
OR I G I N A L R E S E A R C H

Novel mTOR Inhibitor Enhances the Sensitivity of

Hepatocellular Carcinoma Cells to Molecular

Targeting Agents
This article was published in the following Dove Press journal:

OncoTargets and Therapy

Ying-Qi Feng1,*

Bo-An Li2,*

Fan Feng 2,*

Yong-Shou Chen1

Yi-Xin Ren1

Heng Zhang1

Shuang Cao 1

1Key Laboratory for Green Chemical

Process of Ministry of Education, School

of Chemical Engineering and Pharmacy,

Wuhan Institute of Technology, Wuhan

430072, People’s Republic of China;
2Center for Clinical Laboratory, The Fifth

Medical Center, General Hospital of

Chinese PLA, Beijing 100039, People’s
Republic of China

*These authors contributed equally to

this work

Background: Although molecular-targeted agents are still the first choice for advanced

hepatocellular carcinoma (HCC) treatment, the therapeutic efficacy of these agents is not

satisfactory. Recently, the mammalian target of rapamycin (mTOR) is considered to be

a promising molecular target that can enhance the sensitivity of HCC cells to antitumor

therapy. However, the reported mTOR inhibitors have some shortcomings, and novel mTOR

inhibitors need to be developed to enhance the antitumor effect of molecularly targeted

agents on advanced HCC.

Methods: In this study, five small-molecular compounds that could serve as potential

mTOR-specific inhibitors were identified by virtual screening. The activity of tert-butyl

(4-(9-(2-(1,3-dioxolan-2-yl)ethyl)-6-morpholino-9H-purin-2-yl)phenyl)carbamate (com-

pound 4) was measured by enzyme test and Western blot, and its antitumor effect on HCC

was examined in nude mice subcutaneous tumor model.

Results: The results showed that 4 is the most effective one in inhibiting the activation of

mTOR kinase (mTOR IC50 = 17.52±3.67 nmol/L) among the five lead compounds. Further

research in this study indicated that treatment with 4 enhanced the sensitivity of HCC cells to

the molecular-targeted agents, such as sorafenib, regorafenib, lenvatinib, anlotinib, and

apatinib. In addition, this research indicated that mTOR was correlated with the poor

prognosis in patients with advanced HCC who received sorafenib.

Conclusion: Our study identified a new type of small-molecular inhibitors of mTOR and

confirmed their ability to enhance the antitumor effect of molecular-targeted agents on

advanced HCC.
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Introduction
Due to the high infection rates of hepatitis viruses (HBV [hepatitis B virus] or HCV

[hepatitis C virus]) in China, HCC is now one of the most fatal diseases.1–3 Moreover,

most diagnosed HCC patients are often at the advanced stage (the Barcelona Clinic

Liver Cancer [BCLC] stage C of disease) and unsuitable for receiving surgeries or

liver transplant; chemotherapy and radiotherapy are the only few treatments for

them.4–6 Until now, given the multi-drug resistance (MDR) in HCC chemotherapy,

molecular-targeted agents are still the first-line or second-line treatment for HCC

patients.7–9 However, molecular-targeted therapies for advanced HCC are also facing

many challenges: (1) there are individual differences in the sensitivity of patients to

molecular-targeted agents and only a few patients are sensitive to them;10 (2) patients
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are prone to developing a resistance to molecular-targeted

agents during the treatment;10 (3) molecular-targeted thera-

pies require large doses of drugs (for example, a dose of

800 mg sorafenib per day), which not only imposes a huge

economic burden on patients but also seriously affects their

health condition.11 Therefore, it is very urgent to study and

improve the sensitivity of HCC to molecular-targeted thera-

pies in order to reduce the drug doses while retaining their

antitumor efficacy.

