroidal neovascularization (CNV)
CNV was induced by laser photocoagulation-induced rupture of

Bruch’s membrane [39]. C57BL/6J (6–8 week-old) mice were

anesthetized with ketamine hydrochloride (100 mg/kg body
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weight) and xylazine (4 mg/kg body weight) and the pupils were

dilated with 1% tropicamide. Laser photocoagulation (75 mm spot

size, 0.1 sec duration, 120 mW) was performed in the 9, 12, and 3

o’clock positions of the posterior pole of the retina with the slit

lamp delivery system of an Oculight GL diode laser (Iridex,

Mountain View, CA) and a handheld cover slip as a contact lens to

view the retina. Production of a bubble at the time of laser, which

indicates rupture of Bruch’s membrane, is an important factor in

obtaining CNV. Therefore, only burns in which a bubble was

produced were included in the study. Two weeks after rupture of

Bruch’s membrane, anesthetized mice were perfused with 50 mg/ml

fluorescein-labelled-dextran (26106 average molecular weight, Sig-

ma-Aldrich, St. Louis, MO). The eyes were then dissected and fixed

in 10% buffered formalin for 3 hours and choroidal flat mounts were

prepared. Choroidal flat-mounts were washed with 0.01 M PBS

(pH 7.4) and blocked with 4% normal goat serum without addition of

detergent (i.e., 0.1% Triton X-100) for increased permeabilization.

They were incubated overnight at 4uC with FITC- or Alexa Fluor

594-conjugated isolectin and polyclonal antibodies against CD31 or

polyclonal antibodies against CD45 (1:100; Cell Signaling Technol-

ogy, Boston, MA) or Pacific Blue-conjugated rat monoclonal

antibody against mouse F4/80 (1:100; Invitrogen, Carlsbad, CA ).

Negative control sections were similarly treated, but the primary

antibodies were omitted. Specimens were rinsed and incubated for

1 hr with Alexa Fluor 594 or 488-conjugated goat anti-rabbit IgG

(1:1000; Invitrogen). Fluorescent microphotography was performed

on a Zeiss Axioplan2 epifluorescence microscope. Image-Pro Plus

software (Media Cybernetics, Silver Spring, MD) was used to

measure the total area of CNV at each rupture site by personnel

blinded as to study treatments and groups and the numbers of positive

cells were counted and representative images were photographed.

The known cell types that can be labeled with each of the markers are

shown in Table 1.

Mouse model of oxygen-induced retinal
neovascularization (NV)

The oxygen-induced ischemic retinopathy (OIR) model was

produced in C57BL/6 mice according to the method previously

described [40]. In brief, litters of 7-day old (P7) mice were exposed to

an atmosphere of 75% oxygen in an airtight incubator for 5 days

(P12), after which they were returned to room air for 5 days (P17).

Quantification of retinal NV was carried out as described previously

[41,42]. For quantification of OIR-induced retinal neovascularization,

P17 mice were given an intraocular injection of 1 ml of rat anti-mouse

platelet endothelial cell adhesion molecule-1 (PECAM-1) antibody

(Pharmingen, San Jose, CA) under a dissecting microscope with a

Harvard pump microinjection apparatus. Mice were euthanized

12 hours after injection and eyes were fixed in PBS-buffered formalin

for 5 hours. Retinas were dissected, washed and incubated with goat

anti-rat polyclonal antibody conjugated with Alexa Fluor 488 or were

labeled with griffonia simplicifolia-594 (Invitrogen, Carlsbad, CA) for

45 min. Images of each of the 4 quadrants of whole-mounted retina

were taken at 5x magnification on a Zeiss Axioplan 2 microscope and

imported into Adobe Photoshop. Retinal segments were merged to

produce an image of the entire retina. Neovascular tuft formation was

quantified on retinal flat mounts with fluorescence microscopy using

Image Pro Plus software.

BRB assay
The quantitative BRB assay was performed according to a

previously described technique [43]. Mice were sedated as above

and given an i.p. injection of 1 mCi/gram body weight of

[3H]mannitol. One hr after injection, the mice were sedated and

retinas from experimental and control eyes were rapidly removed.

