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Lipid A‑Ara4N as an alternate pathway 
for (colistin) resistance in Klebsiella pneumonia 
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Abstract 

Objectives:  This study aimed to explore mechanism of colistin resistance amongst Klebsiella pneumoniae isolates 
through plasmid mediated mcr-1 gene in Pakistan. Carbapenem and Colistin resistant K. pneumoniae isolates (n  = 34) 
stored at − 80 °C as part of the Aga Khan University Clinical Laboratory strain bank were randomly selected and sub-
jected to mcr-1 gene PCR. To investigate mechanisms of resistance, other than plasmid mediated mcr-1 gene, whole 
genome sequencing was performed on 8 clinical isolates, including 6 with colistin resistance (MIC  >  4 μg/ml) and 2 
with intermediate resistance to colistin (MIC  >  2 μg/ml).

Results:  RT-PCR conducted revealed absence of mcr-1 gene in all isolates tested. Whole genome sequencing results 
revealed modifications in Lipid A-Ara4N pathway. Modifications in Lipid A-Ara4N pathway were detected in ArnA_ DH/
FT, UgdH, ArnC and ArnT genes. Mutation in ArnA_ DH/FT gene were detected in S3, S5, S6 and S7 isolates. UgdH gene 
modifications were found in all isolates except S3, mutations in ArnC were present in all except S1, S2 and S8 and ArnT 
were detected in all except S4 and S7. In the absence of known mutations linked with colistin resistance, lipid path-
way modifications may possibly explain the phenotype resistance to colistin, but this needs further exploration.
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Introduction
Beta-lactams have always been the backbone of antibiotic 
regimens targeting infections with Enterobacteriaceae 
including K. pneumoniae [1]. With the increase in resist-
ance to these agents [1, 2] there is interest in using colis-
tin (polymyxin E) for treating such infections. Colistin 
targets lipopolysaccharides (LPS) and phospholipids pre-
sent in the outer cell membrane of Gram-negative bac-
teria, and competitively displaces divalent cations from 
the phosphate groups of membrane lipids leading to pore 

formation and disruption of the outer cell membrane, 
leakage of cytoplasmic contents, and bacterial death.

A worldwide increase in resistance to colistin has 
been reported globally [3, 4]. Such resistance can either 
be acquired, or occur as a result of intrinsic factors [5]. 
Mobile colistin resistance (mcr) genes acquired through 
plasmids were first reported in China in 2015 [6]. The 
first colistin resistant E. coli with mcr-1 was reported 
from Pakistan in 2017 [7].

The intrinsic factors contributing to colistin resistance 
mainly involves the modification of the LPS moiety by 
the addition of positively charged molecules L-Ara4-N 
and PEtN [8]. The addition of positively-charged mol-
ecules result in the decrease of negative charge in the 
outer membrane thus reducing its affinity to interact with 
cationic antibiotics including colistin [9]. Alterations in 
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LPS most commonly occur due to mutations in bacte-
rial genes including mgrB, phoP/phoQ, pmrA, pmrB, 
pmrC, and crrABC [10–12].Increasing colistin resistance 
amongst K. pneumoniae emphasizes the need to under-
stand mechanisms contributing to such resistance. This 
study is therefore aimed to explore mechanism of colistin 
resistance amongst K. pneumoniae isolates from Paki-
stan, and to study the role of plasmid-mediated (mcr-1 
gene) and chromosomal factors contributing to such 
resistance.

Main text
Methods
Study subjects
The clinical isolates (n  = 34) were randomly selected 
from the Aga Khan University Clinical Laboratory strain 
bank stored at −  80  °C and used anonymously. The 
source of the selected strains included sputum (n:1), tra-
cheal aspirates (n:9), blood (n:9), urine (n:8), tissue (n:4), 
pus (n:2) and cerebrospinal fluid (n:1). All the study iso-
lates were pure and were not passaged for more than 3 
times.

Identification of bacterial isolates and susceptibility testing
The isolates were identified by conventional biochemical 
methods followed by API-E® (BioMérieux, France). Sus-
ceptibilities performed by disc diffusion (Kirby-Bauer) 
method on Mueller Hinton agar [13] and VITEK2® sys-
tem (BioMérieux, France) showed resistance against 
beta-lactams and carbapenems (imipenem/meropenem).

