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Abstract: Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that is
critical for the intelligence and visual development of infants. Crypthecodinium is the first microalga
approved by the Food and Drug Administration for DHA production, but its relatively high intracel-
lular starch content restricts fatty acid accumulation. In this study, different carbon sources, including
glucose (G), sodium acetate (S) and mixed carbon (M), were used to investigate the regulatory mech-
anisms of intracellular organic carbon distribution in Crypthecodinium sp. SUN. Results show that
glucose favored cell growth and starch accumulation. Sodium acetate limited glucose utilization
and starch accumulation but caused a significant increase in total fatty acid (TFA) accumulation and
the DHA percentage. Thus, the DHA content in the S group was highest among three groups and
reached a maximum (10.65% of DW) at 96 h that was 2.92-fold and 2.24-fold of that in the G and M
groups, respectively. Comparative transcriptome analysis showed that rather than the expression
of key genes in fatty acids biosynthesis, increased intracellular acetyl-CoA content appeared to be
the key regulatory factor for TFA accumulation. Additionally, metabolome analysis showed that
the accumulated DHA-rich metabolites of lipid biosynthesis might be the reason for the higher TFA
content and DHA percentage of the S group. The present study provides valuable insights to guide
further research in DHA production.

Keywords: Crypthecodinium; starch; total fatty acid; DHA; acetyl-CoA; organic carbon distribution

1. Introduction

Docosahexaenoic acid (DHA, C22:6), a kind of polyunsaturated fatty acid (PUFA),
is an important component of the brain and retina, and thus critical to intellectual and
visual development in infants [1]. Deep sea fish oil used to be the major source of DHA
production [2], but it has a typical fishy smell and is susceptible to contamination [3].
Besides, deep sea fish oil contains non-negligible amounts of eicosapentaenoic acid (EPA),
which is associated with neonatal growth retardation [4]. Nowadays, when combined
with mature microalgal fermentation techniques, microalgae have become the primary
producers of DHA, especially for Crypthecodinium, a strict heterotrophic dinoflagellate in
which DHA accounts for approximately 20% to 60% of the total fatty acid (TFA) content
and a minimal accumulation of DHA intermediates [1]. Moreover, Crypthecodinium cohnii
is the first microalgae certified by the Food and Drug Administration (FDA) for DHA
production [5].

However, when compared with other oleaginous microalgae, the TFA content is
relatively low and only accounts for about 20% of the dry weight in Crypthecodinium
cohnii [6]. Besides, the intracellular starch content (more than 30% of the dry weight) is
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usually higher than the lipid content and may compete with the organic carbon involved in
lipid accumulation in Crypthecodinium sp. SUN [7]. As lipid and starch are two main storage
components in microalgae under abiotic stress conditions, their mutual transformation
relationship has often been discussed [8]. Studies have shown that the reduction of starch
biosynthesis can cause an increase in lipid accumulation in microalgae. When compared
with the wild type (WT), a starch-deficient mutant of Crypthecodinium cohnii had a decrease
in starch content but an increase in lipid and DHA contents by 1.12-fold and 1.13-fold,
respectively, of that found in WT [9]. Besides, starch-to-lipid conversion is generally
observed in microalgae under stress conditions [10–13]. High salinity was shown to
promote carbon redistribution and starch conversion to lipid accumulation in Chlorella
sorokiniana [10]. Further studies showed that rapid turnover of starch was likely to provide
carbon for fatty acid biosynthesis in Chlamydomonas debaryana [13]. Therefore, elucidating
the relationship between lipids and starch in Crypthecodinium would provide the basis for
improving DHA production.

Different carbon sources could alter the lipid and starch composition in microalgae [14].
Glucose and sodium acetate, two common carbon sources, have been proven to lead to the
increase of carbohydrate and lipid contents in microalgae, respectively [15,16]. Besides,
studies have further investigated the regulatory mechanisms of carbon sources on lipid
accumulation in microalgae. Intracellular glucose is the substrate of starch biosynthesis,
and the acetyl-CoA formed by acetate is the precursor of fatty acid biosynthesis in microal-
gae [17,18]. The overexpression of acetyl-CoA synthetase (ACS) could result in an increase
in carbon flux toward acetyl-CoA biosynthesis and result in the enhancement of neutral
lipid biosynthesis in Chlamydomonas reinhardtii, a finding that indicates the importance of
precursor supply for lipid accumulation [19]. Thus, it is reasonable to assume that sodium
acetate can increase fatty acid accumulation in the heterotrophic Crypthecodinium sp. SUN.

Besides, the proportions of fatty acids in microalgae would be affected by factors like
temperature, salinity and nutrients. For instance, low temperatures (10–15 ◦C) increased
the proportion of unsaturated fatty acids (PUFAs) in heterotrophic cultures of microalgae,
which related to the membrane fluidity [20]. The upregulation of the acetyl-CoA carboxy-
lase (ACCase), type-II fatty acid synthase (FAS) and fatty acid desaturase (FAD) stimulated
membrane lipid desaturation [20,21]. Study has shown that compared with lactose, glucose
increased the oleic acid (C18:1) proportion (35.7% of TFA) by upregulating the expression
of stearoyl ACP desaturase (SAD) in dark-cultured Chlorella zofingienesis [22]. Therefore, the
intracellular metabolic pathways of different carbon sources may be completely different,
resulting in significant accumulation of different types of lipids. However, little is known
about the influence of carbon sources on the DHA proportion in Crypthecodinium sp. SUN.
Thus, the effect of different carbon sources on fatty acid proportions has been investigated
in Crypthecodinium sp. SUN in the present study. Exploring the causes of their metabolic
differences may provide clues for improving TFA accumulation and fatty acid proportion.

Crypthecodinium sp. SUN, a newly isolated strain of Crypthecodinium that can produce
DHA, was used in the present study. Three groups of carbon source (glucose, sodium ac-
etate and mixed carbon sources (G, S and M, respectively)) were used to study the routes of
starch and fatty acid accumulation in Crypthecodinium sp. SUN. The cell number, dry weight
(DW) and glucose consumption were first measured at different time points. Furthermore,
the intracellular contents of TFA, DHA, acetyl-CoA, starch and protein were measured to
study the effects of carbon sources on starch and TFA accumulation in Crypthecodinium
sp. SUN. Finally, comparative transcriptome and metabolome analyses were performed
to investigate the regulatory mechanisms of intracellular organic carbon distribution in
Crypthecodinium sp. SUN, which would provide insights into the mechanisms of lipid
biosynthesis in this strain.
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2. Results and Discussion
2.1. Effects of Different Carbon Sources on Cell Growth and Glucose Consumption

Different groups of carbon source, including G, S and M were used to study the routes
of starch and fatty acid accumulation in Crypthecodinium sp. SUN. The cell number and
dry weight (DW) were first measured and are shown in Figure 1. The cell number of the
three groups all increased through the culturing period and showed obvious differences after
24 h cultivation (Figure 1A). The cell number of G group reached 1.86 × 106 cell mL−1 at
96 h, which was 1.77-fold and 2.55-fold of that in the M and S groups, respectively. These
results suggest that when compared with sodium acetate, glucose might be the better
carbon source for heterotrophic microalgae cultivation and could provide more energy for
microalgae growth [23].