The posterior portion of the globe was firmly grasped with forceps

and a razor blade was used to cut across the cornea and extrude

the lens, vitreous, and retina. Retinas were dissected free from lens,

vitreous, and any RPE that was extruded, and were placed within

pre-weighed scintillation vials within 30 seconds of sacrifice. The

thoracic cavity was opened and the left superior lobe of the lung

was removed, blotted free of excess blood, and placed in another

pre-weighed scintillation vial. A left dorsal incision was made and

the retroperitoneal space was entered without entering the

peritoneal cavity. The renal vessels were clamped with a forceps

and the left kidney was removed, cleaned of fat, blotted, and

placed into a pre-weighed scintillation vial. Superficial liquid was

allowed to evaporate over 20 min from the open vials. The vials

containing the tissue were weighed and tissue weights were

calculated and recorded. One ml of NCSII solubilizing solution

was added to each vial and the vials were incubated overnight in a

50uC water bath. Solubilized tissue was brought to room

temperature (RT) and decolorized with 20% benzoyl peroxide

in toluene in a 50uC water bath. The vials were brought to RT

and 5 ml of Cytoscint ES and 30 ml of glacial acetic acid were

added. The vials were stored for several hours in darkness at 4uC
to eliminate chemoluminescence. Radioactivity was counted with

a LS 6500 Liquid Scintillation Counter (Beckman, Brea, CA). The

CPM/mg tissue was measured for lung, kidney, and experimental

and control retina. Retina/lung, retina/kidney, and lung/kidney

ratios were calculated and compared.

Statistical Analysis
Statistical comparisons were made using analysis of variance

(ANOVA) or a linear mixed model [44]. P-values for comparison

of treatments were adjusted for multiple comparisons using

Dunnett’s method. For data sets with two groups, statistical

analyses were performed by the unpaired t-test for Excel 2003

(Microsoft, Redmond, WA).

Results

Expression of VEGFR1 and 2 was up-regulated during
CNV pathogenesis (Fig. 1)

Gene expression of VEGFR1 and VEGFR2 and their ligands:

VEGF, VEGFB, and PlGF, at mRNA level were examined at 3

days (early or initial stage), 7 days (intermediate or active stage)

and 14 days (late or involution stage) after laser treatment. At 3

days after laser treatment, PlGF and VEGF-B showed significant

up-regulations: PlGF had 2.160.7-fold higher expression in retina

and VEGF had 3.961.4-fold higher expression in choroid than

normal, No significant changes were detected for VEGF

expression in retina, and the expression of VEGF receptors

decreased slightly in retina and choroid compared to normal. At 7

Table 1. -Known cell types that can be labeled with each of
the markers.

Staining
Methods Cell Types References

Lectin Vascular endothelial cells, macrophages,
microglia

[51,52]

CD31 Vascular endothelial cells [42]

CD45 Leukocytes (i.e. macrophages), microglia [68]

F4/80 Macrophages, microglia [27]

doi:10.1371/journal.pone.0021411.t001
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days after laser treatment, PlGF showed the most pronounced

increase: PlGF was 3.361.4-fold higher in laser-treated retina than

normal. VEGF, VEGFR1 and VEGFR2 showed a slight increase

in laser-treated retina, while PlGF and VEGF-B showed a slight,

but significant decrease in choroid following laser photocoagula-

tion. At 14 days, PlGF, VEGFR1 and VEGFR2 showed

significant up-regulations in retina to some degrees: VEGF

increased 1.760.5-fold, VEGFR1 increased 2.460.7-fold, and

VEGFR2 increased 1.460.2-fold, but the expressions of VEGF

and VEGFR2 were slightly decreased in choroid.