As it is known, mTOR is a key regulator in cancer cells

to regulate important physical processes in response to the

changes of microenvironment, such as nutrient alterations,

cell stress and hormone.3,12 Abnormally activated mTOR

is involved in the development of human cancer,13–15 and

inhibiting mTOR may have antitumor effect.16,17 In recent

years, a number of ATP-competitive mTOR inhibitors

have been identified and developed.18–20 However, nearly

all researches using selective mTOR inhibitors alone for

antitumor treatment are only in clinical stage I or II until

now.21–23 More and more studies have shown that use of

specific mTOR inhibitors alone has a limited inhibitory

effect on tumors because of the compensatory effect of

certain pathways, especially in the treatment of HCC.24–29

Although the dual PI3K/mTOR inhibitors have more sig-

nificant antitumor effect than mTOR-specific inhibitors,

they also lead to greater side effects due to affecting

mTOR and PI3K signaling pathways at the same time.30,31

Recently, multiple studies have shown that mTOR expres-

sion is related to poor prognosis in patients with advanced

cancer, and mTOR inhibitors can alleviate drug resistance in

human cancer cells, which indicates that application of mTOR

inhibitors to sensitize cancer cells to other antitumor treatment

may be a promising strategy.32,33 In other words, mTOR

inhibitors would be better used as tumor sensitizers rather

than independent medicines for cancers.

In addition, classical mTOR inhibitors, such as rapa-

mycin and everolimus, have poor performance in pharma-

cokinetics owning to the large molecular weight

(molecular weights > 950) and poor chemical properties

(logP > 6). However, ATP-competitive mTOR inhibitors

can overcome these defects and are very suitable for

treating HCC patients with liver damage.34 In this study,

we used structure-based virtual screening and biological

evaluation to find new compounds that could serve as

selective and ATP-competitive mTOR inhibitors. The inhi-

bitory activity and selectivity of these compounds towards

mTOR were analyzed separately.35 The effect of mTOR

inhibitors on the antitumor activity of molecular-targeted

agents was examined in vitro and in vivo. By revealing

that the novel mTOR inhibitors could enhance the anti-

tumor effect of molecular-targeted agents, we not only

extended our knowledge about mTOR inhibitors but also

provided a new promising therapeutic strategy for more

effective HCC treatment.

Materials and Methods
Molecular Docking
Molecular docking was implemented using the surflex-

docking package of Sybyl-X 2.1. A cocrystal structure of

mTOR with ADP (4JSV) was obtained from the Protein

Data Bank. Before docking, 4JSV was prepared by removing

water and magnesium ions and extracting the ligand. Addition

of hydrogen and charges and treatment of the terminal resi-

dues were also performed on 4JSV. Then, the “protomol”was

generated using the ligand-based mode, and an appropriate

binding pocket was formed. The reliability of the surflex-

docking was validated by redocking the original ligand

(ADP) into the binding pocket. Next, all of the candidate

compounds were docked into the binding pocket, and 20

possible docked conformations were obtained with different

scores.36,37 Molecular modeling figure was drawn using

PyMOL software (http://www.pymol.org).38

mTOR Enzyme Assay
LANCE® ultra time-resolved fluorescence resonance energy

transfer (TR-FRET) assay (Invitrogen, Carlsbad, CA, USA)

was used to determine the mTOR kinase activities of all the

compounds following the manufacturer’s instructions, with

compound GSK2126458 (Selleck, China) as positive

control.39 Briefly, mTOR enzyme (0.1 μg/mL, Invitrogen,

Carlsbad, CA, USA), ATP (3 μmol/L (μM)), GFP-4EBP1

peptide (0.4 μM), and test compounds were diluted in kinase

buffer (50 mM HEPES pH 7.5, 1 mM EGTA, 3 mmol/L

(mM) MnCl2, 10 mM MgCl2, 2 mM DTT, and 0.01%

Tween-20). The reaction was performed in black 384-well

proxiplates (Corning, New York, NY, USA) at room tem-

perature for 1 h, then stopped by adding EDTA to 10 mM.