Colistin susceptibility was performed using broth 
micro-dilution according to Clinical and Laboratory 
Standards Institute (CLSI) guidelines, M07-A10, 2019 
[14]. Minimum Inhibitory Concentrations (MIC) were 
performed in 96-well polystyrene microtitre plates using 
Cation-Adjusted Mueller Hinton Broth and colistin sul-
fate powders (Sigma-Aldrich, Inc.) Colistin concentration 
of 0.03–16.0  µg/ml was used [15]. ATCC E. coli 25922, 
ATCC P. aeruginosa 27853 and NCTC E. coli 13486 
were used as controls. Results were read and interpreted 
after 16–20 h at 35  °C using colistin cut-offs (≤ 2 µg/ml  
=  intermediate;  ≥ 4 µg/ml  =  resistant) for Enterobacte-
riales [14].

DNA extraction
The selected isolates (n  = 34) were inoculated into Brain 
heart infusion for 24  h. 1  ml of the broth was used for 
DNA extraction as per QIA®amp DNA extraction kit 
(QIAGEN, USA) manufacturer’s protocol. The quality of 
the extracted DNA was examined using Qubit v.2.0 fluo-
rometer (Life Technologies, USA). The extracted DNA 
was stored at − 80 °C till further processing.

mcr‑1 gene real‑time PCR
Real‐time PCR was performed on the extracted DNA 
in duplicate. 20‐μl reactions were set  up  containing 
Platinum® SYBR® Green qPCR Supermix‐UDG (Invit-
rogen), 150 nm forward and reverse primers and 2 μl of 
DNA on a BioRad CFX 7500 thermal cycler. Sequence 
specific primers were used for mcr-1 [16] gene and the 
house keeping gene rho, [17]. Primer sequences are pro-
vided in Additional file 1: Table S1. NCTC 13846 E. coli 
was used as positive control.

Whole genome sequencing
Eight K. pneumoniae (CRKP1-CRKP6) strains were 
selected for whole genome sequencing (WGS) with six 
resistant and two intermediate to colistin. We had clini-
cal data on only 4 isolates: one colistin intermediate iso-
late failed microbiological clearance for 3  years despite 
treatment, while three colistin resistant isolates achieved 
microbiological clearance between 7 and 11 days.

DNA was shipped to Eurofins scientific SE, Luxem-
bourg for sequencing. Sequencing was carried out on the 
Illumina NovaSeq 6000 platform using 2 × 150 Sequence 
mode. WGS was performed with the genome cover-
age of 99%. Genetic analysis of reads was done using 
the KmerGeni tool which generated an approximate of 
5.1 Mbp contigs. The de novo assemblies were evaluated 
by QUAST and Icarus tools. The evaluation was based on 
the alignment of the de novo assemblies on the reference 
genome (HS11286). The contigs were annotated with 
RAST to look for resistance genes.

Data submission
The raw sequences generated after sequencing were sub-
mitted to NCBI-SRA website under the accession num-
bers SAMN16684225–SAMN16684230. This Whole 
Genome Shotgun project genome assemblies were 
deposited at DDBJ/ENA/GenBank under the accession 
JAEMV(N/O/P/Q/R/S)000000000. The version described 
is JAEMVX010000000. The complete data details are 
available in the BioProject PRJNA674952.

Data analysis
The raw Illumina reads were passed through qual-
ity check using FASTQC and then assembled with 
SPAdes-3.13.0 software using spade and plasmid spade 
scripts to generate raw chromosomal and plasmid con-
tigs. The generated assembly quality assessment was 
conducted using QUAST (http://​bioinf.​spbau.​ru/​quast). 
Continuous chromosome sequence was generated by 
overlapping raw contigs assembly against the reference 
genome by abacas.1.3.1 perl script that closed gaps on 
shotgun assembled contigs against the reference genome 

http://bioinf.spbau.ru/quast


Page 3 of 7Masood et al. BMC Research Notes          (2021) 14:449 	

based on alignment between assembly and reference to 
identify syntenies of contigs with the reference.