Blockade of VEGFR1 and 2 suppressed CNV (Fig. 2)
With the two neutralizing antibodies MF1 and DC101, we

evaluated the effects of blocking VEGFR1 or 2 signaling alone or

together on CNV formation. The dosages evaluated included

MF1: 12.5 mg/kg, 25 mg/kg, and 50 mg/kg, DC101: 50 mg/kg,

and MF1+DC101: 25 mg/kg each. Compared to controls, both

MF1 and DC101 suppressed CNV formation and MF1 did so in a

dose-dependent manner, as was previously reported for DC101

[28]. At the 50 mg/kg dose, the inhibitory efficacy is slightly, but

not significantly higher for DC101 than MF1 (6466% for MF1

and 7365%for DC101, p = 0.1); a combination of MF1 and

DC101 (25 mg/kg each) showed a greater inhibitory efficacy than

50 mg/kg MF1 or 50 mg/kg DC101 alone (8564% inhibitory

efficacy by combination treatment, p = 0.0003 vs. MF1 or DC101)

(Fig. 2). Grossly visible side effects were not observed with either

antibody, but tissue analysis was not performed.

Blockade of VEGFR1 and 2 resulted in an accumulation of
microglia at the CNV surface (Fig. 3, 4)

When we stained the CNV lesions with GSA-lectin, we

observed that, unlike the controls, the lectin+ areas in CNV

lesions from mice treated with MF1 and/or DC101 actually

contained some segregated lectin+ cells or cell aggregates, which

were not assembled or organized into integral vasculatures because

the lectin+ areas showed mutually exclusive patterns when

compared to the perfused FITC-Dextran+ areas (Fig. 3f, i & l),

suggesting these cells or cell aggregates are either abnormal

vasculatures without normal lumen structures, or non-vascular

components, or both. The mean number of these segregated

lectin+ cells from each CNV lesion significantly increased with

combination treatments of MF1 and DC101, compared to single

treatment groups (Fig. 3m).The further quantification of these

lectin+ CNV areas (Fig. 3n), which is different from the staining of

FITC-Dextran, representing all the perfused blood vessels in

CNV, and from the results shown in Fig. 3n, which are only for

those non-perfused components, reflects all the perfused and non-

perfused vasculatures and imflammatory cells at the CNV surface,

showed significant inhibition in all treatment groups compared to

controls, but that of the combination of MF1 and DC101 did not

show significant differences compared to single treatment alone,

which may be due to the increased number of segregated or non-

perfused lectin+ cells (Fig. 3m), which were further identified as

retinal microglia at the CNV surface (see below).

Because we didn’t include detergent when we immuno-stained

the choroidal flat mounts, we expected only the cells at the

superficial CNV area (on the retinal side), close to the sub-retinal

space, the RPE, and the outer segments of the photoreceptors of the

CNV lesions to be labeled. To identify the lectin+ cells at the CNV

surface, a panel of antibodies, including CD31, CD45, and F4/80,

were implemented. We first stained them with the endothelial cell

marker, CD31, because we speculated they were vascular

components, which had failed to assemble into neo vessels due to

the lack of VEGFR1 and 2 signaling. However, we surprisingly

found that these lectin+ cells had an undetectable to very weak signal

for CD31 (Fig. 4a–c), but were positive for the leukocyte marker

CD45 (Fig. 4d–f). Very often, these cells have multiple processes and

microglia-like morphology (one example is shown in the insert of

Fig. 3j). Further staining with F4/80 antibody defined them as

residential microglia/macrophages (Fig. 4g–i). In contrast, the flat

mounts of CNV from control groups were positive for CD31 but

negative for CD45 (data not shown).

Blockade of VEGFR1 and 2 reduced ischemia-induced
retinal NV in OIR (Fig. 5 & 6)

To evaluate the role of VEGFR1 and 2 in ischemia-induced

retinal NV, MF1 and DC101 were used to treat mice with OIR at

P12 and P15. The dosages evaluated were the same as those for

CNV. MF1: 12.5 mg/kg, 25 mg/kg, and 50 mg/kg, DC101:

50 mg/kg, and MF1+DC101: 25 mg/kg each. Both MF1 and

DC101 suppressed retinal NV in the OIR model compared to

controls and MF1 did so in a dose-dependent manner. At the

50 mg/kg dose, both MF1 and DC101 significantly suppressed

retinal NV: DC101 suppressed retinal NV by 5468% (p = 0.013)

and MF1 suppressed retinal NV by 5067% (p,0.0002); a

combination of MF1 and DC101 (25 mg/kg each) had a 6267%

inhibitory efficacy), but without a significant difference compared

to MF1 or DC101 treatment alone (Fig. 5). Furthermore, to study

the molecular mechanisms by which VEGFR1 signaling regulates

pathological angiogenesis in OIR, 4 genes and their respective

cognate receptors were selected for measurement of gene

expression because they are known to be involved in this model:

stromal-derived growth factor-1 (SDF-1)/C-X-C chemokine

receptor type 4 (CXCR4) [45]; angiopoietin 2 (Ang2)/(Tie2)

[46]; mast/stem cell growth factor receptor (CD117 or c-kit)/stem

cell factor SCF) [47]; and erythropoietin (EPO)/erythropoietin

receptor (EpoR) [48]. The results demonstrated that blockade of

VEGFR1 inhibited the expression of some of these genes to

various degrees. Significant reductions for angiogenic factors were

as follows: 33613% reduction for CXCR-4, 30610% reduction

for Ang2, 2060.7% reduction forTie2, and 7361.7% reduction

for EpoR (Fig. 6).

Blockade of VEGFR1 and 2 suppressed ischemia-induced
vascular leakage in OIR (Fig. 7)

The dosing and treatment schedules for MF1 and DC101 were

the same as described above and the vascular leakage was

quantified by measuring [3H]-mannitol leakage from blood vessels

into the retina as described in Methods. The results showed that

MF1 was more effective at inhibiting ischemia-induced vascular

leakage due to BRB breakdown than DC101 at the 50 mg/kg

dosage (retina to lung leakage ratio for MF1:73624% inhibition,

p = 0.001; for DC101:1264% inhibition, p = 0.003; retina to renal

Figure 1. VEGFR1 and 2 and their ligands were up-regulated during CNV pathogenesis. Ten-twelve CNV lesions were created in one eye
of each mouse for gene expression analysis and the fellow eye, which was not treated, served as a control. The results were expressed as normalized
relative gene expression or the log(2) scale of the mean change fold over control from 5 mice. (a) Normalized relative gene expression over control for
retinas with CNV lesions, 3 day after lasering; (b) Normalized relative gene expression over control for retinas with CNV lesions, 7 day after lasering; (c)
Normalized relative gene expression over control for retinas with CNV lesions, 14 day after lasering. *: p,0.05 vs. control.
doi:10.1371/journal.pone.0021411.g001
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Figure 2. Blockade of VEGFR1 and 2 suppressed CNV. Laser-induced ruptures of Bruch’s membrane were performed as described in Methods.
Intraperitoneal injections of indicated doses of MF1 or DC101 or MF1+DC101 were administered immediately after laser treatment and then every
other day after lasering until 14 days, when CNV was assessed. Mice were perfused with FITC-labeled dextran and choroidal flat mounts were
prepared and examined by fluorescence microscopy. Compared to control eyes (a), those injected with 50 mg/kg MF1 (b) or 50 mg/kg DC101 (c)
showed a significant reduction of CNV area. CNV area in eyes injected with 25 mg/kg MF1+25 mg/kg DC101 (d) was significantly reduced compared
to that obtained from control mice or from mice treated with MF1 or DC101 alone. (e) The area of CNV at each rupture site was measured by image
analysis. Results are expressed as mean areas (mm2) of CNV6SE for each group calculated from indicated number (n) of CNV lesions. *: p values were
less than 0.05 vs control; **: p values are less than 0.0001 vs. control.
doi:10.1371/journal.pone.0021411.g002
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Figure 3. Blockade of VEGFR1 and 2 led to accumulation of Lectin+ cells at CNV surface. Representative CNV lesions, which were stained
with GSA-isolectin (left column) and Fluorescein-Dextran (middle column), for controls (a–c), MF1 (d–f), DC101 (g–i) and MF1+ DC101 (j–l) are shown.
The insert at the lower left of panel j is a higher magnification of the cell in the box, showing the morphological appearance of a microglial cell. The
mean numbers of segregated lectin+ cells from each CNV lesion, which couldn’t incorporate into vessel walls, are shown in panel m. Arrows define
the limits of the CNV lesions. The quantification of lectin-positive area is shown in panel n. *: p values are less than 0.5 vs. control.
doi:10.1371/journal.pone.0021411.g003