Tb-antiphospho-4EBP1 (Thr37/46) antibody (PerkinElmer,

Fremont, CA, USA) was added to each well, and the mixture

was incubated at room temperature for 30 min. Test com-

pound concentrations were 10,000, 2500, 625, 156.25, 39.06,

9.77, 2.44, 0.61, 0.15, 0.04 and 0.01 nM. The final DMSO

concentration was 1%. A Spectramax 190 reader (Molecular

Devices, Valley, CA, USA)was used tomeasure the intensity

of the light in TR-FRET mode (excitation 320 nm, emission
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665 nm). All compounds were tested twice, and the results

were expressed as the average IC50 (inhibitory concentration

50%) of the two experiments.

Patients and Antitumor Agents
The collection and usage of clinical specimens of HCC

were approved by the ethics committee of No. 302nd

hospital, Chinese People’s Liberation Army (now named

as the fifth medical center of the General Hospital, Chinese

People’s Liberation Army). All the related researches were

performed in compliance with the Helsinki Declaration. In

our previous work (Table S1), a total of 52 HCC cases

were included and described. The cDNA samples

extracted from the clinical specimens were conserved in

our lab at −80°C condition.40,41 As described in our pre-

vious work, patients whose tissues were used in this

research provided written informed consent.40,42 The clin-

ical specimens obtained from the twice liver puncture (at

initial or recurrence) or the autopsy were persevered in our

lab and described in our previous work.43 Antitumor

agents such as sorafenib, regorafenib, lenvatinib, anlotinib,

or apatinib and the small-molecular inhibitors such as

mTOR inhibitor (Rapamycin), PI3K/AKT inhibitor

(LY294002), MAPK inhibitor (PD98059) or Jak/STAT

inhibitor (CP690550) were purchased from Selleck

Corporation (Houston, TX, USA). Agents were dissolved

by using Dimethyl sulfoxide (DMSO, Sigma Aldrich

Corporation, St Louis, MO, USA) in the cell-based experi-

ments and then diluted by using the Dulbecco’s Modified

Eagle Medium (DMEM, Hyclone, Thermo Scientific

Corporation, Waltham, MA, USA) without Fetal Bovine

Serum (FBS, Invitrogen, Thermo Scientific Corporation,

Waltham, MA, USA).44,45 According to the methods

described by Xie et al and Wang et al, we prepared the

formulation of agents (the oral liquids) with PEG (poly-

ethylene glycol) and Tween 80 in animal experiments.46,47

Quantitative Polymerase Chain Reaction
With the cDNA samples from the clinical specimens as tem-

ples, the expression level of mTOR in clinical specimens was

detected following the qPCR methods. According to the pro-

tocol provided by the manufacturer’s instruction (Applied

Biosystems, Thermo Fisher Scientific, Corporation,

Waltham, MA, USA) and the methods described by Ji et al

and Liang et al, the qPCR experiments were performed.48 The

β-actin was used in loading control. In the present work, the

primers chosen are listed as: (1) mTOR, Forward Sequence 5ʹ-

AGCATCGGA TGCTTAGGAGTGG-3ʹ; Reverse Sequence

5ʹ-CAGCCAGTCATCTTTGGAGACC-3ʹ; β-Actin (gene

symbol ACTB): Forward Sequence 5ʹ-CACCATTGGCA

ATGAGCGGTTC-3ʹ; Reverse Sequence 5-AGGTCTTTGC

GGATGTCCACGT-3ʹ.