Multi-Locus Sequence Typing (MLST) was determined 
using K. pneumoniae Sequence Typing web-based tool 
(PasteurMLST) (https://​bigsdb.​paste​ur.​fr/). The MLST 
was performed using the seven housekeeping genes 
(gapA, infB, mdh, pgi, phoE, rpoB and tonB) according 
to the protocol described by Diancourt et al. [18]. RAST 
server (https://​rast.​nmpdr.​org/) and Center for Genomic 
Epidemiology server (www.​cbs.​dtu.​dk/​servi​ces) were 
used for Chromosomal and Plasmid sequence annota-
tions and downstream analysis.

Phylogenetic analysis
The phylogenetic inference was done by aligning the 
eight isolates genome with the reference using MegaX 
software (https://​www.​megas​oftwa​re.​net/). The aligned 
sequences were then converted into a Phylodendogram 
using the software package Clonal Frame version 1.1. The 
dendogram was then estimated under the maximum like-
lihood (ML) principle in PhyloXML (http://​www.​phylo​
xml.​org/). The tree was colored and edited using FigTree 
(http://​tree.​bio.​ed.​ac.​uk/​softw​are/​figtr​ee/). The tree was 
further magnified to show closely related genome using 
SNP (single nucleotide polymorphism) cluster generated 
by Pathogen detection Browser (https://​www.​ncbi.​nlm.​
nih.​gov/​patho​gens/​isola​tes/).

Results
mcr‑1 gene PCR
A total of 34 colistin resistant K. pneumoniae isolates 
were included. These strains were investigated for the 

presence of mcr-1 gene. However, PCR conducted 
revealed absence of mcr-1 gene in all isolates tested.

Alternate mechanisms involved in colistin resistance
WGS was performed to further understand the mecha-
nism of colistin resistance. Mutations in genes involved 
in lipid-A and Ara-4 N pathways were revealed through 
a variant analysis of non-synonymous single nucleotide 
variants (ns-SNVs Table 1).

The mutations detected in PagP gene (I189F) were 
present in all isolates. In Pho R gene, mutations identi-
fied included: A424_V425insSerAla present in all isolates 
except S3, S4 and S8; L65F present in all isolates except 
S2 and S7. Additionally, M45I mutation was also identi-
fied in isolate S7.

Modifications in Lipid A-Ara4N pathway were 
detected in ArnA_ DH/FT, UgdH, ArnC and ArnT genes. 
ArnA_ DH/FT included mutations T185A, S18A, L260I 
and D205N. Mutations detected in UgdH were N354D, 
V17I, N354D. Mutation detected in ArnC was S10fs and 
in ArnT was A55G.

Mutations in ArnA_ DH/FT gene were detected in S3, 
S5, S6 and S7 isolates. UgdH gene modification was found 
in all isolates except S3, mutations in ArnC were present 
in all except S1, S2 and S8 and ArnT were detected in all 
except S4 and S7.

Multi locus sequence typing of K. pneumoniae
MLST revealed that the isolates belonged to ST37 (n=1), 
ST147 (n=3), ST14 (n=1), ST 11 (n=1), ST39 (n=1) and 
ST 17 (n=1) sequence types (Table 2).

Table 1  Lipid A pathways related variants identified in colistin-resistant Klebsiella pneumoniae isolates

MIC minimal inhibitory concentrations. The table represents various mutations (amino acid) found upon whole genome sequencing analysis of eight Klebsiella 
pneumonia strains isolated from clinical samples

Isolates MIC GenBank accession Lipid A modification Lipid A-Ara4N pathway (polymyxin resistance)