Figure 1. The effect of different carbon sources (G: glucose; M: mixed carbon sources; S: sodium
acetate) on cell number (A), dry weight (B) and glucose consumption (C) in Crypthecodinium sp. SUN.
Each sample was conducted with three biological replicates and the data points are represented as
values ± standard deviation (SD). The statistical significance of the results was tested by a two-way
repeated measures ANOVA; * significantly different from the G group within each time point (p < 0.05);
ˆ significantly different from the value of the previous time point in the same group (p < 0.05).

The influence of different carbon sources on the DW of Crypthecodinium sp. SUN was
measured and shown in Figure 1B. The DW of the G group was observably higher than
that of the M and S groups and achieved about 3.93 g L−1 at 96 h. Consistent with the cell
number results, the S group yielded the lowest DW, which was 1.58 g L−1 at 96 h, half
of that in the G group. The highest biomass of the G group among three groups might
have been due to glucose utilization. However, glucose was also found in the M group,
but the cell number and DW were also much lower than those in G group. Therefore, the
glucose consumption of the M and G groups was measured and is shown in Figure 1C.
The glucose consumption by the G group increased dramatically from 0 to 96 h (about
9.95 g L−1 at 96 h). In contrast, glucose consumption (0.58 g L−1) by the M group only
slightly increased (less than 1 g L−1) after 96 h of cultivation. These results suggest that
sodium acetate might restrict glucose absorption and utilization in Crypthecodinium sp.
SUN. This interesting phenomenon was first observed in this study, and the subsequent
comparative transcriptome and metabolome analyses might help to uncover its underlying
mechanisms.
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2.2. Effect of Different Carbon Sources on Fatty Acid Biosynthesis and DHA Production

To enhance the lipid accumulation in microalgae, the flow of organic carbon to TFA
biosynthesis is usually expected [6,24,25]. Different carbon sources have been shown to
alter the lipid and starch composition in microalgae [14]. Therefore, the TFA content and
fatty acid profiles in Crypthecodinium sp. SUN with the different carbon source groups
were measured. As shown in Figure 2A, the TFA content of the S and M groups steadily
increased along with culturing time and the TFA concentration first decreased and then
increased in the G group. Besides, compared with the G and M groups, the TFA content
of the S group was highest among the three groups at each time point. The highest TFA
content of the S group was 25.81% of DW at 96 h, which was 1.60-fold and 2.47-fold of
that of the M and G groups, respectively. The above results were similar to the results in
Chlorella vulgaris and Nannochloropsis oceanica, in which acetate could increase the fatty acid
accumulation [26,27].

Figure 2. The effect of different carbon sources (G: glucose; M: mixed carbon sources; S: sodium
acetate) on total fatty acid (TFA) content (A), acetyl-CoA concentration (B), and docosahexaenoic
acid (DHA) content (C) in Crypthecodinium sp. SUN. Each sample was tested with three biological
replicates, and the data points are represented as values ± SD. The statistical significance of the
results was tested by a two-way repeated measures ANOVA; * significantly different from the G
group within each time point (p < 0.05); ˆ significantly different from the value of the previous time
point in the same group (p < 0.05).

Acetyl-CoA formed by acetate is the precursor of fatty acid biosynthesis, and it might
be the reason for the high TFA content of the S group. Thus, the cellular acetyl-CoA content
of the three groups was measured. As can be seen from Figure 2B, the concentration of
acetyl-CoA in the S and M groups had no significant difference with the G group except
for the values at 48 and 96 h in the S group. The concentration of acetyl-CoA in the S
group was significantly higher than that at 48 and 96 h compared with the G and M groups.
Besides, the acetyl-CoA content in the S group was also significantly higher than that in the
M group at 48 h. The results indicate that sodium acetate could result in higher cellular
acetyl-CoA content. Collectively, the variation trend in acetyl-CoA content among the three
groups were coordinated with TFA content, which indicated that sodium acetate could
produce more precursors than glucose to support fatty acid biosynthesis, and the cellular
acetyl-CoA content might be critical for fatty acid biosynthesis in Crypthecodinium sp. SUN.
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Different carbon sources were found to not only influence TFA accumulation but also
to cause an alteration in fatty acid profiles in Crypthecodinium sp. SUN (Table 1). As shown
in Table 1, the percentage of saturated fatty acids (SFAs) accounted for about 30% of TFA
and had no significant variation from 0 to 96 h. The monounsaturated fatty acids (MUFAs)
of the three groups decreased from 41.10% to 34.81%, 34.95% and 27.58% of TFA from 0
to 96 h in the G, M and S groups, respectively. More importantly, the maximum value of
the PUFAs of S group (43.41% of TFA) and M group (41.7% of TFA) were much higher
than that of the G group (35.50% of TFA). The highest DHA percentage (41.30% of TFA)
was found in the S group at 96 h, which was 1.12-fold and 1.18-fold of that in the M and G
groups, respectively. These results indicate that in the presence of sodium acetate, the cells
would favor PUFA over MUFA accumulation.

Table 1. The percentage of fatty acid profiles (% of total fatty acid (TFA)) with different carbon sources
in Crypthecodinium sp. SUN #.

Time (h) Group ˆ C14:0 C16:0 C16:1 C18:0 C18:1 DHA SFAs a MUFAs b PUFAs c

0 G 2.63 ± 0.22 13.94 ± 0.62 34.24 ± 1.19 14.82 ± 1.19 6.86 ± 0.27 26.40 ± 0.03 32.14 ± 0.39 41.10 ± 0.93 26.76 ± 1.21

24 G 2.84 ± 0.02 11.74 ± 0.02 30.22 ± 0.99 13.19 ± 0.73 5.76 ± 0.01 34.56 ± 0.05 28.57 ± 3.34 35.98 ± 4.39 35.45 ± 6.63
M 3.42 ± 0.07 * 16.83 ± 0.38 * 25.50 ± 0.59 * 8.46 ± 0.23 * 7.78 ± 0.02 36.32 ± 0.81 29.63 ± 0.22 34.48 ± 1.82 36.62 ± 3.75
S 3.04 ± 0.10 * 18.13 ± 0.17 * 25.62 ± 0.79 * 6.78 ± 0.59 * 8.86 ± 0.01 * 36.04 ± 0.15 28.91 ± 2.18 33.28 ± 0.50 37.09 ± 0.71

48 G 3.22 ± 0.05 13.77 ± 0.01 32.06 ± 0.48 12.57 ± 0.37 5.95 ± 0.00 31.04 ± 0.07 30.15 ± 2.54 38.02 ± 2.70 31.83 ± 5.20
M 3.91 ± 0.02 19.50 ± 0.04 * 22.28 ± 0.49 * 5.31 ± 0.37 * 7.36 ± 0.02 39.71 ± 0.15 * 30.13 ± 0.99 32.13 ± 1.18 * 35.86 ± 1.99 *
S 3.56 ± 0.02 18.11 ± 0.12 * 25.24 ± 0.32 * 9.13 ± 0.28 * 6.89 ± 0.02 35.40 ± 0.30 32.01 ± 0.81 29.64 ± 1.72 * 40.22 ± 2.72 *

