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Cortical sites critical to language function act
as connectors between language
subnetworks

Jason K. Hsieh 1,2, Prashanth R. Prakash3, Robert D. Flint4, Zachary Fitzgerald4,
Emily Mugler4, Yujing Wang 5, Nathan E. Crone 5, Jessica W. Templer4,
Joshua M. Rosenow2, Matthew C. Tate2, Richard Betzel 6 &
Marc W. Slutzky 3,4,7,8

Historically, eloquent functions have been viewed as localized to focal areas of
human cerebral cortex, whilemore recent studies suggest they are encodedby
distributed networks. We examined the network properties of cortical sites
defined by stimulation to be critical for speech and language, using electro-
corticography from sixteen participants during word-reading. We discovered
distinct network signatures for sites where stimulation caused speech arrest
and language errors. Both demonstrated lower local and global connectivity,
whereas sites causing language errors exhibited higher inter-community
connectivity, identifying themas connectors betweenmodules in the language
network.We usedmachine learning to classify these site types with reasonably
high accuracy, even across participants, suggesting that a site’s pattern of
connections within the task-activated language network helps determine its
importance to function. These findings help to bridge the gap in our under-
standing of how focal cortical stimulation interacts with complex brain net-
works to elicit language deficits.

Many older studies supported the paradigm that eloquent cortical
functions, such as language, may be highly localized to specific brain
areas1–3. More recent studies support the recruitment or suppression
of activity in broad cortical networks during both task-driven and
resting states4. In particular, vast networks in temporal, parietal, and
frontal lobes, as well as subcortical nuclei, may participate in different
perceptual, cognitive, and productive subtasks of language5–12. In
neurosurgical patients, direct electrocortical stimulation (DES) is used
to identify focal regions of the human neocortex that are presumably
indispensable for proper execution of speech and language function
and thus are avoided to reduce postoperative language deficits13–17.

However, themechanismsbywhichDES affects the cortical processing
of language and speech are not clearly understood18. In particular, it is
not clear what is special about the focal sites identified as critical to
language or speech by DES when broad networks are active during
speech and language behaviors.

Graph theoretic approaches are a powerful and flexible means of
studying brain networks via estimates of either functional or structural
correlates between brain sites (or nodes)19. Functional MRI studies
have suggested the presence of multiple communities (groups of
correlated nodes, a.k.a. modules) in functional brain networks that
reorganize dynamically according to task demands20,21. This is
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dependent on specialized and flexible connector nodes that support
network reconfiguration between task states and help integrate
information between relatively more stable brain network
modules22–25. Lesions to these connectors lead to greater changes in
network organization than damage to nodes important for within-
module communication (“local hubs”)26. Experimental inhibition of
connector nodes, and not neighboring nodes, causes disruption dur-
ing working memory tasks27. On the other hand, simulated lesions of
more globally connected nodes (“global hubs”) also have widespread
effects on thenetwork28.Whether this typeofmodularity plays a role in
language networks, and how connector nodes and global hubs relate
to language function and the effects of DES, is unknown. We therefore
hypothesized that areas defined to be critical to speech and language
byDESwouldbe those thatplayed a key role in integrating information
across the language network.

In this work, we examine the properties of language networks
using task-based electrocorticography (ECoG). We use the high-
gamma (Hγ, 70–150Hz) band from ECoG recorded during the per-
formance of a language task to estimate functional connectivity

between the sampledbrain regions.We assessmeasuresofnode-based
global, inter-regional (inter-community), and local connectivity within
these networks, and find that critical language areas—in particular
those that cause language errors when stimulated—function as con-
nector nodes between submodules (communities) in the language
network. We further demonstrate that these areas can be predicted by
their network signatures alone, suggesting that the pattern of con-
nections formed by critical language areas informs their function and
is relatively preserved across participants.

Results
Patient data
An overview of the experimental design may be found in Fig. 1, and a
diagram providing intuition for networkmetrics used in this studymay
be found in Fig. 2. We included sixteen patients, including eleven
patients with epilepsy and five patients who underwent awake cra-
niotomy for tumor resection. Participant demographics and clinical
information are described in Supplementary Tables 1, 2. Patients had a
mean (± SD) of 77.2 ± 34.6 intracranial subdural electrodes after

Fig. 1 | Experimental overview. A DES was used either intraoperatively (depicted)
or in the epilepsy monitoring unit to identify sites critical to language and speech.
These were subdivided into cortical regions causing language errors (LE) or speech
arrest (SA).BWe recorded continuous ECoGwhile participants engaged in a word-
reading task.CWegenerated one static network for each participant using pairwise
high-gamma correlations. Color-coded adjacency matrix shown; the color in posi-
tion (m,n) reflects to the high-gamma correlation between electrode m and n. r is
the Fisher-transformed Pearson correlation. Community partitions were dis-
covered using modularity maximization. Electrodes have been re-ordered so those
belonging to the same community are adjacent (boundaries shown in black lines).
D Spring-loaded networkplot; nodes (circles) that aremore strongly connected are

drawnmore closely together. The size of each node is proportional to its strength.
Community membership is indicated by the fill color of each node. The nodes
outlined in blue are LE nodes. ENetworkmetricswere calculated—PC (participation
coefficient), strength, CC (clustering coefficient), LE (local efficiency), and EC
(eigenvector centrality). Metric values for every node are plotted; large colored
points represent critical nodes and small gray points are all other nodes. Boxes
demonstrate the median and interquartile range. We used these metrics to train
machine learning classifiers to predict which nodes would be critical to language
and speech. Example data (C–E) are provided from a single participant (n = 1) for
each visualization. Source data are provided as a Source Data file.
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exclusion of noisy electrodes. Fifteen (93.8%) patients had frontal
electrodes, thirteen (81.3%) had temporal electrodes, eleven (68.8%)
had parietal electrodes, and two (12.5%) had occipital electrodes.
Patients had a mean of 9.9 (±4.1) electrodes recording from areas that
were labeled critical for speech or language using DES (critical nodes).
When further subdivided into sites where stimulation caused language
errors (LE nodes) vs. speech arrest (SA nodes), 6.2 (±4.1) were LE nodes,
and 3.7 (±3.0) were SA nodes. There were, in total, 1234 electrodes, 150
critical nodes, 92 LE, and 52 SA nodes. Types of LEs and locations of LE
and SA nodes are shown in Supplementary Table 3. SA nodes were
predominantly located in ventral premotor regions, but also found in
ventrolateral prefrontal and ventral temporal regions, whereas LE
nodes were widely distributed across perisylvian regions (Fig. 3A).
Figure 3 also illustrates three representative patient brain reconstruc-
tions (3B), network spring diagrams (3C), and network metrics (3D).

