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The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g.,

endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and

various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells

(ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host

against cancer and infection. Both subsets are able to quickly produce cytokines such as

interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating

signals. However, the TME provides many molecules that can prevent the potential

effector function of these cells, thereby protecting the tumor. For example, TME-derived

tumor growth factor (TGF)-β and associated members of the superfamily downregulate

NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK

cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding

proteins called galectins, which can be produced by different cells composing the TME,

can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin

and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular

matrix and shred receptors from the tumor cell surface, impairing the activation of NK

cells and leading to less effective effector functions. Gaining a better understanding

of the characteristics of the TME and its associated factors, such as infiltrating cells

and extracellular matrix, could lead to tailoring of new personalized immunotherapy

approaches. This review provides an overview of our current knowledge on the impact of

the TME and extracellular matrix-associated components on differentiation, impairment,

and function of NK cells.
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INTRODUCTION

Innate lymphoid cells (ILCs) are lymphocytes derived from a common lymphoid precursor. Unlike
T and B lymphocytes, ILCs do not express adaptive antigen receptors, instead being activated
through cytokine receptors (1). Natural killer (NK) cells are classified as group 1 ILCs together
with ILC1 (2), previously known as tissue resident NK cells (3), due to their shared dependence on
the transcription factor T-bet, production of specific cytokines (e.g., interferon-gamma, IFN-γ),
and surface receptor expression (e.g., NK1.1, NKp46 in mice, and NKp30 in humans) (1, 4).
During development in the bone marrow, both mouse and human NK cells appear dependent on
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the transcription factor Eomesdermin (Eomes) (5), then during
maturation they repress Eomes and increase T-bet production
(4). However, in humans, mature liver ILC1s can express
Eomes (6). Although ILC1 are tissue resident and unlikely
to migrate to other tissues (7–9), their function in cancer
is poorly understood. Recent studies have revealed that
transforming growth factor-beta (TGF-β) signaling (either by
TGF-β itself or indirectly by Activin-A) can suppress cellular
metabolism and effector functions (10–12). This suppressive
signaling drives the upregulation of ILC1-related markers in
circulating mouse or human NK cells, suggesting the possibility
of intercellular plasticity which could be important within
the tumor microenvironment (TME) (11, 13, 14). NK cell
cytotoxicity can be controlled by many stimulatory (NKp30,
NKp44, NKp46, CD16) and inhibitory (PD1, TIM3, TIGIT,
KLRG1) surface receptors (15). Even with their ability to kill
transformed cells, NK cell immunosurveillance can be evaded
by tumor cells due to their ability to manipulate the TME in
favor of immune equilibrium and escape, allowing tumor survival
and the possibility of further metastatic spread (16–18). Once
established, the TME is composed of different immune and non-
immune cell subsets recruited by the tumor (e.g., fibroblasts,
pericytes, endothelial cells, macrophages, lymphocytes, etc.) (19),
bioactive products, such as extracellular matrix (ECM) proteins,
cytokines, and growth factors (20), and specific glycosylation
pattern (21, 22). In this review we will discuss some of the
molecules present in the TME (summarized on Table 1), with a
focus on their potential impact on NK cell functions.

GLYCOSAMINOGLYCANS AND
PROTEOGLYCANS

Glycosaminoglycans (GAGs) are a family of linear
polysaccharides composed of repeating disaccharide units.
Depending on the disaccharide composition, GAGs can be
classified as: keratan, chondroitin, dermatan or heparan sulfate
(HS), heparin, or hyaluronan (39). Except for hyaluronan,
all GAGs can be linked to proteins, forming proteoglycans
(PGs) (40).

Hyaluronan is the only non-sulfated GAG, first isolated and
characterized from bovine vitreous humor in 1934 (41). It is
produced and secreted to the ECM by the transmembrane
hyaluronan synthase (42), which is encoded by three conserved
genes in both mice (Has1, Has2, and Has3) and humans (HAS1,
HAS2, and HAS3) (43, 44). In cancer, hyaluronan is associated
with tumor cell proliferation, angiogenesis, and evasion of
immune responses and apoptosis (45–50). The presence of
hyaluronan in the TME appears to be detrimental to NK cell
function against cancer cells; hyaluronan rich tumors can inhibit
both NK cell access to tumor cells and antibody-dependent
cell-mediated cytotoxicity (ADCC) (23). Although hyaluronan
does not form PGs, it can bind to PGs by linking proteins
(51). Our group recently identified a poor prognostic association
between the HAPLN3 gene (Hyaluronan and Proteoglycan Link
Protein 3) and a low NK cell infiltration in malignant melanoma
patients, suggesting a potential inhibition of anti-tumor immune

TABLE 1 | TME molecules and the effect on NK cells.