72 G 3.21 ± 0.01 17.95 ± 0.02 29.34 ± 0.05 8.44 ± 0.02 7.40 ± 0.01 32.18 ± 0.05 30.50 ± 0.09 36.73 ± 0.30 32.77 ± 0.32
M 2.95 ± 0.01 18.52 ± 0.02 22.11 ± 0.23 * 4.83 ± 0.18 * 6.76 ± 0.01 42.83 ± 0.09 * 27.72 ± 0.51 28.95 ± 2.40 * 39.66 ± 3.53 *
S 4.00 ± 0.06 * 18.98 ± 0.05 22.49 ± 1.36 * 7.15 ± 1.00 6.46 ± 0.00 39.23 ± 0.04 * 31.38 ± 1.13 28.87 ± 0.75 * 43.41 ± 1.26 *

96 G 3.47 ± 0.01 19.15 ± 0.01 27.06 ± 0.11 6.28 ± 0.08 7.75 ± 0.01 34.99 ± 0.04 29.69 ± 0.42 34.81 ± 0.35 35.50 ± 0.76
M 1.84 ± 0.08 * 15.87 ± 0.62 * 26.95 ± 1.49 8.52 ± 0.80 8.00 ± 0.02 36.84 ± 1.42 27.69 ± 1.72 27.58 ± 0.77 * 41.70 ± 1.07 *
S 3.92 ± 0.02 * 19.64 ± 0.09 21.00 ± 0.39 * 5.77 ± 0.27 6.58 ± 0.01 41.30 ± 0.15 * 30.72 ± 0.31 34.95 ± 2.28 37.36 ± 4.00

# Explanation for the fatty acid abbreviation notation: C14:0: myristic acid; C16:0: palmitic acid; C16:1: palmitoleic
acid; C18:0: stearic acid; C18:1: oleic acid; DHA: docosahexaenoic acid. ˆ The G, M and S group stand for glucose,
mixed carbon sources and sodium acetate, respectively. a The sum of the percentage of saturated fatty acids (%
of TFA). b The sum of the percentage of monounsaturated saturated fatty acids (% of TFA). c The sum of the
percentage of polyunsaturated fatty acids (% of TFA). * Significantly different from the G group within each time
point (p < 0.0167 with Bonferroni correction).

As both TFA content and DHA percentage were increased by sodium acetate, the
DHA content in the S group was significantly higher than that in the G and M groups
(Figure 2C). The DHA content of the S group was gradually increased by time and reached
a maximum (10.65% of DW) at 96 h that was 2.92-fold and 2.24-fold of that in the G and M
groups, respectively. These results indicate that sodium acetate could significantly increase
the DHA accumulation in Crypthecodinium sp. SUN.

2.3. Effect of Different Carbon Sources on Starch and Protein Contents

In addition to lipids, starch is a major energy storage component in microalgae [14].
Many studies have focused on the metabolic interrelationship between starch and lipid.
Previous studies have shown that cells tend to firstly accumulate starch when the carbon
source is glucose [25]. In present study, the effect of different carbon sources on starch
content was identified. The time course of starch content was measured and is shown in
Figure 3A. The G group had the highest starch content in three groups. The starch content
of the G group increased dramatically after 24 h cultivation, reaching a maximum (36.79%
of DW) at 72 h. As glucose was the direct substrate of starch biosynthesis, it is reasonable
that starch was largely accumulated in G group. After 72 h cultivation, the starch content
of the glucose group decreased to 35.39% of DW at 96 h. Many studies have shown that the
reduction in starch content might be related to lipid accumulation in microalgae [9,10,12].
The decline in starch content after 72 h in group G might be due to the carbon flux flow
into other storage components [13]. On the contrary, the starch content of the S group was
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the lowest among three groups, and the highest starch content was only about 4% of the
DW. The starch content in the M group resembled that of the S group but with a slightly
higher starch content at each time point. Therefore, it could be concluded that sodium
acetate might cause restrictions in starch biosynthesis but could lead to increases in fatty
acid accumulation.

Figure 3. The effect of different carbon sources (G: glucose; M: mixed carbon sources; S: sodium
acetate) on the starch content (A) and protein content (B) in Crypthecodinium sp. SUN. Three biological
replicates were obtained for each sample. The data points are represented as values ± SD. The statis-
tical significance of the results was tested by a two-way repeated measures ANOVA; * significantly
different from the G group within each time point (p < 0.05); ˆ significantly different from the value of
the previous time point in the same group (p < 0.05).

Except for starches and lipids, protein is another essential component; it is mainly used
as enzymes involved in multiple enzymatic reactions and constitutes structural components
in cells [28]. Variations in the protein content in Crypthecodinium sp. SUN were measured
and are shown in Figure 3B. The highest protein content of the three groups was 37.14%
of DW at 0 h after which the protein content in all three groups gradually decreased
and reached the lowest level at 96 h. The protein content of the G group at 96 h was
25.77%, which was 1.96-fold and 2.06-fold of that in the M and S groups, respectively. The
lower protein content may be due to the higher TFA accumulation in the sodium-acetate-
fed groups.

Collectively, contrary to the increase in TFA accumulation, starch and protein contents
were significantly restricted in the presence of sodium acetate.

2.4. Comparative Transcriptome Analysis under Different Carbon Source Treatments

To elucidate the regulatory mechanisms of organic carbon distribution in Crypthe-
codinium sp. SUN using different carbon sources, comparative transcriptome analysis
was performed at 0, 6, 12, 24 and 48 h. In total, 78,727 expressed genes were detected
through RNA-seq analysis, among which 52,414 were known genes and 26,313 were new
genes. Up and downregulation of these genes is shown in Supplementary file 2: Table S1.
Databases including the Non-Redundant Protein Sequence Database (NR), Swiss-Port
Protein Sequence Database (Swiss-Port), Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) were used to annotate all of the transcripts, with the findings
supplied in Supplementary file 1: Figure S1. To verify the parallelism of all samples, the
principal component analysis (PCA) yielded clear separation among the three groups,
which indicated that the parallelism of samples was good (Supplementary file 1: Figure S2).
Besides, KEGG enrichment analysis was performed and is shown in Supplementary file 1:
Figure S3. Seventeen and three different pathways were enriched by KEGG in G6 versus
M6 and G6 versus S6, respectively. Among these pathways, the enrichment of the “Fatty
acid biosynthesis”, “Fatty acid degradation”, “TAG biosynthesis”, “Starch biosynthesis”
and “Starch degradation” pathways showed that starch and lipid biosynthesis were signifi-
cantly different based on the carbon source. Besides, glycolysis, tricarboxylic acid (TCA)
cycle and pentose phosphate pathways would provide energy, organic carbon interme-
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diate metabolites and reduced nicotinic adenine dinucleotide phosphate (NADPH) for
starch, protein and fatty acid biosynthesis. Therefore, specific carbon and metabolic energy
pathways, including fatty acid biosynthesis, fatty acid degradation, triacylglycerol (TAG)
biosynthesis, starch biosynthesis, starch degradation, glycolysis, TCA cycle and pentose
phosphate pathway were specifically analyzed to investigate the regulating mechanisms
of intracellular organic carbon distribution. As Crypthecodinium possesses a large genome,
most of genes in Crypthecodinium sp. SUN cells were duplicated. Details of genes with
multiple copies are shown in Supplementary file S1, and the copies of key genes in the
different pathways with transcripts per million reads (TPM) > 10 were selected and are
shown in Figure 4.