Implication of VEGFR1 & 2 in Ischemic Retinopathy

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21411



Figure 4. The Lectin+ cells at the CNV surface were identified as inflammatory cells. The choroidal flat mounts were prepared from the
groups that were treated with MF1+DC101. CNV was double-labeled with lectin (a, d and g) and CD31, (b) CD45, (e) or F4/80 (h). The merged images
are shown in c, f and i.
doi:10.1371/journal.pone.0021411.g004
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leakage ratio for MF1:52628% inhibition, p = 0.009; for

DC101:1364% inhibition, p = 0.001) (Fig. 7).

Discussion

Previous reports have demonstrated that both VEGFR1 and 2

play very important roles in mediating adverse complications of

ischemic and inflammatory disorders, particularly in cancers [25–

28], and our present study gave further insight into their respective

roles and mechanisms in pathological angiogenesis and vascular

leakage with the two widely-used mouse models of ocular

angiogenesis: laser-induced CNV and OIR. Our observations in

this study included (i) consistent with earlier findings [25–28],

VEGFR1 is involved in pathological angiogenic processes in

ischemic retina and targeting VEGFR1 is a potential therapeutic

treatment strategy for ischemic retinopathies such as AMD and

ROP, (ii) both VEGFR1 and 2 are involved in the angiogenic

process through differential mechanisms; combined administration

of MF1 and DC101 had additive effects on pathological

angiogenesis and vascular leakage, suggesting that combination

therapy targeting both receptors would have better efficiency, and

(iii) in addition to its role in promoting inflammation associated

with ischemia, VEGFR1 signaling is likely involved in the

regulation of ischemia-induced BRB breakdown, which makes it

an attractive target for the treatment of macular edema. For future

prospective therapy, additional studies should be conducted to

address the following questions. Is the intraocular administration,

which is local and requires less antibody, but is more invasive, and

Figure 5. Blockade of VEGFR1 and 2 suppressed retinal NV in OIR. Neovascular tufts were labeled with griffonia simplicifolia lectin-594.
Representative retinal NV for controls (a) and the combination treatment of MF1 and DC101 (b) were demonstrated. (c) The quantification of retinal
NV.
doi:10.1371/journal.pone.0021411.g005
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is the widely-used approach for drug delivery in eye diseases, more

effective, compared to systemic delivery? What are the safety

profiles? Are the two antagonists, MF1 and DC101, effective in

other pre-clinical models? Answers to these questions could reveal

the potential of VEGF receptor antibodies as therapeutic agents

for vasoproliferative ocular disorders.

Inflammation is one of the important mechanisms that promotes

CNV formation and two immune responses are associated with its

pathogenesis. One is the translocation of resident microglia from the

inner to the outer retina and the other is the mobilization and homing

of bone marrow-derived leukocytes, such as macrophages [49,50].

Regardless of the sources, these inflammatory cells, which, once they

are recruited into the CNV lesion, are positive for commonly used

biomarkers like CD45 and F4/80 and they contribute to CNV

formation by secreting cytokines such as TNFa and VEGF.