TME

molecule

Effect on NK cells Cancer type References

Hyaluronan Impair access to

tumor and ADCC

Breast and ovarian caner (23)

Heparanase Decrease recognition

of target cells

Breast cancer (24)

Galectin-1 Impair cytotoxicity Glioma (25)

Galectin-3 Galectin-3−/− mice

have more effective

cytotoxic

CD27highCD11bhigh

NK cells

Melanoma (26)

Increase of galectin-3

impair NK cells

cytotoxicity

Adenocarcinoma, cervix

cancer

(27)

Galectin-9 Increase of NK cells

infiltration

Melanoma (28)

Downregulation of

stimulatory genes

(LTB, KLRF1,

FCGR3A) and impair

cytotoxicity against

K562 cells

Leukemia (29)

Galectin-9 binds to

TIM-3 leading to NK

cells exhaustion

Gastrointestinal tumors (30)

Sialic acid Low sialylation of

tumor cells increases

NK cell cytotoxicity

Melanoma (31)

Siglec-7/9 Membrane inhibitory

receptor on NK cells

that recognize sialic

acid

Melanoma, basal cell

carcinoma, squamous cell

carcinoma, and cutaneous

T cell lymphoma

(32)

MMP-9 Cleaves MIC-A, MIC-B

and ULBP-2 from

tumor cells membrane

avoiding killing by NK

cells

Human gastric cancer, lung

adenocarcinoma and

osteosarcoma

(33–35)

ADAM-10/17 Cleave MIC-B,

ULBP-2 and B7-H6

from tumor cells

membrane avoiding

killing by NK cells

Human pancreatic

adenocarcinoma,

melanoma, cervical, breast,

hepatocellular carcinomas

and glioblastoma

(36–38)

functions by HAPLN3 and identifying this gene as a potential
target for immunotherapy (52).

Heparan sulfate proteoglycans (HSPGs) can be found on
the cell surface (glypicans and syndecans families) or in the
ECM (perlecan, agrin, collagen XVIII) (53). Many types of
tumors overexpress HSPGs, which is associated with increased
angiogenesis in hepatocellular and colon carcinomas, breast and
pancreatic cancers, and melanoma (54–58). HSPGs are also
associated with invasion and metastasis in melanoma and breast
cancer (59–61). Some reports have suggested that HS chains
can be ligands for NKp30 (62, 63), NKp44 (63, 64), NKp46
(62, 63, 65), and for the NKG2D and CD94 complex (66).
This tumor production of HSPG is not sufficient to stimulate
NK cell cytotoxicity, and there are two potential hypotheses for
this observation:
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i) Tumor cells present altered expression of many enzymes
related to the HSPG modifications, such as sulfatase 2
and heparan sulfate 6-O- sulfotransferase 2 (67–69), leading
to production of PGs containing distinctly sulfated HS
chains (70, 71). Differences in sulfation pattern could impair
the recognition of HS chains by NKp30, NKp44, and
NKp46 (62, 63, 65).

ii) Melanomas, multiple myeloma, bladder, prostate, breast,
colon and liver cancers overexpress heparanase (72–76), which
is an endo β-D-glucuronidase that cleaves specific regions of
HS into small fragments (77, 78), decreasing NK cells ability to
recognize target cells (24). However, a previous study showed
that heparanase produced by NK cells is also unexpectedly
important for the host tumor surveillance by allowing NK cell
navigation through the ECM (79).