Cell Line and Cell-Survival Examination
The present work did not include any materials obtained

directly from human participants and only used MHCC97-

H cells purchased from the Type Culture Collection of the

Chinese Academy of Sciences (Shanghai, China). The

usage of the cell lines was permitted by the ethics com-

mittee of the Fifth Medical Center, General Hospital of the

Chinese PLA (previously named the Beijing 302

Hospital). All experiments were performed according to

the Declaration of Helsinki (World Health Organization).45

For proliferation analysis, cells were seeded in 96-well

plates (5 × 103 cells per well) (Corning, NY, USA). Cells

were cultured in DMEM (complete Dulbecco’s modified

Eagle’s medium, Invitrogen, USA) with 10% FBS (fetal

bovine serum, Invitrogen, USA) at 37°C with 5% CO2 for

24 h.41 Treat the MHCC97-H cells with indicated concen-

tration (10.0 μmol/L, 3.0 μmol/L, 1.0 μmol/L, 0.3 μmol/L,

0.1 μmol/L, 0.03 μmol/L or 0.01 μmol/L) of molecular

targeting agents for 48 h in MTT experiments.49,50 The

relative survival-cell number was reflected by OD 490 nm

and the inhibitory rates of molecular targeting agents on

MHCC97-H cells were calculated as (control group’s OD

490 nm – administration group’s OD 490 nm)/(control

group’s OD 490 nm) × 100%. The IC50 values of mole-

cular targeting agents on MHCC97-H cells were calculated

by inhibitory rates.51,52

Enzyme-Activation Examination and the

Western Blot Experiments
MHCC97-H cells (5x106 cells per 75T flask) were incubated

for 24 h following pretreatment with solvent control, com-

pound 4, LY294002, GSK2118436, CP690550 and rapamy-

cin for 12 h. The dosing concentrations of solvent control,

compound 4, LY294002, GSK2118436, CP690550 and rapa-

mycin all were set to 1 μmol/L. At the end of the exposure

period, cells were lysed in RIPA (Radio Immunoprecipitation

Assay) buffer (Cell Signaling Technology, Danvers, MA,

USA). Protein concentration was determined using the

Pierce bicinchoninic acid protein assay kit (Thermo Fisher

Scientific, Inc.) according to the manufacturer’s instructions.

Protein samples (40 μg) were loaded into each well of a 10–-
12% polyacrylamide gel and separated by sodium dodecyl
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sulfate polyacrylamide gel electrophoresis (Millipore,

Billerica, USA). The membrane was blocked with 5% skim

milk in Tris-buffered saline with 0.1% Tween-20 and incu-

bated with antibodies (1:1000) at 4°C. β-actin was employed

as the loading control. Rabbit antibodies against human

phospho-p70S6K (Thr389), p70S6K, phospho-AKT

(Ser473), phospho-AKT (Thr308), AKT, phospho-ERK,

ERK, phospho-rpS6 (Ser235/6), rpS6, β-actin and secondary
antibodies were purchased from Cell Signaling Technology

(Danvers, MA, USA).53–55

In vivo Bioactivity Assessment of the Lead

Compounds
The nude mice model was used to test the bioactivity of

candidate compounds in vivo. The animal experiments

were approved by the Animal Ethics Committee of the

Fifth Medical Center, Chinese PLA, and carried out in accor-

dance with the UK Animals (Scientific Procedures) Act of

1986 and its associated guidelines. In order to produce the

nude mice subcutaneous tumor model, MHCC97-H cells

were cultured, prepared and subcutaneously injected into

the 4–5 week-old nude mice.42,56 Four to 5 days after injec-

tion, the assigned concentrations of agents were orally admi-

nistrated into the mice every 2 days. Mice were cultivated in

cages and their tumor tissues were collected after 30 days of

oral administration (15 times). The tumor volume (V) was

calculated using the formula V = (tumor length) × (tumor

width) × (tumor width)/2 and the tumorweight wasmeasured

by using a precision balance. The tumor weight and volume

reflected the inhibitory effect of agents on the subcutaneous

growth of MHCC97-H cells.57,58 In addition, we acknowl-

edge that the nude mouse model is absent host immunity so

its generalizability for larger animal or human use is limited.