Community structure
We applied the Louvain algorithm to partition networks into com-
munities (groups of nodes within the network whose interconnections

maximally exceed what would be expected by chance). We discovered
a median of four communities (range 2–6) in each network (Fig. 4A).
The stability of these assignments was tested by varying the commu-
nity resolution parameter (Supplementary Fig. 1). Communities con-
tained a median of 18.5 nodes [IQR 11-27]. By randomly permuting the
community assignments, we compared the percentage of critical, LE,
and SA node pairs that belonged to the same community (Coassign-
ment percentage, or CoA%) to chance. Critical nodes were not ran-
domly distributed across different communities, but rather,
concentrated within their own community (Figs. 3B, 4B). We found
that critical node pairs were significantly more likely than chance to
share a community (CoA% 55.7 vs. 39.7%, p < 0.001 permutation test).
When examining SA and LE node pairs in more detail, we found that
78.7%of SA and 62.2% of LE node pairs shared a community, compared
to 61.0% and 48.9% in the permuted data, respectively (p <0.001 for
both, permutation test). When we examined cross-assignment% – the
percentage of node pairs consisting of an LE and an SA node that
shared a community with each other—we found that thiswas notmore
likely than chance (35.2 vs. 30.4%, p > 0.05, permutation test; Fig. 4B).
This implies that the significant CoA% of all critical nodes was actually
driven by the even higher CoA% of SA nodes and LE nodes with nodes
of their own subtype (i.e., LE with LE, and SA with SA).

Network signatures of critical nodes
We calculated several well-described node-based network metrics
(Fig. 2) for critical, LE, and SA nodes and compared theirmeans against
non-critical, LE, and SA nodes. We z-scored the metrics per each par-
ticipant and applied the two-sample t-test with independent variances
with the Storey false discovery rate correction for multiple
comparisons.

We calculated each node’s participation coefficient (pc)—a mea-
sure that ranges from 0 (node has connections only within its com-
munity) to 1 (node has connections distributed evenly among many
communities). Critical nodes identified by DES exhibited significantly
higher participation coefficients than did other nodes (0.24 vs. −0.03;
Fig. 4C andTable 1). Interestingly, we found that the high pcwasdriven
by a markedly high pc in LE, rather than SA nodes (Fig. 4D). LE nodes
had a substantially and significantly higher pc than non-critical nodes
(0.47 vs. −0.03, p < 0.001), whereas SA nodes did not. LE nodes had
significantlyhigherpc than SAnodes aswell (0.47 vs.−0.09,p =0.002).

To further investigate these nodes’ candidacy as hubs, we calcu-
lated their clustering coefficient (CC) and local efficiency (LEff; Fig. 2B).
Critical nodes were significantly lower in both measures than other
nodes. This was also true for LE and SA nodes, though for SA nodes,
only LEff, and not CC,met the criteria for significance, likely due to the
smaller sample size. Node strength was not found to be different
between critical LE, or SA nodes and other nodes. Interestingly,
eigenvector centrality was significantly lower in critical, LE, and SA
nodes than in other nodes (Fig. 4C, D). Table 1 summarizes these
results.

Thus, critical nodes exhibited lower local connectivity (clustering
coefficient and local efficiency, Fig. 4C, D) and lower eigenvector
centrality, while not differing from other nodes in global connectivity
(strength). Simultaneously, LE nodes demonstrated higher con-
nectivity across different communities. Thus, critical nodes, and par-
ticularly language error nodes, were connectors between brain
network modules, rather than local or global hubs.

Critical node prediction
We assessed whether network signatures alone could identify which
nodes were predicted by DES to be critical for speech and language
within each participant. Using ten-fold cross-validation, we trained
support vector machines (SVM) and k-nearest neighbor (KNN) classi-
fiers to separately predict whether nodes were critical, LE, or SA nodes
in a binary fashion (i.e., critical vs. not-critical, LE vs. not-LE, and SA vs.
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Fig. 2 | Network diagrams. PC participation coefficient, S strength, CC clustering
coefficient, LEff local efficiency, EC eigenvector centrality. A Diagram illustrating
coassignment. Two yellow-outlined coassigned nodes are found within the same
community (dark blue fill); two blue-outlined nodes are found in two different
communities (magenta and orange fill)—i.e., not coassigned. B Diagram demon-
strating graph metrics. The large magenta node in the top panel has a high PC—it
connects across all communities in this network. The same node has a low clus-
tering coefficient (its neighbors are not themselves connected, denoted by dashed
arrows) and low local efficiency (long path lengths between its neighbors). In the
bottom panel, the large dark blue node has high strength, i.e., a high sum of con-
nection weights. The large orange node has higher eigenvector centrality than the
smaller orange node; both have the same number of connections, but the larger
node’s connections themselves have more connections. C Intuition for three node
types. Connector nodes connect across communities (high PC), while their neigh-
bors do not connect as closely to each other (low CC, LEff). Global hubs connect to
manynodes across the network (high PC, high S, likely highEC). Local hubs connect
densely in their neighborhood (low PC, high CC/LEff).
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not-SA). We compared classifier performance against chance by per-
muting the node labels.