Figure 4. Comparative transcriptome analysis of Crypthecodinium sp. SUN cells cultivated with
different carbon sources for 6, 12, 24 and 48 h. The heatmap shows the Log2 (Fold Change) value of
gene expression levels at each time point compared with 0 h. Genes are shown in red (upregulated)
and blue (downregulated). See Supplementary file 1: Figure S4 for more details of the RNA-seq data.

2.4.1. Acetyl-CoA Biosynthesis and Lipid Metabolism

As an increase in intracellular acetyl-CoA concentration could induce TFA accumu-
lation in the S group (Figure 2A,B), supplying enough acetyl-CoA might be critical for
TFA accumulation in Crypthecodinium sp. SUN. The pyruvate dehydrogenase component
(PDH) catalyzed acetyl-CoA formation from the pyruvate formed during glycolysis [29,30].
Studies have shown that the upregulation of PDH was a key factor stimulating acetyl-CoA
production and lipid accumulation in Chlamydomonas sp. JSC4 [12]. However, the compar-
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ative transcriptome analysis showed unexpected results, where the expressions of genes
coding three PDH isoenzymes had no significant differences among the three groups in
the present study (Figure 4). Except for pyruvate, acetyl-CoA can also be generated from
acetate catalyzed by acetyl-CoA synthase (ACS), which is a main source of acetyl-CoA
in the early lipid accumulation stage [27,31]. Two ACS isoforms (CRYCO00046255 and
CRYCO00049404) were found in Crypthecodinium sp. SUN, among which, CRYCO00046255
was downregulated in the M and S groups compared with the G group. Thus, the down-
regulation of PDH and ACS in the S group indicated that rather than changes in expression
levels, the supply of the precursor of acetyl-CoA (sodium acetate) is more important for
intracellular acetyl-CoA accumulation in Crypthecodinium sp. SUN.

Acetyl-CoA carboxylase (ACCase) catalyzes the formation of malonyl-CoA from
acetyl-CoA, which is the first step in fatty acid biosynthesis. [32]. Study has shown that over-
expression of ACCase could enhance lipid accumulation in Chlamydomonas reinhardtii [33].
Unlike the previous study, the expression level of ACCase was downregulated in the
S group, but the TFA content was significantly increased compared with the G group
(Figure 4). Thus, the expression level of ACCase might not be the key factor affecting TFA
accumulation in Crypthecodinium sp. SUN.

The fatty acid synthase (FAS) pathway is a key pathway for fatty acid and DHA
biosynthesis in microalgae [34,35]. Previous studies have shown that different carbon
sources could regulate the expression of key genes in both the FAS pathway in filamentous
fungus such as Glarea lozoyensis, Haematococcus pluvialis and Nannochloropsis oceanica [34,36].
However, although sodium acetate significantly increased TFA and DHA accumulation
and DHA percentage in Crypthecodinium sp. SUN (Figure 2 and Table 1), key genes in the
FAS pathway such as fatty acid synthase (FAS) and malonyl enoyl ACP reductase (MECR)
showed no significant differences among the three groups (Figure 4). Similarly, genes
involved in fatty acid degradation, such as acetyl-CoA synthetase bubblegum (ACSBG),
also showed no differences among the three groups (Figure 4). The above results were
different from those found in previous studies, in which, along with the stress-induced
fatty acid accumulation, genes in the fatty acid biosynthesis pathway were upregulated
and in the fatty acid degradation pathway were downregulated [37]. It is worth noting
that fatty acid desaturates (FADs) were essential for the polyunsaturated fatty acid (PUFA)
biosynthesis [34,38]. Studies have shown that the over-expression of FADs stimulates
the PUFA accumulation in Nannochloropsis oceanica [39]. However, the expression of fatty
acid desaturases (FADs) among the three groups has no significant difference in Crypthe-
codinium sp. SUN (Figure 4). In addition, Crypthecodinium sp. SUN belongs to the group,
dinoflagellates, which have distinctive nuclear features. Their nucleuses are unusual in
terms of their permanently condensed nucleosome-less chromatin, immense genome, low
protein-to-DNA ratio, guanine–cytosine-rich methylated DNA and unique mitosis pro-
cess [40]. Therefore, the regulation pattern of DHA accumulation would be different from
that of other oleaginous microalgae, which caused the special phenomenon of increased
DHA accumulation but no regular change in the expression of related genes in fatty acid
biosynthesis in Crypthecodinium sp. SUN. Thus, the expressions of FADs might not be the
key factor affecting TFA and DHA accumulation in Crypthecodinium sp. SUN.

Except for the FAS pathway, the PKS pathway is another key pathway for DHA
biosynthesis in microalgae [41]. Four genes from the PKS pathway were found in Crypthe-
codinium sp. SUN, including 3-ketoacyl synthase (KS), 3-ketoacyl reductase (KR), dehy-
drase/isomerase (DH/IS) and enoyl reductase (ER). Compared with the G group, the
third isoenzyme of the KS gene (CRYCO00067404) was downregulated in the S group,
but another isoenzyme, numbered CRYCO00011019, was upregulated in the S group. In
addition, the two dehydrase (DH) genes were upregulated in the S and M groups compared
with that in the G group, which might be responsible for the increased DHA accumulation
in the S group. It was worth noting that the different isozymes of KS, DH and ER genes
show different expression patterns at the same time point, which reflected the complexity
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of the regulatory mechanisms of DHA biosynthesis in the PKS pathway in Crypthecodinium
sp. SUN.

Triacylglycerol (TAG) has been proved that as the finial storage form of DHA in mi-
croalgae [39–41]. In this study, six genes participating in TAG biosynthesis were founded
through RNA-seq analysis, including glycerol-3-phosphate O-acyltransferase (GPAT),
lysophosphatidic acid acyltransferase (LPAT), phosphohydrolase (PAP), 2-acylglycerol O-
acyltransferase 2 (MGAT), diacylglycerol kinase (DGK) and diacylglycerol O-acyltransferase
(DGAT). GPAT was the rate-limiting enzyme for TAG biosynthesis in microalgae [34]. How-
ever, there was no significant difference of the expression of GPAT among the three groups.
Similarly, the expression of other genes had no significant differences among the three
groups in Crypthecodinium sp. SUN, especially for DGAT, which catalyzes triacylglyc-
erol (TAG) formation from diacylglycerol (DAG). These results indicate that, compared
with other oleaginous microalgae, the regulatory mechanisms of TAG biosynthesis in
Crypthecodinium sp. SUN are different.

In summary, most genes in fatty acid biosynthesis, fatty acid degradation and TAG
biosynthesis showed no significant differences among the three groups, which indicate
that the regulatory mechanisms in Crypthecodinium sp. SUN are complex. However, the
S group had the highest TFA content and DHA proportion (Figure 2A and Table 1). It is
worth noting that the acetyl-CoA concentration of the S group was the highest among the
three groups (Figure 2B). Thus, rather than the expression levels of key genes involved
in acetyl-CoA biosynthesis and fatty acid biosynthesis, the acetyl-CoA supply is the key
limiting factor for fatty acid accumulation in Crypthecodinium sp. SUN.