Statistical Analysis
In this study, by using a SPSS Statistics software (IBM

Corporation, Armonk, NY, USA), the Bonferroni correction

with two-way analysis of variance was used to carry out the

statistical analysis. Origin software (Version No 6.1,

OriginLab Corporation, Northampton, MA, USA) was used

to calculate the IC50 values of molecular targeting agents on

MHCC97-H cells. A P-value that less than 0.05 (P<0.05) was

considered statistically significant between groups.

Results and Discussion
Virtual Screening
In this study, we established a virtual docking model based

on the crystal structure of mTOR (PDB: 4JSV) with com-

plete substrate-binding pocket and ligand. Then, approxi-

mately 1200 compounds in our own compound library

were screened by virtual docking and ranked according

to various molecular characteristics, including hydropho-

bicity, polarity, entropy, etc. The 50 top-ranked compounds

were selected, of which, 22 compounds were retained after

manual selection based on visual inspection. The selected

Figure 1 High level of endogenous mTOR is associated with the poor prognosis of advanced HCC patients received sorafenib treatment. The expression of mTOR in

clinical specimens from advanced HCC patients received sorafenib treatment was examined by qPCR. Patients were divided into two groups (the mTOR-high group and the

mTOR-low group) based on the median level of mTOR’s expression. The OS (overall survival) or TTP (time to progress) was examined to reveal the prognosis of patients.

*P<0.05.
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compounds were clustered into five types according to

their structural characteristics.

In order to further investigate the accuracy of the docking,

five representative mTOR inhibitors (OSI-027, GDC-0349,

CC-223, AZD-2014, AZD-8055) were selected, which all

had been used in Phase II clinical trial, and docked into the

binding pocket of mTOR.59–63 By comparing docking sites

of the five compounds, we found that all these inhibitors

formed hydrogen bonds with LYS2187, ASP2357 and

VAL2240, indicating the significant role of these three resi-

dues. Finally, the docking sites of the selected 22 compounds

were examined, revealing that five compounds (compounds

1-5) had hydrogen–bond interaction with the three key

residues. Therefore, these compounds (Figure S1) with pur-

ine structure were selected out as lead compounds for further

study. The structural information of them was reported in the

Supplementary Materials ("Structural identification of com-

pounds 1-5" and "1H-NMR, 13C-NMR and MS spectra of

compounds 1-5").

Correlation Test
The relationship between the expression of mTOR and the

poor prognosis of advanced HCC in patients having received

sorafenib treatment was examined. The mRNA level of

mTOR in the HCC patients was examined by qPCR and

then these patients were divided into two groups (the high-

mTOR group and low-mTOR group) according to the median

mRNA level of mTOR; the prognosis, the OS (overall survi-

val) and the TTP (time to progress) of patients were compared

between the two groups. As shown in Figure 1 and Table 1, the

patients in the high-mTOR group had a poorer prognosis

compared with those in the low-mTOR group; TTP (median

value of 8.0 [M, month] of 95% confidence intervals (CI):

5.3–10.7 [M]) or OS (median value of 10.0 [M, month] of

95% CI: 8.1–11.5 [M]) of patients in the high-mTOR group

was significantly shorter than TTP (median value of 12.0 [M,

month] of 95% CI: 10.5–15.1 [M]; log-rank P=0.014) or OS

(median value of 16.0 [M, month] of 95% CI: 11.6–20.4 [M];

log-rank P=0.011) of patients in the low-mTOR group.

To further examine the correlation between mTOR acti-

vation and advanced HCC, the twice percutaneous liver

puncture (at the initial diagnosis or the recurrence time

point) specimens and an autopsy liver puncture specimen

which were obtained from same advanced HCC patient were

used. The results indicated that the phospho-p70S6K1

(Thr389) and the phospho-rpS6 (Ser235/6) level but not

p70S6K1 or rpS6 was increased with sorafenib treatment

(Figure S2). Moreover, similar results were obtained from 5

advanced HCC patients with twice percutaneous liver punc-

ture samples (Figure S3). The above results indicated that

mTOR was not only correlated with the poor prognosis of

advanced HCC patients having received sorafenib treatment

but also activated as the cellular-injury response in HCC

specimens. The mTOR pathway could serve as a promising

target to attenuate drug resistance and enhance the activity of

molecular-targeted agents in treating HCC.