GALECTINS

Galectins are a group of proteins with two main features:
β-galactoside binding sites and conserved carbohydrate
recognition domains (CRDs) (80). The first galectin was isolated
in 1975 from an electric fish (Electrophorus electricus) and named
electrolectin (81). Just in 1994, the name galectin was given
to this family of lectins and all members were numbered in
order of discovery (80). Galectins are divided into three groups:
prototype have one CRD domain (galectins 1, 2, 7, 10, 11, 13, 14,
and 15); tandem-repeat type have two CDR domains (galectins
4, 8, 9, and 12); chimera-type have a single CRD domain and an
amino-terminal polypeptide rich in proline, glycine, and tyrosine
residues (galectin-3) (82).

Galectins are expressed in many different mammalian
tissues (83, 84) and are involved in early development, tissue
regeneration, immune homeostasis, and some pathologies (e.g.,
cancer, obesity, type II diabetes) (85). In some types of cancer,
galectins may be associated with angiogenesis, cancer cell
survival, invasion, metastasis, and avoiding immunosurveillance
(86). Here we will discuss and revisit the potential contribution
of different galectins for the TME, NK cell function, and anti-
cancer responses.

Galectin-1 is important for maturation of B cells in the
bone marrow (87, 88) and T cells homeostasis (89–91). It
is overexpressed in some types of cancer such as ovarian,
breast, myeloma, and melanoma (92–95), and can contribute
to tumor survival by inhibition of NK cells (25). Glioma cells
deficient for galectin-1 showed reduced tumor growth, increased
intra-tumor NK cell infiltration, and elevated expression of
granzyme B when implanted into the striatum of Rag1−/− mice
(which develop NK, but not T or B cells) when compared to
Rag1−/− mice injected with wild-type cells (25). In the same
study, galectin-1 deficient glioma cells were injected into NGS
(T, B, and NK cells deficient) or C57BL/6 immunocompetent
mice treated with anti-asialo GM1, which depletes NK cells.
Enhanced tumor growth was observed in both models, proving
the inhibitory effect galectin-1 has on NK cell anti-tumor
function (25).

Galectin-3 was initially discovered inmacrophages and named
Mac-2 (96). It starts to be expressed in many normal tissues

during embryogenesis (in both mice and humans) (97) and is
involved in angiogenesis (98) and migration of monocytes and
macrophages (99). In cancer, galectin-3 overexpression in the
TME is associated with angiogenesis (98), tumor progression
(97), and immune escape by inducing T cell apoptosis (100,
101). Some reports have also shown the impact of galectin-3
on NK cells. For example, galetin-3-deficient mice are resistant
to lung metastasis development by B16-F1 melanoma cells,
potentially due to an increase of CD27high CD11bhigh NK cells
in their spleen compared with the wild type (26), suggesting an
inhibitory effect of galectin-3 on NK cell immunosurveillance.
Additionally, HeLa cells overexpressing galectin-3 are more
resistant to human NK cell-mediated death; yet when galectin-
3 is knocked out the killing capacity of NK cells is restored
in a mechanism mainly mediated by NKp30 (27). Considering
the potential for galectins as cancer treatment targets, clinical
trials using galectin inhibitors have already started for both
galectins 1 (ClinicalTrials.gov identifier: NCT01724320—for
advanced solid tumors; NCT00054977—for advanced solid
tumors in combination or not with 5-Fluorouracil) and 3
(NCT02575404—for advanced melanoma, non-small cell lung
cancer, and head and neck squamous cell cancer in combination
with Pembrolizumab; NCT02117362—for advanced melanoma
in combination with Ipilimumab).

Galectin-9 was first described in mouse embryos and later
discovered during homeostasis in many adult organs such as
liver, kidney, spleen, and lungs (102). In some cancers, galectin-
9 is related with a good prognosis (103). In breast, pancreatic
cancer and melanoma, expression of galectin-9 correlates with
good prognosis for those patients (28, 104, 105). Galectin-9
appears to promote patient survival in part through NK cell
modulation (106). C57BL/6 mice that had B16-F10 melanoma
injected into their peritoneal cavity followed by galectin-9
treatment showed prolonged survival compared with untreated
controls, which also correlated with increased NK cell infiltration
into the peritoneal cavity; however, when NK cells were depleted
by anti-asialo GM1, those positive effects were lost, suggesting
a stimulatory effect of galectin-9 on NK cells (106). Despite
these findings, the role of galectin-9 may be ambiguous, as
inhibitory effects over NK cells have also been demonstrated (29).
Human NK cells exposed to galectin-9 downregulate many NK
cell stimulatory genes (e.g., LTB, KLRF1, FCGR3A), resulting
in less efficient killing of target leukemia K562 cells (29). A
possible explanation for galectin-9 mediated inhibition of NK
cells could be its interaction with and activation of TIM-3 (T
cell immunoglobulin and mucin domain 3) (107), which is a
transmembrane receptor associated with NK cell exhaustion
(108, 109). Additionally, a positive correlation was found between
galectin-9 expression on human gastrointestinal stromal tumor
and TIM-3+ expression on infiltrating NK cells (30). This study
suggests that targeting galectin-9 or preventing its interaction
with TIM-3 could potentially act as a novel immunotherapy
approach to enhance NK cell functions against cancer (30).