2.4.2. Starch Metabolism

We used glucose and sodium acetate as a carbon source, which were the precursors of
starch biosynthesis and fatty acid accumulation in microalgae, respectively [14]. Study has
shown that glucose as a carbon source could upregulate the starch biosynthesis pathway
in marine microalga Platymonas helgolandica [42]. In this study, the sodium acetate limited
glucose utilization and the starch accumulation in Crypthecodinium sp. SUN (Figures 1C
and 3A). Thus, it is reasonable to assume that genes coding starch biosynthesis in the S group
would downregulate compared with the G group, affecting the starch accumulation in the S
group. As shown in Figure 4, the genes involved in starch biosynthesis containing granule-
bound starch synthase (GBSS) and the first 1,4-alpha-glucan branching enzyme (GBE1),
which numbered CRYCO00073279, were significantly upregulated in the G group. However,
compared with the G group, the expression of these two key genes were downregulated
in the S group, indicating that the enhanced starch biosynthesis had occurred in the G
group. This result was consistent with the high starch content in the G group as shown in
Figure 3A. Starch was the primary energy storage component in microalgae cells, and its
degradation is related to lipid accumulation [13]. Studies have shown that the turnover of
starch to lipid could increase the lipid accumulation in microalgae [43]. Thus, the genes
participating in starch degradation were focused on in Crypthecodinium sp. SUN. The
results show that there were no significant differences among the three groups, indicating
that genes containing ISA, AMYA and SGA1 were not the key factors affecting starch
degradation in the three groups.

2.4.3. Glycolysis, Pentose Phosphate Pathway and the TCA Cycle

Energy supply is essential for fatty acid and starch biosynthesis. The results show
that sodium acetate limited the glucose utilization (Figure 1C), which will affect the energy
metabolism in Crypthecodinium sp. SUN. Thus, the glycolysis, pentose phosphate pathway
and the TCA cycle, as three critical pathways, were focused on in this study.

Glycolysis, a vital metabolic pathway, can provide energy and intermediate metabo-
lites in cells [32]. The enzymes encoded by glucose kinase (GK), 6-phosphofructokinase
(PFK) and pyruvate kinase (PK) are the key rate-limiting enzymes throughout the glycol-
ysis pathway [39]. In the DHA-producing microalga, Schizochytrium limacinum SR21, the
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enhanced activities of GK and GAPDH, related to glycolysis, were benefited for the lipid
accumulation in [44]. However, in this study, the expression levels of the GK, PFK and PK
genes had no significant difference among three groups, indicating the complexity of genes
in the glycolysis pathway.

The pentose phosphate pathway beginning with glucose 6-phosphate can provide
NADPH for other pathways, such as fatty acid biosynthesis in microalga cells [44]. Studies
have shown that the over-expression of glucose-6-phosphate dehydrogenase (G6PD) and
6-phosphogluconate dehydrogenase (PGD) in the pentose phosphate (PPP) pathway can en-
hance lipid accumulation by providing NADPH in oleaginous diatom Fistulifera solaris [45].
Although Fistulifera solaris and Crypthecodinium sp. SUN come from two different taxonomic
groups, NADPH supply for PPP pathway is essential for fatty acid biosynthesis in both
the above microalgae. Sodium acetate increased the TFA accumulation in Crypthecodinium
sp. SUN (Figure 2A), thus, the expression changes of the PPP pathway were analyzed in
the present study. Surprisingly, the key genes, G6PD and PGD, showed no differences
among the three groups (Figure 4), which indicated that the expression levels of G6PD
and PGD would not be the key limiting factors affecting the NADPH supply for fatty
acid accumulation in Crypthecodinium sp. SUN. Crypthecodinium sp. SUN belongs to the
group of dinoflagellates, which have nucleuses that are unusual in terms of their perma-
nently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio,
guanine-cytosine rich methylated DNA and a unique mitosis process [46]. These distinctive
nuclear features of Crypthecondiium might be the reason for the unique expression patterns
of the PPP pathway in Crypthecodinium sp. SUN.

The TCA cycle, the main way to obtain energy for cell metabolism, is a common
destination of the complete oxidation of starch, lipid and protein products [37]. Studies
have shown that carbon sources can affect the energy supply due to the availability of
carbon sources [47]. Glucose, as a direct carbon source, can provide more energy in
energy metabolism in microalgae compared with sodium acetate [48]. Besides, sodium
acetate limited glucose utilization and decreased the biomass in Crypthecodinium sp. SUN
(Figure 1). Thus, it is reasonable to assume that sodium acetate would downregulate
the TCA cycle and provide less energy to support cell growth, compared with glucose.
Citrate synthase (CS), a rate-limiting enzyme of TCA cycle, catalyzes the condensation
of acetyl-CoA and oxaloacetic acid to form citric acid, which is the first step of TCA
cycle [37]. In addition, isocitrate dehydrogenase (ICDH) and 2-oxoglutarate dehydrogenase
E1 component (OGDH) are also rate-limiting enzymes in the TCA cycle [37]. As shown in
Figure 4, CS, ICDH and OGDH were significantly downregulated in the M and S groups,
indicating that downregulation of the TCA cycle in these two groups had occurred. Thus,
less energy was produced in the M and S groups, which could have been the reason that the
cell number and DW in these two groups were lower than that of the G group (Figure 1A,B).

Finally, 16 genes were selected for real-time quantitative PCR (qPCR) analysis to verify
the accuracy of the transcriptome data (Supplementary file 1: Figure S4). Among these
genes, ACCase showed significant upregulation in the G group versus the other groups.
ACS and OGDH had upregulation in the G group but downregulation in the M and S
groups. The expression levels of other genes showed trends resembling the transcriptome
data in Figure 4. These results indicated that the transcriptome results were reliable.

In summary, significant downregulation of CS, ICDH and OGDH in the M and S
groups in the TCA cycle are related to energy supply and may have been the reason for the
lower cell number and DW of the M and S groups versus the G group.

2.5. Metabolome Analysis under Different Carbon Source Treatments

The levels of metabolites were affected by the supply of different carbon sources in
Crypthecodinium sp. SUN. To elucidate the accumulation of different metabolites under
different carbon source cultivation, metabolome analysis was performed at 0, 12 and
48 h. A total of 524 metabolites were detected by LC–MS and annotated in the KEGG
database (Table S2). PCA was performed to investigate the correlations between metabolite
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levels and carbon source and showed a clear separation among the three groups, which
indicated that the parallelism of samples was good (Figure S5). As shown in Figure
S6, 11, 11, 9 and 8 different pathways were enriched by KEGG in G12 versus S12, G12
versus M12, G48 versus M48, and G48 versus S48, respectively. Pathways related to
“lipid metabolism”, “TCA cycle” and “Glycerophospholipid metabolism” showed some
difference among the three groups. To compare the difference in carbon and energy
metabolism among three groups, differential metabolites were defined with VIP > 1 and
p < 0.05, according to partial least square discrimination analysis (PLS-DA) and orthogonal
partial least squares discrimination analysis (OPLS-DA). The key pathways containing
“TCA cycle”, “Pentose phosphate” and “Pyruvate metabolism” were specifically analyzed,
and a total of 10 identified metabolites were found to be significantly affected by the
different carbon sources (Table 2).