Enzyme Inhibitory Activity and Selectivity
Firstly, the activity of five lead compounds was examined.

1 had an IC50 value against mTOR of 153.20±21.77 nmol/

L; 2 had an IC50 value of 394.20±45.17 nmol/L; 3 had

Table 1 mTOR Expression and Clinical Outcome of Sorafenib

Treatment

mTOR mRNA expression P

High (n = 40) Low (n = 12)

TTP 8.0 12.0 0.014

5.3–10.7 (M) 10.5–15.1 (M)

OS 10.0 16.0 0.011

8.1–11.5 (M) 11.6–20.4 (M)

Abbreviations: TTP, time to progress; OS, overall survival; M, months.

Figure 2 The specificity of 4 on activation of mTOR. MHCC97-H cells were treated

by 4, LY294002, GSK2118436 and CP690550. Then, cells were harvested forWestern

blot and the expression level or the phosphorylation level of P70S6K1, AKTor ERK

was examined by their antibodies. β-actin was chosen as the loading control.
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a IC50 values of 53.77±10.22 nmol/L; 4 had an IC50 value

of 17.52±3.67 nmol/L and 5 had an IC50 value of 104.80

±20.05 nmol/L. Among the five lead compounds, 4 had the

most significant inhibitory activity on mTOR enzyme.

After identifying 4 as the best compound for enzyme

inhibition activity, Western blot was used to investigate its

selectivity to mTOR. In order to confirm that 4 acted selec-

tively on mTOR, it was first necessary to exclude its effects

on the upstream PI3K/AKT signaling pathway (Figure 2

and Figure S4). The PI3K inhibitor LY294002 was selected

as the control agent. The Western blotting results showed

that LY294002 significantly inhibited the phosphorylation

of AKT and P70S6K1 simultaneously, whereas 4 only

inhibited the phosphorylation of P70S6K1. This indicated

that 4 did not affect PI3K or AKT (upstream of mTOR).

Second, whether 4 had an inhibitory effect on the MAPK

pathway was also investigated, as the MAPK signaling

pathway could also regulate mTOR activation owing to

cross-talk between signaling pathways. The MAPK inhibi-

tor GSK2118436 was used as the control reagent, which

significantly inhibited ERK phosphorylation. As expected,

4 did not show a significant inhibitory effect on ERK

phosphorylation. This suggested that 4 did not inhibit

mTOR by inhibiting the MAPK pathway. Finally, the

JAK/STAT pathway inhibitor CP690550 (which does not

affect the phosphorylation of AKT, ERK, or P70S6K1) was

used as the negative control in this study. The JAK/STAT

inhibitors had no significant effect on mTOR. None of the

agents above affected the protein level of AKT, ERK, or

P70S6K1. The above results allowed us to rule out the

possibility that 4 was an upstream inhibitor of the mTOR

signaling pathway, and confirmed that 4 could act directly

and selectively on mTOR.

In addition, the inhibitory activity of 4 on mTORC1 and

mTORC2 was examined by Western blot analysis.

Phospho-p70S6K1 and phospho-AKT (SER473) are down-

stream factors of mTORC1 and mTORC2, respectively

(Figure S5). The results of the analysis showed that 4 had

a definite inhibitory effect on both mTORC1 and mTORC2,

and the inhibitory effect on mTORC2 was weaker than that

on mTORC1.

Figure 3 Schematic of the binding mode of 4 with mTOR.