SIALIC ACID AND MUCINS

Sialic acids (Sia) are a family of carbohydrates composed of
N-acetylneuraminic acids (110) linked to many proteins, lipids,
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and other polysaccharides on the cell surface. The most common
Sia are N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic
(Neu5Gc) acids (111). Humans only express Neu5Ac, due
to the lack of an enzyme called cytidine monophospho-N-
acetylneuraminic acid hydroxylase, which converts Neu5Ac to
Neu5Gc (112). Sia are associated with many biological processes,
but an important function is recognizing self and non-self
(113). Many types of cancer, including breast cancer and cervix
squamous cell carcinoma, are hypersialyated (114, 115) due to
the overexpression of Sia synthesis enzymes (116, 117). This
hypersialytion is associated with increased metastasis (117) and
immune system evasion (118). A study using “Sia low” B16-F10
cells demonstrated that after their subcutaneous injection into
C57BL/6 mice, tumors grew more slowly and exhibited increased
NK cell infiltration when compared with standard B16-F10 cells
(31). Additionally, after NK cell depletion (using anti-NK1.1)

“low Sia” tumors grew at a similar rate to the control group,
highlighting the importance of NK cells during the defense
against sialyated tumors (31).

The interactions between cells and Sia are mediated by
transmembrane proteins called Siglecs (sialic acid-binding
immunoglobulin-type lectins) (119). Siglecs are expressed in
all immune cells and are divided into two broad groups:
CD33 and CD33-related Siglecs, which have high homology
with CD33 in their extracellular domains, and CD33-unrelated
Siglecs which have high homology between human, rodents and
other vertebrates (120). Both groups consist of both activating
and inhibitory receptors, where the inhibitory Siglecs contain
the intracellular immune receptor tyrosine-based inhibition
motifs (ITIM), leading to tyrosine phosphorylation and tyrosine
phosphatases SHP-1 and SHP-2 (121) (and as exemplified in
Figure 1A). ITIMs are associated with NK cell inhibition and

FIGURE 1 | (A) Hypersialysation of tumor cells inhibits NK cell cytotoxicity. To impair recognition by NK cells, tumor cells change their glycosylation pattern,

expressing more sialic acid on the cell membrane. NK cells express membrane receptors that recognize this sialic acid (Siglecs). Siglecs have an intracellular immune

receptor tyrosine-based inhibition motif (ITIM) that recruits tyrosine phosphatases SHP-1 and SHP-2 and inhibits NK cell cytotoxicity. (B) ADAMs and MMPs cleave

MIC-A, MIC-B, and ULBP-2 and downregulate NKG2D expression. NK cells can recognize and kill target cells by the interaction between the stimulatory receptor

NKG2D and the ligands MIC-A, MIC-B, and ULBP-2. However, the TME contains ADAMs and MMPs that cleave these ligands, allowing the soluble proteins to bind to

NKG2D and stimulate its degradation.
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are related to other inhibitory receptors (e.g., Ly-49 and NKG2-
A) (122, 123). Human NK cells express Siglec-7 (also named
as p75/AIRM1) (124, 125) and Siglec-9 (126) on the cell
surface. Siglec-7 is expressed in all human NK cells (124, 125)
whereas Siglec-9 is expressed selectively in a subset of CD56dim