Table 2. Overview of the differentially produced intracellular metabolites detected in Crypthecodinium.
sp. SUN cultivated with different carbon sources.

Pathway Metabolite Group Log2FC # VIP p Value

12 h 48 h 12 h 48 h 12 h 48 h

Lipid
metabolism

Lyso PC
(14:0/0:0)

G 0.77 1.69 0.51 1.51 0.0002 0.0000
M 2.90 2.26 1.65 1.34 0.0000 0.0000
S 2.13 1.58 1.20 0.93 0.0000 0.0018

Lyso PC (16:0)
G 1.15 −0.57 5.09 3.43 0.0000 0.0250
M 1.00 −0.82 4.62 2.98 0.0001 0.0068
S 1.22 −1.20 5.46 3.66 0.0000 0.0027

Lyso PC (22:6)
G 1.26 0.78 9.93 11.10 0.0000 0.0000
M 1.60 1.74 12.17 13.97 0.0000 0.0000
S 1.35 1.30 10.80 9.70 0.0000 0.0113

PC (14:0/22:6)
G 9.87 0.30 1.25 0.02 0.0001 0.5223
M 0.30 0.56 0.02 0.01 0.5223 0.5691
S 11.26 5.25 2.11 0.18 0.0001 0.2076

PE (18:1/22:6)
G 4.83 1.24 2.29 0.78 0.0181 0.0346
M 4.48 −0.14 2.19 0.05 0.0035 0.8663
S 5.07 0.69 2.83 0.28 0.0025 0.2742

PC (22:6/22:6)
G 4.87 0.39 2.05 0.16 0.0000 0.5500
M 4.95 −2.48 2.14 0.32 0.0000 0.0245
S 5.25 1.17 2.41 0.33 0.0000 0.1300

Energy
metabolism Citric acid

G −2.08 −0.50 1.66 1.62 0.0000 0.0000
M 0.47 0.96 1.18 1.99 0.0000 0.0000
S 0.64 1.38 1.44 2.72 0.0000 0.0000

Pyruvate
metabolism

S- Lactoylglu-
tathione

G −6.02 0.33 5.47 3.64 0.0000 0.0149
M −4.09 −4.57 5.48 5.82 0.0000 0.0000
S −4.06 −5.03 5.53 6.15 0.0000 0.0000

Pentose
phosphate
pathway

Gluconolactone
G −1.42 −0.80 1.71 2.27 0.0000 0.0000
M −1.18 −1.34 1.66 1.77 0.0000 0.0001
S −1.78 −2.51 1.92 2.28 0.0000 0.0000

Gluconic acid
G 0.75 1.29 1.10 2.60 0.0000 0.0000
M −1.38 0.35 1.09 0.37 0.0000 0.4299
S −2.36 −0.56 1.27 0.70 0.0000 0.0286

# The Log2FC stands for the relative abundance at each time point compared with that of the G group at 0 h.

Six kinds of metabolites were significantly related to lipid metabolism in Crypthe-
codinium sp. SUN, including phosphatidylcholine (PC 14:0/22:6, 22:6/22:6) and phos-
phatidylethanolamine (PE 18:1/22:6). These three metabolites all contained DHA and
were significantly upregulated in the S group versus the other two groups, indicating
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that these three metabolites could be induced by sodium acetate. Studies have shown
that these metabolites often combine with proteins to form the main components of cell
membranes. Besides, these metabolites could also be precursors of diacylglyceride and
triacylglyceride (DAG and TAG, respectively) [49]. Thus, the accumulated DHA-enriched
intermediates should be the reason for the high TFA and PUFA content in the S group
(Figure 2A and Table 1). Through transcriptome analysis, the expression levels of genes
in fatty acid biosynthesis were found to be complex and showed no obvious differences
among the three groups. However, the metabolites related to lipid accumulation are shown
in the S group in Table 2. These results were consistent with the higher TFA accumulation
in the S group, and acetyl-CoA as a precursor was found to be critical for TFA accumulation
in Crypthecodinium sp. SUN.

In the TCA cycle, the most important metabolite was citric acid. The reaction catalyzed
by citrate synthase (CS) producing citric acid was a rate-limiting step in the TCA cycle,
after which citric acid was converted to aconitic acid. The metabolomic data show that the
relative abundance was downregulated in the G group but upregulated in the M and S
groups, and the S group had the highest content of citric acid (Table 2). This result indicated
that more citric acid accumulation occurred in the S group versus the G and M groups. The
transcriptome data show a significant downregulation of the TCA cycle in the S group,
a finding that was consistent with citric acid accumulation in the S group (Figure 4 and
Table 1). The TCA cycle is an essential pathway that can provide adenosine-triphosphate
(ATP) for cell growth in microalgae. The accumulation of citric acid would have induced
enough energy in the S group, thus, promoting higher fatty acid accumulation than that
found in the G and M groups (Figure 1A,B).

Gluconolactone and gluconic acid (Table 2) are two main metabolites of the pentose
phosphate pathway. The relative abundances of gluconolactone and gluconic acid were
significantly downregulated in the S group, indicating less accumulation of these two
metabolites in the S group. Pentose phosphate begins with glucose 6-phosphate, the S group
had no supply of glucose 6-phosphate; thus, the relative abundances of gluconolactone
and gluconic acid in the S group were lower than that inf the other two groups. The lower
abundance of metabolites along the pentose phosphate pathway might have restricted the
supply of NADPH and carbon skeletons for protein biosynthesis and might be the reason
for the lower growth rate in the S group.

In summary, the results of the metabolomic analysis showed lipid-related metabolite
accumulation in the S group, a finding that was consistent with the higher TFA content in
the S group. Besides, the accumulation of critic acid in the S group could contribute more
energy for fatty acid metabolism.

3. Materials and Methods
3.1. Strains and Culture Conditions

The strain used in the present study, Crypthecodinium. sp. SUN, has been isolated and
screened from the Longhai National Mangrove Natural Reserve (Fujian, China) by our
research group previously [25]. Its 18S rDNA sequence can be found on the National Center
for Biotechnology Information (NCBI) website (GenBank accession number: KY263646).

Crypthecodinium sp. SUN was cultured in modified By+ medium (prepared with
freshwater), which consists of 20 g L−1 sea salt, 20 g L−1 glucose, 1 g L−1 tryptone and
1 g L−1 yeast extract [25]. The original cell stock was stored in By+ medium at 16 ◦C away
from light. After four days of cell activation, 5 mL of seed culture was inoculated into a
new 250 mL Erlenmeyer flask containing 50 mL By+ medium and cultured at 25 ◦C in a
constant temperature shaker incubator with a rotation speed of 150 rpm in the dark [25].
To study the effects of different carbon sources on cell growth, starch content and fatty acid
accumulation in Crypthecodinium sp. SUN, three groups were set in parallel, namely the
G, M and S groups. These three groups had different types and concentrations of carbon
source: the G group contained 20 g L−1 glucose, the M group contained 10 g L−1 glucose
and 10 g L−1 sodium acetate, and group S contained 20 g L−1 sodium acetate. Other
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nutrients were the same as those in the By+ medium. Samples were taken at 0, 24, 48, 72
and 96 h.