Table 2 The Effect of Compound 4 on the IC50 Values of

Molecular Targeting Agents on MHCC97-H Cells’ Survival

Agents Solvent Control Compound 4 (30 nmol/L)

IC50 Values (μmol/L)

Sorafenib 1.10±0.15 0.22±0.08

Regorafenib 0.95±0.33 0.10±0.06

Lenvatinib 0.70±0.41 0.05±0.01

Apatinib 1.65±0.10 0.48±0.26

Anlotinib 1.75±0.62 0.52±0.03
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Structure and Activity Relationship
Molecular docking model was used to explain the signifi-

cant activity and selectivity of 4 towards mTOR. In this

model (Figure 3), 4 formed four hydrogen bonds with the

amino acid residues SER2165, LYS2187, VAL2240 and

ASP2244, respectively. By analyzing the docking model

of other reported mTOR selective inhibitors, we observed

that the residues SER2165, LYS2187 and VAL2240 played

an important role, which proved that this docking mode

was valid. VAL2240 was a vital residue in mTOR for

forming a stable hydrogen bond with the 1, 3-dioxolane

group in 4. Thus, 4 has high selectivity to mTOR owing to

this key hydrogen bond. At the same time, purine base ring

was anchored by hydrogen bond with LYS2187. Hydrogen

bond between SER2165 and morpholine could be found in

many mTOR inhibitors. Furthermore, ASP2244 formed

two additional hydrogen bonds with the side-chain group

of 4, which was rarely mentioned in previous studies and

Figure 4 The antitumor effect of compound 4 on the subcutaneous growth of MHCC97-H cells in nude mice. MHCC97-H cells were injected into the subcutaneous

position of nude mice to form subcutaneous tumor. The mice were received 4 via oral administration. Results were shown as the images of tumors (A), tumor volumes (B),
inhibitory rates calculated by tumor volumes (C), tumor weights (D) and inhibitory rates calculated by tumor weights (E). *P<0.05.

Dovepress Feng et al

OncoTargets and Therapy 2020:13 submit your manuscript | www.dovepress.com

DovePress
7171

http://www.dovepress.com
http://www.dovepress.com


made 4 more potent than 1 or 2 (Figure S1). The n-butyl

structure at the end of side chain of 4 just matched the

hydrophobic cavity of mTOR in size, making 4 easier to

bind to mTOR than 3 or 5.

Sensitization Activity Test
In vitro Experiment

To investigate the sensitization effect of 4 on MHCC97-H cell

in vitro, appropriate dose concentration should be determined

firstly; and at this concentration, 4 should not directly inhibit

the growth of MHCC97-H cells, while significantly inhibit the

activation of mTOR kinase (phosphorylation of P70S6K1) in

cells. The data (Table S2) showed that 4 significantly inhibited

the activation of mTOR at a concentration of 0.03 μmol/L (30

nmol/L), but had no obvious cytotoxicity on MHC97H cells.

Therefore, the concentration of 30 nmol/L was determined for

subsequent experiments. As shown in Table 2, treatment with

4 at 30 nmol/L significantly enhanced the antitumor effect of

molecular-targeted drugs on MHCC97-H cells, thereby redu-

cing the IC50 value of the five molecular-targeted agents

(Sorafenib, Regorafenib, Lenvatinib, Apatinib and Anlotinib).

In vivo Experiment

In addition, the effect of 4 on the antitumor activity of

molecular-targeted agents was also examined in vivo. An

appropriate concentration was determined firstly. As shown

in Figure 4 and Table S3, 4 at 1 mg/kg significantly inhib-

ited the activation of mTOR without significantly affecting

MHCC97-H cells’ subcutaneous growth. Therefore, the

concentration of 4 was set at 1 mg/kg in vivo.

In the following experiment in vivo, as shown in Table 3,

4 at a dose of 1 mg/kg was used in combination with five

molecular-targeted agents, which obviously inhibited the

growth of subcutaneous tumor. And this experiment showed

that combining 4 with molecular-targeted agents was more

effective than using molecular-targeted agents alone. Take

sorafenib as example (Figure 5), at different concentrations,

combination of 4 and sorafenib showed more significant

antitumor effect than treatment with sorafenib alone.