Balanced accuracy and sensitivity for predicting critical nodes as
well as LE nodes and SAnodes separatelywere both significantly better
than chance (p < 0.001 for balanced accuracy and sensitivity for both
SVM and KNN vs. chance, permutation test) For critical nodes, median
balanced accuracy was 70.4% and 72.8% for SVM and KNN, respec-
tively, compared to 60.0% and 58.9% for chance (detailed results in
Fig. 5A and Tables 2, 3). The corresponding median sensitivity was
83.7% and 84.4%, compared to 66.7% and 54.5% for chance (Fig. 5B and
Table 2). When predicting LE nodes and SA nodes (vs. non-LE and non-
SA nodes), separately, both balanced accuracy and sensitivity
remained substantially better than chance (p < 0.001, permutation
test, Fig. 5A, B and Table 3). The mean area under the curve (AUC) of
the receiver operating characteristic (ROC) over all participants for

critical node prediction was 0.65 for SVM, and 0.72 for KNN. This, as
well as the AUC of the ROC for predicting LE and SA nodes, exceeded
that of the 99.9% confidence interval of the chance predictions
(Table 3).

We further investigated whether a classifier trained using these
network features could predict critical nodes in an entirely new and
separate participant, by applying the same methodology in a leave-
one-patient-out cross-validation. For critical nodes, classification
median balanced accuracy was 65.9% and 66.0% for SVM and KNN,
respectively, whichwas also significantly better than chance (p <0.001
for both, permutation test). The correspondingmedian sensitivity was
76.4% and 77.3 for SVM and KNN. The balanced accuracy and sensi-
tivity (up to90%) for bothmodels forpredicting LE, andSAnodeswere
statistically better than chance (Fig. 5D, E and Table 2). The mean AUC
of the ROC ranged from 0.56 to 0.66 and remained higher than the
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PC participation coefficient, S strength, CC clustering coefficient, LEff local effi-
ciency, EC eigenvector centrality. A Composite of all participants’ electrodes
colocalized on a single template brain. Speech arrest nodes (yellow fill) were pri-
marily located in ventral premotor regions, but also in ventrolateral prefrontal and
ventral temporal regions. Language error nodes (blue fill) were widely distributed
in perisylvian regions. B Three example participant brain reconstructions. Node
color (filled) represents community assignment, and node size is proportional to
its participation coefficient. The outline color indicates critical nodes (blue—LE

node, yellow—SA node). C Corresponding three network diagrams. The electrode
position is spring-weighted (stronger connections draw electrodes closer toge-
ther). Fill color indicates community, and if present, outline color indicates critical
node type (LE vs. SA) D Corresponding network metrics for the three example
patients. Metrics for all nodes (electrodes) for each of the three participants (n = 1
per graph) are plotted. Here, colored circles represent critical nodes; gray circles
represent other nodes. Boxes demonstrate median and interquartile range, and
whiskers demonstrate non-outlier maxima/minima. Source data are provided as a
Source Data file.
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99.9% confidence interval for chance predictions in all cases (Fig. 5F
and Table 3).

Discussion
We examined functional brain networks serving language by applying
network neuroscience measures to ECoG high-gamma activity recor-
dedduringword reading.We found that cortical sites critical to speech
and languagediffered fromother sites with regard tomultiple network
measurements. Further, sites where stimulation caused language
errors had different network properties than those where stimulation
caused speech arrest. Both types of nodes exhibited low local clus-
tering (as measured by clustering coefficient and local efficiency) and
eigenvector centrality—i.e., they were neither local nor global hubs.
Sites where DES caused language errors demonstrated high partici-
pation coefficients. This suggests that language error nodes acted as
connector nodes among communities in the language network. In
contrast, sites where DES caused speech arrests, did not resemble
connector nodes in the measured networks.

These findings highlight and begin to bridge the gap in our
understanding of how focal cortical stimulation interacts with com-
plex networks in the human brain to elicit language deficits. Higher-
order cognitive functions such as language involve actions of multiple
subnetworks20,29,30. Our finding that language error nodes are con-
nectors among these subnetworks implies that these nodes serve to
help coordinate among subnetworks, and that this property makes
them critical to function. This extends findings showing disruption of
working memory with inhibitory transcranial magnetic stimulation of
connector nodes27, suggesting that the criticality of connector nodes is
a general property of cognitive networks. In contrast, for lower-order
functions, such as speech articulation (the negation of which causes
speech arrests), connectors appear to be less critical. The metrics we
used only distinguished speech arrest nodes as non-hubs and non-
connectors; it would be interesting to investigate if other metrics can
further characterize their role in the network. Our recordingsmay also
have under-sampled the frontal regions connected by SA nodes; par-
ticipants typically hadmany dozens of electrodes spanning frontal and
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community as each other compared to chance (35.2 vs. 30.4%, p =0.112, one-tailed
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temporal regions but relatively few electrodes in face, oral, or hand
motor areas. Since movements and speech articulation have homo-
logous organization in the frontal cortices31, it seems plausible that
DES-labeled critical nodes in motor networks may have similar prop-
erties or form important connections to SA nodes. In these partici-
pants, given the relatively small number of these electrodes, it is
possible that SA nodes’ important role in interacting with articulator
motor networks was not fully characterized and remains to be deter-
mined in future investigations.

Numerous studies of the causal mechanisms of cortical stimula-
tion have uncovered complex relationships between DES and beha-
vioral manifestations. Many areas that show activation during human
behavior or experimental tasks fail to manifest behavioral or sub-
jectively reported effects when stimulated. When examining the trial-
averagedHγpower,we found thatwhile ~50–60%of critical, LE, and SA
nodes modulated around speech onset, many did not, and a sub-
stantial minority of non-critical nodes exhibited modulation as well
(Supplementary Fig. 3). Among other factors, this complex relation-
ship has been suggested to relate to the uni- or trans-modality of the
stimulated network as well as to interconnections of causal and non-
causal brain areas32,33. Stimulation effects are often frequency-
dependent34, and stimulation may activate locally dispersed tissue as
well as remote areas18,35 Studies of stimulation alongside structural and
functional connectivity suggest that stimulation-induced behaviors
may relate to the recruitment of distributed cortical and cortico-
thalamic networks36,37. Whether the effects elicited in our study result
from dysfunction in language networks due to the inactivation of
connector nodes, or due to the spread of stimulation via these con-
nector nodes, remains to be determined.