PagP PhoR ArnA_ DH/FT UgdH ArnC ArnT

S1 0.25 JAEMVQ000000000.1 I189F A424_V425insSerAla – N354D – A55G

L65F

S2 0.5 JAEMVP000000000.1 I189F A424_V425insSerAla – V17I S10fs A55G

S3 4 JAEMVA000000000 I189F L65F T185A – – A55G

S4 8 JAEMVS000000000.1 I189F L65F – N354D S10fs –

S5 4 JAEMVR000000000.1 I189F A424_V425insSerAla T185A N354D S10fs A55G

L65F S18A S10fs

S6 16 JAEMVO000000000.1 I189F A424_V425insSerAla T185A N354D S10fs A55G

L65F S18A

S7 16 JAEMVN000000000.1 I189F A424_V425insSerAla L260I A376V S10fs –

M45I D205N N354D

S8 ≥ 16 JAEMVB000000000 I189F L65F – V17I – A55G

https://bigsdb.pasteur.fr/
https://rast.nmpdr.org/
http://www.cbs.dtu.dk/services
https://www.megasoftware.net/
http://www.phyloxml.org/
http://www.phyloxml.org/
http://tree.bio.ed.ac.uk/software/figtree/
https://www.ncbi.nlm.nih.gov/pathogens/isolates/
https://www.ncbi.nlm.nih.gov/pathogens/isolates/
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Phylogenetic analysis
The dendrogram was plotted (n = 41,172 as per 6th 
March 2021) using NCBI Pathogen Detection database 
(Fig.  1). S3, S5 and S6 (ST147) did not cluster with the 
reference strain, however, S4 (ST37) was the closest, fol-
lowed by S2 (ST11) and then S1 (ST14) and S8 (ST17).

In addition to the above, clustering with other 
sequences deposited in the database was also observed. 
S4 clustered with clinical strain CFSAN059641 isolated 
in 2020 in Pakistan and also with the other clinical 
strains deposited (PDT0009285111). S1 clustered with 

Table 2  The general genetic characteristics of the Klebsiella pneumoniae strains

No. of contigs number of contiguous data; N50 sequence length at 50%, GC content glycine cystine content; MLST multi-locus sequence typing. The most common 
MLST sequence strain isolated was ST147 (n  = 3)

Samples No. of contigs Total length 
of assembly

N50 GC content (%) Multi-locus 
sequence typing 
(MLST)

Plasmids names Percent identity against 
plasmid

S1 99 5,817,465 1,00,468 56.63 14 ColKP3, IncFIB(K), 
IncFIB(Mar), IncFII, IncHI1B, 
IncR

100, 100, 99, 100, 100, 100

S2 53 5,166,762 8,02,570 57.35 11 IncA/C2, IncFIB(pQil), 
IncFII(K)

100, 100, 100

S3 87 5,709,294 1,85,631 56.96 147 Col440I, ColRNAI, 
IncFIB(pQil), IncFII(K), 
IncL/M(pOXA-48), IncR, 
IncX4

96, 96, 96, 97, 100, 100, 100

S4 88 5,699,223 1,67,147 56.72 37 ColKP3, FIA(pBK30683), 
IncFII(K), IncHI1B

100, 97, 95, 99

S5 254 5,993,514 1,00,468 56.63 147 Col440I, ColKP3,ColRNAI, 
IncFIB(pKPHS1, IncFIB(pQil), 
IncFII(K), IncL/M(pOXA-48), 
IncR, IncX4

96, 100, 96, 98, 100, 97, 100, 
100, 100

S6 72 5,758,675 2,98,382 56.99 147 ColRNAI, IncFIB(pQil), 
IncFII(K), IncL/M(pOXA-48), 
IncR

96,100, 97, 100, 100

S7 97 5,408,166 2,59,061 57.33 39 Col440I, IncFIB(pQil), 
IncFII(K)

100, 100, 97

S8 122 5,742,261 2,63,702 56.95 17 IncFIB(K), IncFIB(pKPHS1), 
IncFIB(pQil), IncFII(K), IncX3

99, 98, 100, 97, 100

Fig. 1  Dendrogram colistin-resistant—Klebsiella pneumoniae isolates, along with magnified sub-clades for S1 and S4 based on SNP cluster was 
plotted using Pathogen Detection Browser
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clinical strains isolated in USA (2020), and also with 
others from Australia, Canada and India (2019).

Discussion
Although novel treatment approaches are being explored 
[20–23], increasing prevalence of colistin resistant K. 
pneumoniae, continue to pose a serious global threat.