Moreover, combination of 0.5 mg/kg sorafenib with 4

could achieve the equal antitumor effect as treatment with

2 mg/kg sorafenib alone. The result showed that mTOR

inhibitors significantly enhanced the efficacy of molecular-

targeted drugs against HCC in the nude mice subcutaneous

tumor model, and indicated that using mTOR inhibitors as

chemotherapeutic sensitizers could be a promising treatment

strategy to hepatoma carcinoma.

Conclusions
In recent years, molecular-targeted agents are still the main

choice for treating advanced liver cancer.64–66 However,

the insensitivity and drug resistance of hepatoma carci-

noma cells to molecular-targeted therapy seriously affect

the application of these drugs. In this study, the experi-

mental results on HCC patients have proved that mTOR

was correlated with the poor prognosis of advanced HCC

patients having received sorafenib treatment, and mTOR

pathway could serve as a promising target to attenuate

drug resistance and enhance the activity of molecular-

targeted agents in treating HCC.

Table 3 The Effect of Compound 4 (1 mg/kg) on the IC50 Values of Molecular Targeting Agents on MHCC97-H Cells’

Subcutaneous Tumor Volumes, Tumor Weights or the Intrahepatic Nodule Areas

Agents Groups Tumor Volumes Tumor Weights

IC50 Values (mg/kg)

Sorafenib Solvent control 1.30±0.48 1.57±0.41

Compound 4 0.17±0.03 0.15±0.04

Regorafenib Solvent control 0.92±0.48 1.22±0.72

Compound 4 0.43±0.10 0.55±0.10

Lenvatinib Solvent control 0.70±0.25 0.78±0.58

Compound 4 0.10±0.05 0.10±0.01

Apatinib Solvent control 1.95±0.55 1.65±0.09

Compound 4 0.53±0.20 0.59±0.07

Anlotinib Solvent control 1.70±0.54 1.60±0.71

Compound 4 0.44±0.23 0.42±0.07
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Figure 5 Compound 4 enhanced the sensitivity of MHCC97-H cells to sorafenib via subcutaneous tumor model. MHCC97-H cells were injected into the subcutaneous

position of nude mice to form subcutaneous tumor. The mice were received sorafenib or sorafenib + 4 via oral administration. Results were shown as the images of tumors

(A); (B) tumor volumes; (C) inhibitory rates calculated by tumor volumes; (D) tumor weights; (E) inhibitory rates calculated by tumor weights. *P<0.05.
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A series of novel mTOR inhibitors were developed as

chemosensitizer to enhance the activity of molecular-

targeted agents in treating HCC. Based on the reported

mTOR inhibitors, we screened out 5 lead compounds with

the purine structure from our own compound library by

virtual docking technology. Among the five lead compounds,

4 has the best inhibitory activity on mTOR (mTOR IC50 =

17.52±3.67 nmol/L), and its selectivity to mTOR was con-

firmed by Western blot. The In vitro MHCC97-H cell lines,

nude mice subcutaneous tumor model was used to verify the

sensitizing effect of 4 on the molecular-targeted therapies.

The results showed that combined use of 4 and molecular-

targeted agents was more effective than treatment with mole-

cular-targeted agents alone. This suggests that mTOR

inhibitors could be potential tumor sensitizers. The virtual

docking technology was used to elucidate the significant

activity of 4 and the result showed that four amino acid

residues in mTOR, including SER2165, LYS2187,

VAL2240 and ASP2244, contributed to binding of 4 to

mTOR. VAL2240, a vital amino acid residue in mTOR,

forms a hydrogen bond with the 1, 3-dioxolane group in 4,

leading to the selectivity of 4 for mTOR. This study con-

firmed that mTOR was correlated with the poor prognosis of

patients with advanced HCC receiving sorafenib, and devel-

oped a number of potential mTOR inhibitors. Research on

mTOR inhibitors is ongoing, and further efforts are in pro-

cess to find effective candidates for potential tumor

sensitizers.
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