3.2. Measurement of Cell Number and Dry Weight

The cell number was counted with a hemocytometer at 0, 24, 48, 72 and 96 h. The
samples were diluted with distilled water and shaken as appropriate. Ten microliters of the
culture was absorbed and dropped onto the edge of the upper and lower edges of the cover
glass located on the hemocytometer and counted under a microscope. All measurements
were performed in triplicate.

Five ml of the cultures in the three groups were taken at 0, 24, 48, 72 and 96 h, and
centrifuged at 4000× g for 5 min to determine the dry weight (DW) [7]. The collected
supernatant was used to measure glucose consumption. The precipitated cell pellets were
washed twice with distilled water and then filtered with pre-dried and weighed ashless
filter papers (Whatman, England, Code No.1440-070). The filter papers were added in a
vacuum drying oven (DZF-6050, OLABO, Shanghai, China) and then dried at 80 ◦C for
about 4 h until constant weight [7]. Finally, the DW was calculated by the subtraction
method. All measurements were performed in triplicate.

3.3. Quantification of Glucose Consumption

The collected supernatant at 0, 24, 48, 72 and 96 h from DW measurement was used
to quantify glucose consumption. The 3,5-dinitrosalicylic acid (DNS) method was used to
quantify the glucose concentration in the G and M groups, which contained glucose [50].
Then the glucose consumption of the G and M groups was calculated using Equations (1)
and (2), respectively. All measurements were performed in triplicate.

Glucose consumption (g L−1) = 20 g L−1 − Glucose concentration (g L−1) (1)

Glucose consumption (g L−1) = 10 g L−1 − Glucose concentration (g L−1) (2)

3.4. Fatty Acid Analysis

To methylate fatty acids, 20 mg of lyophilized algal powders were weighed into a
covered glass tube. One milliliter toluene and 2 mL 1% sulfuric acid dissolved in methanol
(v/v, 0.05% BHT was added to prevent lipid oxidation) were firstly added to the glass tube.
Then, 0.5 mL heptadecanoic acid (C17:0, 1 mg mL−1 dissolved in n-hexane) was added
to the glass tube as an internal standard for fatty acid methyl ester (FAME) analysis. The
sealed glass tube was incubated at 85 ◦C for 2.5 h and oscillated every 30 min in order
for the reaction to be complete. After cooling, 1 mL 0.75% sodium chloride solution was
added to the glass tube and mixed well. Then, 2 mL n-hexane was used to extract FAMEs,
the supernatants were collected after centrifugation at 5000× g for 5 min and dried with
a pressured nitrogen blowing concentrator (LC-DCY-12SY, LICHEN, China), and then
the volume was fixed with n-hexane to 1 mL. After filtering with a disposable microfil-
ter (13 mm × 0.22 µm, Nylon 66, JINTENG, China), the filtered samples were analyzed
on an Agilent 7890A gas chromatograph (GC) equipped with a DB-23 capillary column
(30 m × 0.25 mm × 0.25 µm, Agilent, Santa Clara, CA, USA). Nitrogen and synthetic air
were used as the carrier gas and make-up gas, respectively. For FAME analysis, the initial
injector temperature and column temperature were set at 250 ◦C and 150 ◦C, respectively.
The column temperature subsequently rose to 200 ◦C at 10 ◦C min−1 followed by holding
at 200 ◦C for 4 min. All measurements were performed in triplicate.

3.5. Extraction and Quantification of Intracellular Acetyl-CoA

The extraction method of acetyl-CoA was modified based on the research of Avidan
et al. [51]. About 2 × 106 cells were collected at 0, 24, 48, 72 and 96 h and then quenched with
1 mL pre-cooled acetonitrile: isopropyl alcohol (v/v = 3:1). The mixture was thoroughly
ground in an ice bath for 5 min followed by the addition of 1 mL 0.1 M potassium phosphate
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buffer (pH 6.7), during which acetyl-CoA was extracted. After centrifugation at 5000× g at
4 ◦C for 5 min, the supernatant was collected for acetyl-CoA determination.

The intracellular acetyl-CoA concentration was quantified with a plant acetyl-CoA
enzyme-linked immunoassay (ELISA) kit (Mosak, Code No. Kt 40577). The extracted acetyl-
CoA from microalgae cells was coated with sealing membrane and incubated at 37 ◦C for
30 min after which it was used as the solid phase antibody. Acetyl-CoA was successively
added to the microporous membrane coated with monoclonal antibody in advance, and
then combined with horseradish peroxidase (HRP)-labeled acetyl-CoA antibody in the kit
to form an antibody–antigen–enzyme-conjugate antibody complex. The 96-well ELISA
plate was cleaned with the wash solution in this kit, and tetramethyl benzidine (TMB)
was added to produce color at 37 ◦C for 15 min. After addition of acid stop solution, the
blue color in the 96-well ELISA plate changed immediately to yellow. The absorbance
(optical density (OD)) of each well was measured at 450 nm within 15 min. Finally, the
concentration of acetyl-CoA in all samples was calculated according to the standard curve.
All measurements were performed in triplicate and each hole was reperforated.

3.6. Quantification of Starch

The starch content of all samples was quantified according to the method by Zhang
et al. [52]. About 50 mg of lyophilized algae cells were collected at 0, 24, 48, 72 and 96 h,
respectively. Then, the lyophilized algae cells in the three groups were accurately weighed
and thoroughly ground in a mortar under liquid nitrogen protection. After washing twice
in an ice bath with 20 mM Tris/HCl buffer (pH 6.9), a low temperature was maintained
during washing. The microalgal residue was collected by centrifugation at 4 ◦C at 10,000× g
for 10 min. Five milliliters of an ethanol solution (80%) was added to the algal residue
followed by placing in a water bath at 85 ◦C for 5 min to remove glucose and maltose. Five
milliliters of an ethanol solution (80%) was added again to the system, then mixed and
cooled on ice. After centrifuging at 12,000× g at 4 ◦C for 10 min, the algal residue was
collected and the supernatant was discarded. Then, 2 mL dimethyl sulfoxide (DMSO) was
added to the microalgal residue, dissolved by full oscillation and incubated in a boiling
water bath for 5 min. Four mL Tris/HCl buffer (20 mM, pH 6.9) and 20 µL thermally
stabilized α-amylase were added to the system and boiled again for 5 min. After cooling
on ice, 1 mL starch trans-glucosidase solution (1 g L−1) and 2 mL sodium acetate solution
(pH 4.4) were added to the system. After being shaken well, the samples were incubated in
a shaking bath at 60 ◦C for about 15 min. Then, the samples were centrifuged at 8000× g
for 5 min and the supernatants were collected to quantify the starch content. The reducing
glucose concentration in the supernatant was measured via the 3,5-dinitrosalicylic acid
(DNS) method [50]. Starch content was calculated after centrifugation at 4000× g at room
temperature for 15 min. All measurements were performed in triplicate.