In addition to possessing different network signatures, LE and SA
nodes colocalized within different communities in the language net-
work which, in combination with their role as connectors, has further
implications for the functionality of LE nodes within language net-
works. For example, two schemes for language network organization
have been proposed. In one, a control network consisting of more
flexible connector nodes helps integrate information from more per-
ipheral networkmodules38. In this scheme, LE nodes would likely serve
as connector nodes within the control network, while SA nodes might
fall within a smaller subnetwork important for speech articulation. In
another scheme, the language network could contain a functionally
specialized “core” with a more domain-general periphery that coacti-
vates with the language core at times, but at other times with other
specialized systems39. In this view, SA and LE nodes may fall within
different subnetworks within a larger language core, but LE nodes
might play a different role—bridging language submodules within the
core, and/or connecting to peripheral modules that assist language
function.

In dual-stream models of language1,40,41, SA nodes might be more
related to the dorsal stream, which serves more sublexical, gestural,
andmotor functions, while LE nodes could play amore important role
in the ventral stream, which processes semantic information, or in
connecting the two streams. While a majority of SA nodes were loca-
lized more dorsally in our patients, some were located on the ventral
temporal surface. Also, while a majority of LE nodes were in ventral
locations, they were also found in dorsal locations (Fig. 3A). Our net-
work calculations were independent of anatomic localization; there-
fore, the network signatures derived in our investigations provide new
information that may complement pre-existing functional neuroana-
tomical associations when assessing the criticality of cortical sites to
speech and language. Interestingly, we found thatmany critical nodes,
and connector nodes, lay at the boundaries between communities
within our language networks. This is similar to recent findings that
DES effects were also more likely to be elicited closer to boundaries
between resting-state transmodal networks33, again suggesting that
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connector nodes may play an important role in many types of func-
tional networks.

By applying straightforward machine learning classifiers to this
limited set of network-based features, we predicted critical nodes with
balanced accuracy and sensitivity as high as 79.3 and 93.3%, respec-
tively. Our results compare favorably with other studies attempting to

use ECoG to predict critical language areas. This is true of both those
using Hγ power or modulation in each electrode as a marker for
spectral functional mapping42–46 and another study that used a com-
bination of trial-averaged and stimulus- or articulation-aligned power
and network features47. Unlike most prior studies, we also took the
extra step of classifying across participants. We achieved a balanced
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Fig. 5 | Balanced accuracy, sensitivity, andROC forwithin-participant (top row)
and across-participant (bottom-row) classification. For within-participant clas-
sification, participants with at least four nodes of the relevant class were included;
for critical nodes, LEnodes, and SAnodes, n = 15, 10, and 8, respectively. For across-
participant classification, participants with at least one node of the relevant class
were included—for critical nodes, LE nodes, and SA nodes, n = 16, 13, and 13,
respectively. A–D Each dot represents average classification balanced accuracy or
sensitivity for a single participant. Box plots show median and IQR across partici-
pants and are derived from a single value per participant. Whiskers indicate a non-

outlier maximum range. True balanced accuracy and sensitivity were compared
against empirical chance calculated by label-shuffling. The average chance classi-
fication accuracy per participant is represented by the chance box plots for SVN
and KNN (one value per participant). Data for SVM, KNN, and chance for SVM and
KNN are presented in different colors as indicated by the legend. E, F ROC curves
presented for SVM (solid lines) and KNN (dashed lines) classifiers, when classifying
SA (orange), LE (magenta), and critical (dark blue) nodes separately, as indicated by
the legend. For further details, refer to Tables 2, 3. Source data are provided as a
Source Data file.

Table 2 | Summary of classification balanced accuracy and sensitivity

Balanced accuracy (%) Sensitivity (%)

SVM Chance [99.9% CI] KNN Chance [99.9% CI] SVM Chance [99.9% CI] KNN Chance [99.9% CI]

Within-participant classification (# of participants)

Critical nodes (n = 15) 70.4 60.0 [58.4–61.7] 72.8 58.9 [57.4–60.6] 83.7 66.7 [59.5–73.0] 84.4 54.5 [45.5–62.0]

Language error
nodes (n = 10)

70.4 61.0 [59.1–63.3] 78.1 59.5 [57.6–61.5] 88.5 69.3 [59.7–77.2] 85.3 53.3 [42.0–62.7]

Speech arrest nodes (n = 8) 72.9 62.7 [60.6–65.1] 77.4 60.6 [58.5–63.2] 89.4 72.7 [64.3–80.5] 87.4 55.2 [42.8–67.0]

Across-participant classification (# of participants)

Critical nodes (n = 16) 65.9 60.7 [59.1–62.7] 66.0 60.7 [59.0–62.7] 76.4 68.0 [62.0–74.5] 77.3 67.6 [60.8–74.0]

Language error
nodes (n = 13)

68.9 62.4 [59.9–65.1] 69.5 62.4 [60.1–65.0] 86.7 72.3 [64.7–79.4] 89.5 72.4 [64.7–79.4]

Speech arrest
nodes (n = 13)

74.0 65.3 [62.9–67.8] 71.1 65.1 [62.9–67.8] 97.5 76.0 [67.4–85.1] 90.0 75.8 [67.9–83.9]

Median balanced accuracy and sensitivity values for within-participant and across-participant critical, language error, and speech arrest node prediction. Empiric chance intervals for both SVM and
KNN are generated by applying trained classifiers with shuffled class labels, and resampling these chance predictions to generate confidence intervals. The estimates presented are average
accuracy per participant for the true data and shuffled data. For within-participant classification, participants with at least four nodes of the relevant class were included, and for across-participant
classification, participants with at least one node of the relevant class were included. Classification accuracy for all models (balanced accuracy, sensitivity) exceeded the 99.9% confidence interval
limit, and are highlighted in bold.
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classification accuracy as high as 70.8% with a sensitivity of over 80%.
Although the accuracy of these predictions would require improve-
ment, and comparative evaluation to other non-stimulus based func-
tional mapping methodologies as well as traditional mapping
techniques havenot yet beenperformed, these results suggest that the
network signatures we identified are reproducible both among dif-
ferent critical nodes within each individual and as a finding that gen-
eralizes across individuals with different disease states, electrode
coverage, and sampling conditions. We found that false positive cri-
tical nodes and LE nodesweremore likely to be nearest neighborswith
true positive critical and LE nodes (Supplementary Fig. 5). This sug-
gests similar network topology of adjacent brain tissue, and the clinical
implications of lesioning this tissue is yet unknown.