Interestingly, we observed that blockade of VEGFR1 and 2 resulted

in the accumulation of inflammatory cells (Lectin+CD45+ F4/80+) in

the periphery of the CNV lesions, close to the RPE/retina interface

(Fig. 4). Griffonia simplicifolia isolectin-B4 staining is not only a

marker for vascular endothelial cells, but it has been identified as a

marker for microglia [51,52]. It would be reasonable that these cells

were classified as retinal microglia that migrated from the inner

retina, rather than macrophages that were mobilized from bone

marrow and the lectin positivity supports this contention. This

phenomenon suggested that recruitment of retinal microglia from the

inner retina to areas of CNV is separated into two distinct steps,

which may be dependent on different signaling molecules. The first is

the migration of retinal microglia to the CNV surface, which is

independent of PlGF-VEGF/VEGFR1 and 2 signaling, but driven

by the gradients of other chemoattractant signal molecules, such as

CCL-2/CCR-2 and SDF-1/CXCR4 [53,54]; the second is the

penetration or infiltration and activation of microglia within CNV

lesions, which is dependent on PlGF-VEGF/VEGFR1 and 2

signaling [28]. We are not certain of the reasons why two distinct

signaling pathways would be required for this process, but it is likely

that the phenomenon results from geographic differences of these

signal molecules: CCL-2 diffuses into the surrounding environments

but PlGF/VEGF is more restricted within CNV, which is necessary

for growth of new blood vessels. Circulating macrophages have been

reported to play a role in the development of CNV [55–57], but it is

not clear whether ‘‘the two-step’’ mechanism is implemented for the

recruitment of bone-marrow derived leukocytes to CNV. Currently,

we don’t have evidence to support the possibility and additional

studies will be needed to elucidate that. The present results are not

designed to dispute the involvement of circulating macrophages in

CNV, but to demonstrate the involvement of retinal microglia. The

hypothesized mechanisms regulating recruitment of retinal microglia

to CNV is shown in Fig. 8.

To quantitatively examine gene expression during CNV

pathogenesis, we generated 10–14 CNV (average 12) lesions per

eye, which is 9 more than the widely-used mouse model of laser-

induced CNV (typically 3 CNV lesions in each eye), and separated

the retina and sclera-choroid-RPE. The expression of VEGFR1 and

VEGFR2 was increased during CNV development: not at early (3

days after lasering), but late stages (7 and 14 days after lasering).

Interestingly, the up-regulation of the two receptors was more

pronounced in retina than in choroid at days 7 and 14 (Fig. 1),

which might reflect the fact that the CNV outgrows through Bruch

Figure 6. Blockade of VEGFR1 inhibited gene expression of pro-angiogenic factors in OIR. RNA samples were prepared from the retinas
of mice that were treated with 25 mg/ml MF1. The results are expressed as normalized relative gene expression or the log(2) scale of mean change
fold over control from 5 mice. SDF-1: stromal-derived growth factor-1; CXCR4 (CD184): C-X-C chemokine receptor type 4; Ang2: angiopoietin 2; CD117
(c-kit): mast/stem cell growth factor receptor; SCF: stem cell factor; Epo: erythropoietin; EpoR:erythropoietin receptor. *: p values were less than 0.5 vs.
control.
doi:10.1371/journal.pone.0021411.g006
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membrane and the RPE and invades the retina at the advanced

stages, leading to their bundling together with the retina, instead of

being limited to the sclera-choroid-RPE portion at the later stage.

PlGF showed a consistent increase at all three stages (3, 7 and 14

days after lasering), but VEGF-B only showed a transient up-

regulation in choroid at the early stage (3 days after lasering).

Despite these relevant findings obtained from the quantitative

analysis of gene expression, we recognized that some limitations and

potential artifacts may exist in these approaches. First, the fold

change of gene expression in the laser treatment groups was not

substantial, but only showed moderate increases (from 1.4 to 3.9

fold). Second, expression of VEGF, in contrast to predications, was

not significantly up-regulated, but even down-regulated at some

points (i.e., in choroid at 14 days). Changes in gene expression in

areas of CNV may be difficult to detect since the lesions have a

limited pathological area (approximately 200,300-micron in

Figure 7. Blockade of VEGFR1 and 2 suppressed vascular leakage in OIR. (a) The leakage ratio of retina to lung or kidney for control and
MF1-treated mice with OIR. (b) The leakage ratio of retina to lung or kidney for control and DC101-treated mice with OIR. The BRB assay was
performed at P17. The results were expressed as mean6SD of 6–14 individual mice samples.
doi:10.1371/journal.pone.0021411.g007
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diameters at 14 days after lasering) compared to the total area of the

retina or the sclera-choroid-RPE. The total RNA prepared was

under-representative for CNV and the assay may not be sensitive

enough for detection of the changes. To overcome these limitations,

the isolation of targeted or precise CNV areas, such as by Laser

Capture Microdissection (LCM), would be a more preferable

approach to quantify the gene expression in this model, which will

lead to more significant results.