In Pakistan mcr-1 gene has been detected in 23.3% E. 
coli (n  = 120) and 40% of K. pneumoniae (n  = 60) [24]. 
Our study however revealed absence of mcr-1 gene in all 
isolates tested. These findings are consistent with earlier 
studies also reporting absence of mcr-1 gene in colistin 
resistant clinical study isolates [25] and suggest presence 
of factors other than mcr-1 gene contributing to colistin 
resistance in these isolates.

Alternative mechanisms suggested for colistin resist-
ance include: decreased drug permeability by porin loss, 
resistance to antibiotic penetration through bio-film for-
mation [26] and mutations leading to alteration in anti-
biotic binding sites and efflux pump [27]. In our isolates 
WGS showed the modifications in PagP and PhoR genes 
of lipid A pathway. Mutations in PagP has been shown 
to be associated with colistin resistance [28, 29]. Also, 
mutations in the phoB-phoR operon have shown to con-
tribute to the anti-microbial resistance by downregu-
lation of PhoE [30]. Mutations found in genes of Lipid 
A-Ara4N pathway including Arn_DH/F, ArnC, ArnT 
have been reported in K. pneumonia [28]. We addition-
ally detected mutations in UgdH gene of Lipid A-Ara4N 
pathway which has been shown to be implicated in colis-
tin resistance in E. coli [31]. Gram negative bacteria 
develop resistance against cationic antimicrobial peptides 
by masking negative charges of the lipid A phosphate 
substituent through the addition of L-Ara4N positively 
charged-moieties. Briefly, L-Ara4N is transferred to lipid 
A by a lipid carrier in a reaction catalysed by ArnT. The 
synthesis of lipid carrier linked to L-Ara4N is catalyzed 
by UDP-Glc 6-dehydrogenase (Ugd), ArnA, ArnB, ArnC, 
and ArnD [32]. This pathway is well-explained in studies 
in E. coli and S. enterica sv. typhimurium [33]. It is impor-
tant to note that the mutations found in Lipid A and 
L-Ara4N pathway were present in all isolates comprising 
of 6 colistin resistant and 2 colistin intermediate strains. 
One of our colistin intermediate isolate with mutations 
in both Lipid A and A-Ara4N pathway, failed to achieve 
microbiological clearance over 3  years, despite treat-
ment. There is inherent variability in testing methods 
for colistin susceptibility, hence the susceptible category 
has been removed by CLSI [14]. Colistin monotherapy 
is also discouraged to avoid excessive reliance on even 
the currently recommended broth dilution susceptibility 
testing method. Hence, learning more about molecular 

mechanisms of colistin resistance might be helpful for 
taking clinical decisions in future.

The MLST done showed that eight K. pneumoniae iso-
lates belonged to 6 different sequence types (ST11, ST14, 
ST17, ST37, ST39 and ST147) hence pointing towards 
the presence of considerable genetic diversity among 
them. Previous studies have shown that ST11 and ST14 
have been detected amongst clinical isolates from Paki-
stan [25]. Globally, ST11 has been reported in Korea [34], 
Tunisia [35], and Egypt and linked with the presence of 
CTX-M gene [3]. ST 14 has been shown to be circulating 
in Dubai [36], India [37], Pakistan [25] and described to 
carry NDM-1 and CTX-M [38]. ST 17 are also reported 
to be mostly extended spectrum beta lactamases (ESBL) 
carrying clones [39]. ST 147 detected has been shown 
globally to be linked with resistance [15, 40, 41]. ST37 has 
been reported with carbapenem resistance and ST39 [42] 
with ESBLs.

This study highlights the significant challenges posed 
by multi-drug resistant K. pneumoniae strains to global 
health and emphasizes the need to identify factors con-
tributing to resistance towards their better treatment and 
control.

Limitations
Although the study highlights mechanism of colistin 
resistance alternate to mcr-1 gene in clinical isolates in 
Pakistan, it can be further strengthened by increasing 
sample size and by performing functional studies to vali-
date the role of mutations found in Lipid A and L-Ara4N 
pathway in contributing colistin resistance.
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