Importantly, our methods resemble how ECoG mapping could
potentially be used in clinical practice—by applying a decoder trained
on prior patients to data from a new, previously unseen patient. In one
prior report of critical node prediction48, the authors achieved a high
cross-validation accuracy using multiple time- and frequency-domain
ECoG features and deep-learning methods. Their data contained a
higher percentage of DES-defined positive nodes than in our study and
far fewer total electrodes. Moreover, their study pooled electrodes
across participants; in contrast, weheld aparticipant completely out of
the training data for use as the test set. Given differences in setting,
electrode coverage, and inter-individual neurological and neuroana-
tomical differences, ourmethod is both amoreclinically relevant and a
more challenging classification problem. Importantly, our technique
takes into account network connectivity patterns without prior func-
tional MRI, anatomic, or band-limited power modulation, thus pro-
viding additional, independent information that should help improve
ECoG-based functional mapping. The combination of powerful net-
work features (such as those we used in our study), used alongside
strategies applying other non-network-based techniques and deep-
learning approaches, might yield even higher prediction accuracies.

Functional connectivity derived from intracranial EEG may be
assessed using a variety of methods, including power correlations,
phase coherence or synchrony, mutual information, or regression-
based techniques in different frequency bands. Our choice of techni-
que is informed by previous efforts identifying intrinsic functional
networks using Hγ power correlations49–53. Although in some cases,
lower frequency-band activity from intracranial EEG has demonstrated
correlations with fMRI52,54,55, Hγ power is the best-known intracranial
correlate of the fMRI BOLD signal49,56,57, upon which most functional
connectivity studies have been based. Other groups have utilized the
low-pass filtered envelope of the Hγ band to demonstrate strong
correlations with broad resting-state and memory-associated fMRI

networks53,58, however, it is likely that the faster dynamics that occur
during language processing are lost when low-pass filtering at 1 Hz.
While we did apply some smoothing, the 150-ms moving average we
used retains higher-bandwidth fluctuations in the signal than these
prior studies. This windowwas chosen by visual inspection as one that
reduced very rapid, small oscillations of the Hγ signal while preserving
its overall structure on a sub-second scale. Hγ power reflects highly
local information—with negligible volume condition, showingminimal
correlations at distances greater than ~1mm59–61, and has demon-
strated high information content in numerous previous studies of
human speech and language62. We expect that functional connectivity
measured in this way will exhibit greater values for shorter interelec-
trode distances, due to the intrinsic structure of the brain. We exam-
ined the relationshipbetween interelectrodedistanceand connectivity
strength and found that while there was an inverse relationship, there
was also substantial variability at each distance (Supplementary Fig. 2).
This variability, combined with our key finding that language error
nodes exhibited increased connections across—rather than within—
communities, and critical nodes had lower local connectivity than
other nodes, suggests that our findings are not mainly due to distance
effects.

Prior work using different techniques has shown state-invariance
in functional networks derived from phase coupling or slow fluctua-
tions of the (low-passfiltered) high-gammaband, suggesting that these
types of networks may be interrogated without structured task
activity50,51,53,58. In clinical practice, language task-activated fMRI is
frequently used to estimate language representations in the human
cortex, and previous non-stimulation-based functional mapping
efforts have also relied upon language tasks to engage cortical regions
to modulate frequency-band activity. In light of this, we applied a
language task and analysis paradigm that would be straightforward to
implement in clinical scenarios.

During preprocessing, we applied global signal regression for
noise reduction purposes,whichhas alsobeen shown in previouswork
to enhance neuronal-hemodynamic correspondence49. This technique
has been demonstrated to cause mandatory anticorrelations63. Our
methodology for community partitioning maximized positive intra-
community connections; further, most of the graph metrics we used
(participation coefficient, clustering coefficient, local efficiency) con-
sidered only the contribution from positive-strength edges. Thus,
anticorrelations are unlikely to have contributed to our main findings.

Our findings provide insight into the different roles of language
error and speech arrest nodes in language networks. However, our
functional networks only sampled the portions of language networks
colocalized under the electrode grids and strips placed for clinical

Table 3 | Summary of classification area under ROC curve

Area under ROC curve

SVM Chance [99.9% CI] KNN Chance [99.9% CI]

Within-participant classification (# of participants)

Critical nodes (n = 15) 0.647 0.501 [0.481 – 0.519] 0.723 .500 [0.480 – 0.519]

Language error nodes (n = 10) 0.609 0.500 [0.474 – 0.529] 0.751 .500 [0.475 – 0.526]

Speech arrest nodes (n = 8) 0.665 0.502 [0.467 – 0.547] 0.724 0.499 [0.464 − 0.535]

Across-participant classification (# of participants)

Critical nodes (n = 16) 0.578 0.499 [0.478 − 0.523] 0.557 0.499 [0.480 − 0.518]

Language error nodes (n = 13) 0.587 0.499 [0.469 − 0.529] 0.584 0.500 [0.584 − 0.526]

Speech arrest nodes (n = 13) 0.660 0.499 [0.464 − 0.535] 0.615 0.501 [0.461 − 0.550]

Area under the ROC (receiver operating characteristic) curve for within- and across-participant critical, languageerror, and speech arrest nodeprediction. ROC curveswere estimatedby varying the
threshold for positive class prediction through the entire range of classifier output scores. The estimates presented are averaged per participant for the true data and shuffled data. For within-
participant classification, participants with at least four nodes of the relevant class were included, and for across-participant classification, participants with at least one node of the relevant class
were included.Chanceconfidence intervalswerecalculatedbyapplying trained classifierswith shuffledclass labels andestimatingROCcurves in the same fashion.Area under theROCcurve for all
models exceeded the 99.9% confidence interval limit, and are highlighted in bold.
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purposes in thesepatients.Wewereunable to sample from the entirety
of the brain or broader language network. The fact that our findings
persisted despite a wide range of electrode coverage across different
patients suggests that the network signature we identified was pre-
served on a regional scale. Further studies with fMRI and intracranial
EEG studies with broad, bilateral sampling (including depth electro-
des) may yield additional insight into this regard. Causal methods for
interrogating effective network connectivity such as cortico-cortical
evoked potentials may also yield important insight into the structural-
functional connectivity of language-critical nodes.