3.7. Quantification of Protein

To quantify protein content, 2 mg of lyophilized algal cells was collected at 0, 24,
48, 72 and 96 h. Then, the lyophilized algae cells in the three groups were weighed and
ground thoroughly in a mortar. One mL 3% potassium hydroxide solution was added to
the samples and then they were incubated at 80 ◦C for 10 min, followed by centrifugation
at 900× g for 5 min, and the supernatant was collected into new centrifuge tubes. For more
complete collection of all proteins, the sediment was washed three times with distilled
water. After centrifugation, all protein in the collected supernatant was detected with the
bicinchoninic acid (BCA) Protein Measurement Kit (Beyotime Institute of Biotechnology,
Code No. P0012). The mixture of BCA reagents, A and B (v/v, 30:1), was used to prepare
the BCA working fluid (50:1). The samples were incubated at 60 ◦C for 30 min after adding
the BCA working solution. The absorbance of all samples was measured at 562 nm [53].
All measurements were performed in triplicate.
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3.8. Total RNA Extraction, Quality Control, and cDNA Library Construction

The algae cell cultures were collected in RNA-free centrifuge tubes at 0, 6, 12, 24 and
48 h. The supernatant was discarded after centrifugation at 5000× g at 4 ◦C for 3 min.
The precipitated cells were rapidly frozen with liquid nitrogen. The collected algal cells
were thoroughly ground under the protection of liquid nitrogen and then transferred to
an RNA-free centrifuge tube. The total RNA of Crypthecodinium sp. SUN was extracted
using RNAiso plus reagent (Takara, Beijing, China, Code No.9108/9109) according to the
instructions. To detect the quality of the extracted RNA, a 2100 Bio-Analyzer (Agilent,
Santa Clara, CA, USA) and a Nanodrop-2000 (Nano Drop Technologies, Wilmington, DE,
USA) were used. To improve the accuracy of the subsequent sequencing, high-quality RNA
samples (OD260/280 = 1.8–2.2, OD260/230 2.0, RIN 6.5, 28S:18S 1.0, & gt; 1 µg) were used
to construct the sequencing library.

About 1 µg of total RNA was used for the construction of the RNA-seq transcriptome
library. The mRNA was isolated using oligo (dT) beads following poly A selection and
subsequently segmented with buffer solution. Then, the Super Script double-stranded
cDNA synthesis kit (Invitrogen, Waltham, MA, USA, Code No.11917-020) was used for
cDNA synthesis. According to Illumina construction principles, cDNA terminal repair,
phosphorylation and addition of “A” base were carried out. About 300 bp fragments were
selected for PCR amplification and then sequenced after TBS380 quantitation (Illumina
HiSeq xten/NovaSeq 6000 sequencer, Illumina, Shanghai, China) to obtain the RNA-SEQ
sequencing library.

3.9. Read Mapping, Differential Genes Expression Analysis, and Functional Enrichment

The clean reads were aligned to the Crypthecodinium sp. SUN reference genome using
Top-Hat version 2.0.0 software. The expression level of each transcript was calculated
according to the transcripts per million reads (TPM) method. RNA-Seq by expectation
maximization was used to quantify gene abundances [54]. In order to distinguish the
differentially expressed genes, DESeq2 [55]/EdgeR [56] with Q value ≤ 0.05 and DEGs with
|log2FC| > 1 were considered as the screening standard. For further analysis, functional-
enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were performed. GO functional enrichment and KEGG pathway
analysis were carried out by Goatools and KOBAS.

3.10. Real-Time Quantitative PCR (qPCR)

Total RNA was extracted and reversely transcribed into cDNA (Invitrogen, USA, Code
No.11917-020). To verify the transcriptome data, real-time quantitative PCR detecting
system (qPCR) was performed using a CFXTM Real-Time System (Bio-Rad, Hercules, CA,
USA). Sixteen genes were selected, and the primers were designed using Primer Premier 5
software. The cDNA was amplified by TB Green Premix Ex TaqTMII (Takara, Kyoto, Japan).
Three PCR reactions were performed for each sample. Each reaction system contained
10 µL TB Green Premix Ex Taq II, 0.8 µL PCR forward and reverse primers (10 mM), 0.4 µL
ROX reference dye (50×), 2 µL DNA template, and 6 µL sterile water. The total volume of
the formulated system was 20 µL. The PCR cycle was 95 ◦C for 30 s followed by 40 cycles of
95 ◦C for 3 s, and 60 ◦C for 30 s. Relative gene expression was evaluated using the 2−∆∆CT

method described by Sirikhachornkit et al. [57].

3.11. Metabolite Extraction, LC-MS Analysis, and Metabolite Identification

About 1 × 107 cells collected at each time point were centrifuged at 5000× g at 4 ◦C
for 3 min, then the supernatant was discarded. After which the pelleted cells were rapidly
frozen and ground with a frozen tissue grinder for 6 min (−10 ◦C, 50 Hz). About 400 µL
of methanol: water = 4:1 (v:v) extract was added to the ground sample to extract all
metabolites, including 0.02 mg mL−1 internal standard (L-2-chlorophenylalanine). The
mixture was ultrasonically extracted at 4 ◦C for 30 min and then left standing at −20 ◦C
for 30 min. After centrifugation at 13,000× g at 4 ◦C for 15 min, the supernatant was
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transferred to sample bottles, and the metabolites were determined and identified by liquid
chromatography–mass spectrometry (LC-MS) with an ACQUITY UPLC HSS T3 column
(100 mm × 2.1 mm, 1.8 µm; Waters, Milford, MA, USA) as the chromatographic column.
Two mobile phases were used in LC-MS analysis, the mobile phase A consisted of 95%
water and 5% acetonitrile (containing 0.1% formic acid), and mobile phase B contained
47.5% acetonitrile + 47.5% isopropanol +5% water (containing 0.1% formic acid). Each
sample had a 2 µL injection volume, and the column temperature was 40 ◦C. All extracted
metabolites were ionized by electrospray ionization, and the positive (+) and negative
(−) ion scanning modes were applied to collect the mass spectrum signals. The scan type
(m/z) of mass spectrometry was 70-1050. Heater and capillary temperatures were 425 and
325 ◦C, respectively. The positive and negative spray voltages were +3500 and −3500 V,
respectively.

The raw data were imported into the metabolomics processing software Progenesis QI
(Waters Corporation, Milford, USA). After a series of data processing steps, including base-
line filtering, peak identification, integration, retention time correction and peak alignment,
the key data matrix was obtained. Then, the software was used to identify characteristic
peaks to search the database, and the mass spectrometry information was matched with
the metabolic database to facilitate the analysis of metabolomics.

3.12. Statistical Analysis

All the experiments were conducted in three biological replicates, and the results in
Figures and Tables are expressed as mean value ± standard deviation (SD). The signifi-
cance of the results was calculated using two-way repeated measures analysis of variance
(ANOVA) with IBM SPSS Statistics 26.0. The results were performed with the Bonferroni
correction for the p value.

4. Conclusions

In this study, the heterotrophic Crypthecodinium sp. SUN was cultured with different
carbon sources. Glucose favored cell growth and starch accumulation. Sodium acetate
limited starch accumulation but significantly increased TFA accumulation and DHA per-
centage, which resulted in a 2.92-fold higher DHA content in the S group than the G
group at 96 h. Rather than the expression levels of key genes in fatty acid biosynthesis,
the increased intracellular acetyl-CoA content appeared to have promoted fatty acid accu-
mulation. Besides, the accumulation of DHA-rich intermediates in the lipid biosynthesis
pathway might be the reason for the higher TFA content and DHA percentage of the S
group. In summary, the present study provides valuable insights to guide further research
in DHA production.
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