NK cells (32, 127). Jandus and colleagues demonstrated that
various human tumor samples (melanoma, basal cell carcinoma,
squamous cell carcinoma, and cutaneous T cell lymphoma) and
tumor cell lines (e.g., A375, HeLa, SW1116, and K562) have
ligands for both Siglec-7 and 9. They also found that NK cells
displayed increased cytotoxicity against HeLa and K562 after
enzymatic treatment to remove the Sia from the target cell
surface (32). Cell lines of multiple myeloma (e.g., RPMI 8226
and H929) pre-treated with a sialyltransferase inhibitor were
also more susceptible to NK cell-mediated killing (128). In a
separate study, Balb/c mice injected with desialylated MCA-
induced fibrosarcoma cells developed less lung metastasis, an
effect which could be abolished when NK cells were depleted
by antibodies (129). Besides inhibitors of sialytranferase and
enzymes that cleave Sia, other strategies can be applied to avoid
Sia-mediated inhibition of NK cells, and antagonists for Siglecs-
7 and 9 could be an option (130). This has been demonstrated
by Prescher and collaborators, who described a small molecule
inhibitor of Siglec-7 which increased cytotoxicity of human NK
cells toward Mel1106 melanoma target cells (130).

Siglec-9 can also interact with mucin-1 and 16 (127, 131),
which are rich in Sia (132, 133). Mucins are proteins that have
tandem repeat structures which are highly glycosylated and rich
in proline, threonine, and serine (PTS domains) (134). They are
normally expressed by epithelial cells, but are overexpressed in
some types of cancer, particularly ovarian (135). Some reports
have shown that murine ovarian cancer cells knocked down for
mucin-16 are more susceptible for NK cell killing, showing that
mucin-16 has an impact on NK cells (136, 137). While mucin-
1 is also a ligand for Siglec-9, it has only been demonstrated to
have a direct inhibition on macrophages (138). However, mucin-
1 may have other effects on NK cells (139). In human metastatic
bladder cancer, tumor cells overexpress the enzyme 2β-1,6-
N-acetylglucosaminyltransferase (C2GnT) that adds a poly-N-
acetyllactosamine on Mucin-1. The increased glycosylation of
Mucin-1 raises its affinity for galectin-3 binding. Consequently,
this Mucin-1/galectin-3 complex is suggested to generate a
shield around tumor cells, which impairs recognition by NK
cells (139).

MATRIX METALLOPROTEINASES (MMPs)
AND A DISINTEGRIN AND
METALLOPROTEINASES (ADAMs)

Matrix metalloproteinases (MMPs) and a disintegrin and
metalloproteinases (ADAMs) belong to a superfamily of zinc-
dependent metalloproteinases known as metzincins, which
process or degrade virtually all structural ECM proteins,
growth factor–binding proteins, cell-cell adhesion molecules,
and cell surface receptors (138, 139). MMPs are found either
on the cell surface or soluble, and are involved in tissue

remodeling and wound healing (140). ADAMs are single-pass
membrane proteins that are important in shedding proteins
and embryogenesis (141). In many types of cancer, MMPs
and ADAMs are associated with tumor progression through
angiogenesis, invasion, metastasis, and regulation of the immune
response (142, 143).

MMPs and ADAMs can cleave NKG2D ligands from the
tumor cell surface, including MHC class I chain-related A
(MIC-A), MHC class I chain-related B (MIC-B), and UL16-
binding protein (ULBP) (144, 145). The soluble forms of cleaved
proteins from tumor cell membrane bind to NKG2D, inducing
endocytosis and degradation of this receptor, resulting in the
tumor evasion from the surveillance of this receptor (144,
146) (Figure 1B). This effect has been observed in multiple
studies using different tumor cell lines, and in all of them the
NK cell function returns to normal after using inhibitors for
MMPs or ADAMs (33–37). Ferrari de Andrade and collaborators
developed an antibody that binds to the MIC-A α3 domain,
the site of proteolytic shedding, to avoid MIC-A cleavage, and
demonstrated this could increase NK cell cytotoxicity toward
human melanoma cells (147).