Our approach to network generation was to create a static net-
work encompassing several minutes of language task-activated ECoG.
While this approach is attractive due to its simplicity andpotential ease
of clinical implementation for functional mapping, language is a
dynamic process integrating activity from multiple areas and subnet-
works. The vast majority of the study of these networks has been done
through fMRI, with a minimum time resolution spanning at least sev-
eral seconds64,65. It is unlikely thatmost nodes in language subnetworks
revealed by fMRI remain persistently active overall for several seconds.
Rather, they more likely reflect the summation of the rapid reconfi-
guration of networks serving multiple language subprocesses11,66.
Language is likely subserved by, and may be better described by,
dynamic networks, and DES may actually identify nodes that play
important, yet dynamic and different, roles during language proces-
sing. These might be further elucidated experimentally with dynamic
network analyses.

Despite these limitations, our findings identify a critical role for
connector nodes in the function of language networks. Although the
use of a static network and division of critical nodes into only two
categories (i.e., language error vs. speech arrest) likely oversimplifies
the complex contribution of different network states and critical cor-
tical areas to language processing, we were able to use these techni-
ques to classify critical language and speech nodes with remarkable
accuracy, even across participants with different disease conditions,
cortical sampling, and task conditions. The fact that the data were
heterogeneous and yet still enabled accurate classification of DES-
critical sites speaks to the robustness of our findings overall. Further
investigations into the network connectivity of critical cortical regions,
and the network states subserving speech and language, are ongoing.
These findings also suggest that further investigation into the ECoG
network representations underlying other processes besides language
may yield new insights into human cognitive processing.

Methods
Participants
This study was conducted in patients with medically intractable epi-
lepsy who required invasive ECoGmonitoring for clinical treatment of
their epilepsy (n = 11) andpatientswho required awakecraniotomy and
functional mapping for the resection of brain tumors (n = 5). All pro-
cedures were approved by the Institutional Review Boards of either
Northwestern University or Johns Hopkins University, and written
informed consent was obtained from all participants. We included
patients whowere foundbyDES to have cortical sites critical to speech
or language. We excluded participants with tumor-related symptoms
affecting speech production (as determined by neuropsychological
assessment) and nonnative English speakers from the study.

As per the standard of care for awake craniotomies, patients with
brain tumors were first anesthetized with low doses of propofol and
remifentanil, which were then discontinued during the awake portion
of the operation for direct cortical stimulation mapping. All experi-
ments were performed after cortical stimulation, hence, during
experiments, no general anesthesia had been administered for at least
45min. After functional mapping, we placed 8×8 electrode grids with
4-mm or 5-mm interelectrode spacing over the posteroventral frontal
cortices, and occasionally over the superior temporal/angular gyri. All

tumors were located at least two gyri away from the recording elec-
trodes. In participants with epilepsy, standard clinical ECoG grids and
strips (1-cm interelectrode spacing) were placed according to clinical
necessity. All patients in this studywere left hemisphere-dominant and
had left-sided temporal, frontal, and/or parietal electrode coverage.

Functional mapping and definition of critical nodes
Functional mapping was performed using DES according to the stan-
dard of care by the neurosurgery (for intraoperative mapping, using a
bipolar Ojemann stimulator) or epilepsy (for extraoperative mapping
in the epilepsy monitoring unit) teams. In the intraoperative setting,
after patients were sufficiently awake, bipolar stimulation was deliv-
ered with an Ojemann stimulator using a manual silver ball bipolar
probe with 5-mm spacing. Stimulation current began at 1mA and was
increased in 0.5 to 1mA increments to elicit stimulation-induced
speechand language deficits. In the extraoperative setting, stimulation
mapping followed routine clinical procedures. Tasks included free
speech, repetition, picture naming, and comprehension. Extra-
operative mapping was performed in 2–3 h blocks over 1–2 days and
relied upon both monopolar and bipolar stimulation delivered
through the implanted subdural grids to elicit reproducible language
deficits in the absence of after-discharges.

We defined regions of the cortex that mapped positive for lan-
guage or speech function to be “critical nodes”; these were subdivided
into “language error (LE)” and “speech arrest (SA)” nodes. Areas where
stimulation resulted in reproducible cessation of all speech output
during every task modality were defined as SA nodes, and all other
critical nodes—i.e., those that caused patients to have aphasia, dys-
nomias, paraphasic errors, or comprehension errors, were designated
as LE nodes. We also adjudicated nodes where stimulation resulted in
the inability to speak during some, but not all tasks, to be LE nodes.
This effect suggested stimulation-induced interference with a lan-
guage processing ability (such as word recall, reading, or auditory
comprehension) critical to completing certain tasks, but the continued
ability to speak during other tasks (such as spontaneous speech)
demonstrated the continued function of articulatory (and other)
components of the speech network.

Word-reading task and data acquisition
An overview of the experimental design and analysis is shown in Fig. 1.
For intraoperative participants, after DES mapping was completed,
surface (subdural) electrode arrays were placed for data acquisition.
We co-registered the nearest surface electrodes with the previously
identified positive mapping locations using intraoperative photo-
graphs. For participants with epilepsy, both electrodes in each bipolar
stimulation pair were considered to be “positive” when a language
deficit was elicited during stimulation.