As stated in the Introduction, the discovery of novel targets for

anti-angiogenic therapy, in addition to VEGF, is highly desired

and the targeting therapy against VEGFR1 and its ligand PlGF,

which can become a potential therapeutic alternative or

supplement to anti-VEGF therapy, has drawn increasing atten-

tion. Several additional strategies should be explored to overcome

the limitations of anti-VEGF therapy [see Introduction, 7–21].

The first strategy would be to target molecules other than VEGF

itself. These potential targets include the upstream molecules that

regulate VEGF expression (i.e., prolyl hydroxylases and HIFs), the

downstream molecules that transmit VEGF signaling (i.e.,

VEGFR1 and 2 and their receptor kinases) and are regulated by

VEGF, such as MEF-2C [58]. Also, the molecules that are

involved in maintaining the homeostasis of surrounding or

regulatory cells of endothelial cells, such as pericytes/smooth

muscle cells, macrophages, astrocytes and Müller cells, or even

multiple cell types, are potential targets. Examples of this would be

the Angiopoietin/Tie-2 signaling system [59], adhesion molecules

such as integrins [60], inflammatory cytokines like TNFa [50], and

members of the PDGF family [19], etc. Second, given that

angiogenesis is a complex process involving multiple cell types and

signaling pathways, it would be more efficient to target multiple

molecules or pathways simultaneously rather than one individual

molecule or signaling pathway. This could be achieved by effective

molecules/compounds, which can target multiple signaling

pathways (i.e., TKRs signaling) [61] or a defined combination

therapy, which targets two or more specific target molecules or

signaling pathways [62]. The third strategy would be to develop

more efficient agents (i.e., VEGF-Trap, which blocks all the VEGF

isoforms) and capsulize the drugs by sustained delivery devices

with the capability of superior-penetrating and slower-releasing

features, such as nano-particles. Last, since the ischemic tissues are

starving for vessels to supply oxygen and nutrients, which very

often leads to the formation of abnormal vasculatures or NV, the

inhibition or regression of NV by anti-angiogenic factors has a

potential risk of stroke, myocardial infarction, and neuronal

toxicity, etc. [63–65]. Therefore, a safe means of preventing or

reversing pathological NV and BRB breakdown or normalizing

pathological NV into functional vasculatures with normal

perfusion and barrier function would be desirable for anti-

angiogenic therapy. Manipulating the signaling molecules or

pathways that regulate stabilization of vasculatures and/or

normalization of NV, such as Dll4/Notch signaling, which

prevents tip cell formation and branching and was shown to

normalize neo vessels in cancer [66], or master transcription

factors, such as HIF1a, which controls the expression of VEGF

and other genes that regulate vascular biology, metabolism,

angiogenesis, proliferation, and survival, would be possible

treatment options [67]. The present study has demonstrated that

both VEGFR1 and R2 are implicated in pathological angiogenesis

and BRB breakdown in ocular disease models and has shown that

blocking both receptors is superior to blocking only one. This

approach, alone or in combination with targeting other molecules

or signaling pathways, could provide greater benefit than currently

implemented therapies.
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Figure 8. The hypothesized mecanisms regulating recuritment of retinal microgila to CNV. The inflammatory cells in CNV could be
recurited retinal microgila, which settle in the inner retina under normal conditions or macrophages from bone marrow that access CNV lesions via
blood flow through the choroid. Laser injury up-regulated expression of PlGF, VEGF-A and –B, and VEGFR1 and 2 and could create gradients of some
chemotractant factors such as CCL-2 and SDF-1, etc, with higher concentrations in the outer reitna and lower concentrations in the inner retina. The
retinal microglial migration towards the CNV was driven by these chemotractant singaling molecues and their further infiltration and activation in
CNV are dependent on PlGF-VEGF/VEGFR1 and 2 signaling systems. The exact mechanms controling the recruitment of macrophages is unclear. Line:
activation; dished lines: blockade or inhibition.
doi:10.1371/journal.pone.0021411.g008
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