MMPs can also shed intercellular-adhesion molecule 1
(ICAM-1) from the tumor cell surface, a protein that is
important for the adhesion of cytotoxic T lymphocytes and
NK cells to target cells (148, 149). Interaction of NK cells
with target cells expressing ICAM-1 leads to an expression
of IFN-γ (150). Many types of cancers express ICAM-1
(151), however it is thought to be shed from the surface
of tumor cells to avoid an immune response (152, 153).
Indeed, when comparing the human breast cancer cell line
MDA-MB435 (ICAM-1+ and MMP-9−) to transfected MDA-
MB435 (ICAM-1+ and MMP-9+), the transfected cells had a
higher concentration of soluble ICAM-1 in the supernatant and
were more resistant to NK cells. This resistance was reversed
when those cells were co-cultured in the presence of MMP-9
inhibitors (154).

ADAM-10 and 17 can also catalyze the cleavage of B7-H6,
one of the ligands for NKp30 (both only expressed in human)
(38). Using many different human tumor cell lines (pancreatic
adenocarcinoma, melanoma, cervical, breast, and hepatocellular
carcinomas), Schlecker and colleagues observed that these cells
produced B7-H6 at the mRNA level; however they had a low
abundance of this protein on the cell membrane compared to
what was detectable in the culture supernatant, showing ADAM-
10 and 17 cleaving activity (38). The high levels of soluble
B7-H6 decreased the expression of NKp30 on the NK cell
membrane, leading to a decrease of degranulation. However,
in the presence of inhibitors or siRNA for ADAM-10 or 17,
the levels of soluble B7-H6 decreased and the degranulation of
NK cells was restored (38). Curiously, several reports have also
described the effects of ADAM-17 in cleaving CD16 (FcgRIIIA),
one of the most important activating receptors responsible for
recognition of antibody-coated target cells and NK cell-mediated
ADCC, suggesting the potential for inhibitors of ADAM17
as a novel therapeutic approach to increase NK cell anti-
tumor potency during immunotherapy (155). As an alternative
to prevent ADAM-17-mediated shedding of CD16, Jing and
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colleagues showed that replacing the serine at position 197 of
the cleavage site of CD16 with proline completely prevented
ADAM-17-mediated cleavage of both CD16a and b, enhancing
NK cell function to antibody-opsonized tumor cells (156).
More recently, the same group provided evidence that amino
acid replacement to generate uncleavable CD16 can be feasibly
employed in induced human pluripotent stem cells (hiPSC), as
a renewable and gene-editable source of off-the-shelf NK cell
products with enhanced functionality (157).

Peng and collaborators showed that MMPs can also have a
direct effect on NK cells, leading to their dysfunction. NK cells
were co-cultured with a pancreatic cancer cell line (SW1990), and
an increase of MMP-9 production was observed compared with
NK cells co-cultured with a normal pancreatic cell line (hTERT-
HPNE) (158). It was also observed that NK cells after been co-
cultured with SW1990 presented a reduction in the percentage
of cells positive for NKG2D, NKp30, NKp44, NKp46, DNAM-
1, perforin, and granzyme B, and those cells were less cytotoxic
against K563 (158). However, after incubation with an inhibitor
for MMP-9 (TIMP-1) the levels of NKG2D, NKp30 and perforin
were partially restored and the killing capacity was recovered
(158). Additionally, in concert with our previous observations
in murine NK cells (13), Bruno and colleagues described that
infiltrating NK cells in human colorectal tumors display a
“decidual” behavior by expression of CD49a (among other
tissue resident-related markers) and MMP-9 (159). The same
study also revealed MMP-9-expressing NK cells as important
contributors of tumor angiogenesis, and that inhibition of MMP-
9 with immunotherapy could help repolarize NK from pro-
angiogenesis to anti-tumor effector cells (159). These recent
findings reveal that MMPs might not only play a role in NK
cell migration and in vivo positioning as previously believed
(160), but also directly impact their anti-tumorigenic function
and potentially be considered as novel inhibitory checkpoints in
NK cell biology.

CONCLUSION

Many components of the TME can impair the cytotoxic activity
of NK cells by changing or cleaving ligands that could lead the
activation of NK cells, or by an increasing the availability of
factors that can downregulate NK cells effector functions. There
is an arising interest for identifying novel immune checkpoints
for NK cells. Studies around the composition of the TME, such
as ECM proteins, enzymes, and glycosylation patterns, are now a
field of interest to understand how to overcome tumor inhibitory
signals and discover new therapeutic targets.
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