All participants performed a word-reading task in which they read
single words from a screen while continuous ECoG was acquired. This
task was performed separately from DES mapping. Each trial began
with the display of a word on-screen for ~2 s (timing and word set
differed slightly across institutions and participants). In some partici-
pants, the word was read upon presentation. In others, a variable-
length instructed delay (1–2 s blank screen) preceded a “go” cue
prompting vocalization. Words used were single-syllabic, largely
consonant-vowel-consonant format. Several minutes of continuous
task data from each participant were used for analysis, typically
including forty to one hundred words.

Data preprocessing and power extraction
We acquired data at sampling rates from 500 to 2 kHz. We applied
notch filters at 60, 90, and 120Hz in a zero-phase manner and re-
referenced data to the commonmean. We extracted the Hγ power by
applying eight finite impulse response band-pass filters with approx-
imate pass-bandwidths of 10Hz and linearly spacedband centers from
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70 to 150Hz, followed by a Hilbert transform to extract the analytic
amplitude. After squaring the amplitude, the sub-band powers were
averaged to obtain the Hγ power. At every step (i.e., after initial fil-
tering, re-referencing, and after obtaining the Hγ power) of pre-
processing, we excluded electrodes whose signals were contaminated
with frequent interictal spiking activity, as well as those with sub-
stantial noise based on visual inspection. Afterward, the preprocessing
pipeline was reiterated from the beginning without the excluded
electrodes (thus preventing contamination in re-referencing) until no
further noisy electrodes remained. For the remaining electrodes, we
identified and removed any transient epochs of significant artifact
(defined as simultaneous non-physiologic, high-amplitude activity
across many electrodes) and concatenated the remaining data with a
flat-top (trapezoidal) taper with linear transition zones of 100-ms. We
z-scored the Hγ power on each electrode.

We then performed a global signal regression67, ensuring
that the residual data used to construct our networks was orthogonal
to the global average Hγ signal. We smoothed the resultant signal
by applying a zero-lag 150-ms moving mean; this length was selected
by visual inspection as one that reduced small rapid fluctuations
in the Hγ power signal while maintaining its overall underlying
characteristics.

For extraoperative patients, we localized electrodes in a semi-
automated fashion by co-registering post-implantation CT scans with
preoperative thin-cut T1MRI sequences. Brain surface reconstructions
were generated in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/),
and electrode contacts were colocalized in standardized space with
the help of LeGUI68, a graphical user interface for the detection and
localization of intracranial electrodes. For intraoperative patients, an
expert neuroanatomical review of intraoperative photographs of the
cortical surface before and after grid electrode placement was used to
visually co-register electrode and positive mapping locations with
visible cortical surface landmarks.

Network generation
We constructed one network (i.e., graph) for each participant, repre-
senting functional connectivity during the entire task duration. In
these networks, each node represented the activity in the cortex
underlying an electrode. We connected these nodes with edges based
on the zero-lag, Fisher-transformed Pearson correlation of their Hγ
power; edges were therefore weighted and signed and spanned the
interval [−1 1]. The Hγ bandwas selected based on its representation of
very local activity (thus eliminating potential confounds from volume
conduction), its correlation with the fMRI BOLD signal49,53,56,57, and its
established utility in prior studies of language function. Networks are
described by their connectivity matrices, denoted by A where Aij

represents theweight of the connection between electrodes i and j.We
avoided thresholding edges whenever possible, leaving them as
weighted positive and negative connections between nodes, as this
reduced the potential parameterization bias in subsequent analyses.
We tested the length of datasets and its association with classification
accuracy and found that sufficient amounts of data were used (Sup-
plementary Fig. 4).

Characterizing networks
Community detection. We used modularity maximization to
detect communities, i.e., groups of nodes whose connections to one
another maximally exceeds what would be expected by chance.
This intuition is formalized by the modularity quality function,
(1) Q=

P
ijðAij � PijÞδðzi,zjÞ, where Aij and Pij are the observed and

expectedweights of edge ij
� �

, zi is the community assignmentofnode
i, andδ x,yð Þ is the Kronecker delta function. Effectively, this summa-
tion is over within-community nodes. Intuitively, larger values of Q
correspond to better partitions of the network into segregated com-
munities. We used a uniform null model and set the elements of

Pij = hAi≠ji, which has been shown to be an appropriate null model for
correlation networks.

We optimized Q using the Louvain algorithm (100 repetitions)
and resolved variability across these repetitions via consensus clus-
tering. In this procedure, we first calculate a node-by-node allegiance
matrix, whose elements are equal to the fraction of partitions in which
nodes i and j were assigned to the same community. We then compare
these elements to their expected values and cluster the allegiance
matrix (100 repetitions). These two steps—construction and clustering
of an allegiance matrix—are repeated until convergence, i.e., the
detected communities are identical to one another. We tested the
stability of our findings by exploring a range of values for Pij , which did
not substantially change results (Supplementary Materials).

Community membership of critical nodes. We examined whether
critical nodes (LE and SA nodes taken together), LE nodes, or SA nodes
colocalized in the same communities with other nodes of their own
type. To accomplish this, we calculated the coassignment percentage
(CoA%): for each participant, the percentage of all pairs of each node
type that were assigned to the same community (Fig. 2A). To test
whether the CoA% was different from chance, we randomly permuted
the community assignments of all nodes 1000 times.We compared the
true CoA% for each group to that of the surrogate distribution and
estimated p values in a one-tailed manner. We also calculated the
cross-assignment percentage (CrossA%): the fraction of node pairs
consisting of one LE and one SA node that were assigned to the same
community and compared it to chance in the same manner.

Network signatures. We hypothesized that a node with connections
across multiple different communities plays a different role
(and maybe more critical to network function) than one with strong
connections onlywithin its community. To quantify this, we calculated
the participation coefficient (pc) of each node, defined as

(2) pi = 1�
PC

s = 1ðkis
ki
Þ2, where s ∈ {1,…, C} represents community

assignment, ki is the node’s total strength (for weighted networks) and
kis is the node’s sum weight of connections to community s69; pc is
bounded between 0 (only makes connections to a single community)
and 1 (connections are uniformly distributed across many different
communities). We considered only the contribution of positive-
strength edges to the participation coefficient.

We also investigated several other well-described graph metrics
(Fig. 2B): node strength (normalized to the number of nodes in each
network), eigenvector centrality, clustering coefficient, and local effi-
ciency, using code derived from the Brain Connectivity Toolbox70.
Node strength quantifies the sum of a node’s weighted connections.
Eigenvector centrality simultaneously considers a node’s number of
connections as well as their relative importance. The clustering coef-
ficient of a node describes the likelihood that its neighbors are also
connected to each other, and local efficiency is a related measure that
quantifies the shortest path lengths in the local neighborhood of a
node. Local efficiency was calculated based on positive edges only by
converting connection strengths to path lengths via their inverse
(Lij =Aij

�1); the remainder of the calculations were based on the
weighted adjacency matrix. To standardize comparisons between
participants, we z-scored all network metrics for each participant.
Given the number of nodes in each group, we compared metrics
between critical, LE, SA, and other nodes using the two-sample t-test,
with Storey’s false discovery rate correction for multiple comparisons.

Prediction of critical nodes. We investigated whether the network
signatures alone could be used to predict whether nodes would be
found to be critical by DES. As there was substantial heterogeneity in
the number of grids, electrodes, coverage, and clinical characteristics
of the underlying patients, we trained and evaluatedmachine learning
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classifiers of critical vs. non-critical nodeswithin eachparticipant using
ten-fold cross-validation. This process roughly estimates the potential
accuracy of these classifiers in predicting critical nodes when trained
and tested on data closely resembling that of each individual patient.
We used support vector machine (SVM) and k-nearest neighbor (KNN)
classifiers due to their power, wide recognition, and straightforward
implementation. Participants with less than four critical nodes were
excluded due to class underrepresentation in training folds.

Input features to these models included node pc, strength, clus-
tering coefficient, local efficiency, and eigenvector centrality—i.e., the
full set of graph measures calculated above. We determined classifier
hyperparameters (i.e., kernel type and size, cost-weighting of false
negatives, etc.,) using training data alone by using Bayesian optimi-
zation to select hyperparameters that maximized the AUC (area under
curve of the receiver operating characteristic). We did this using five-
fold cross-validation within each training set (in the overall ten-fold
cross-validation), which subdivided the training data into independent
sub-training and sub-test sets, to avoid overfitting the hyperpara-
meters. With the use of a completely independent test set (unused for
hyperparameter optimization aswell as classifier training), we avoided
introducing bias into our accuracy estimations.

We then trained the SVM and KNN classifiers on the training set
and applied them to the test set. By varying the threshold for positive
class prediction through the range of classifier positive class predic-
tion scores, we generated receiver operating characteristic (ROC)
curves of the accuracy of predicting critical nodes.We defined optimal
class prediction score thresholds for each participant’s ROC curve as
those maximizing balanced accuracy.

Using these same methods and the same limited set of network
features, we further investigated whether the network signatures of
critical nodes generalized across patients, by testing whether a clas-
sifier trained on a set of patients could beused to predict critical nodes
in an entirely separate patient. We trained classifiers in a leave-one-
patient-out manner: data (consisting of the input features) from elec-
trodes pooled from N-1 patients were used to train and optimize the
classifier, after which its classification accuracy was determined on the
electrodes from the remaining, previously unseen patient. This pro-
cess, repeated N times, estimates the generalizable real-world classi-
fication accuracy of a pre-trained model using only these features.
With pooled electrodes, class underrepresentation in the training fold
was less of an issue, sowe included for this analysis all participantswho
had at least one electrode of the positive class. For eachparticipant, we
again used critical node prediction scores to generate ROC curves, and
we defined optimal thresholds (i.e., score cutoff for positive class
prediction) to be those that maximized balanced accuracy.

We repeated the above process twenty times (as the hyperpara-
meter learning process, and therefore classification accuracy, was non-
deterministic) and averaged the results to generate a point estimate of
balanced accuracy, sensitivity, specificity, and average ROC for each
participant. To test the accuracy of these classifiers against chance, for
each of the twenty trained classifiers, we randomly permuted the
positive class labels 100 times (resulting in 2000 chance predictions)
and used the samemethodology as for the true data for each iteration
to extract an estimate of the peak balanced accuracy, sensitivity, spe-
cificity, and AUC of the ROC that could be obtained by chance. We
resampled this chancedistributionwith replacement 1000 times (each
sample containing the same number of predictions as the true data)
and compared the mean performance to that of the true data.

Statistics and reproducibility. Critical nodes were identified during
clinical DES mapping sessions that were separate from the research
paradigm and were not influenced by the research question. ECoG
recordings, preprocessing, and network calculations were performed
in an unbiased manner, and we tested the reliability of our results. For
community assignments, we tested a range of parameter values to

confirm the stability of our key results (Supplementary Materials and
Supplementary Fig. 1). For network metric comparisons, all electrodes
were pooled across subjects and compared directly using the two-
sample t-test and FDR correction. For within-subject critical node
prediction, we assessed prediction accuracy in a ten-fold cross-vali-
dated manner; the test dataset was not used for model training or for
parameter optimization. For across-subject critical node prediction,
we utilized a leave-one-subject-out scheme where again, the test data
was not used formodel training or for parameter optimization. In both
instances, we performed classification multiple times as the hyper-
parameter optimization process was not deterministic, and we aver-
aged the performance of each of these attempts. Statistical testingwas
performed using label-shuffling where appropriate, comparing the
average performance of the classifiers on the true data against empiric
chance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data were generated at Northwestern University and Johns Hop-
kins University. The rawdata were available; access can be obtained by
direct request to the corresponding author. A minimum dataset is
available at the data archive for the brain initiative at https://doi.org/
10.18120/9qat-kr87. Source data are provided with this paper.

Code availability
Code for these analyses are available under restricted access; access
can be obtained for non-commercial use by direct request to the
corresponding author.
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