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Abstract

The problem of automated seizure detection is treated using clinical electroencephalograms (EEG) and machine
learning  algorithms  on  the  Temple  University  Hospital  EEG  Seizure  Corpus  (TUSZ).  Performances  on  this
complex data set are still not encountering expectations. The purpose of this work is to determine to what extent
the  use  of  larger  amount  of  data  can  help  to  improve  the  performances.  Two methods  are  explored:  a  standard
partitioning on a recent and larger version of the TUSZ, and a leave-one-out approach used to increase the amount
of  data  for  the  training  set.  XGBoost,  a  fast  implementation  of  the  gradient  boosting  classifier,  is  the  ideal
algorithm  for  these  tasks.  The  performances  obtained  are  in  the  range  of  what  is  reported  until  now  in  the
literature with deep learning models. We give interpretation to our results by identifying the most relevant features
and analyzing performances by seizure types.  We show that  generalized seizures tend to be far  better  predicted
than  focal  ones.  We  also  notice  that  some  EEG  channels  and  features  are  more  important  than  others  to
distinguish seizure from background.
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learning, XGBoost

Introduction

One  of  the  most  common  ways  to  diagnose
epileptic seizure is to measure the electrical activity of
the  cerebral  cortex  by  performing  a  non-invasive
electroencephalogram  (EEG)[1].  It  is  a  relatively
unexpensive  and  easy  way  to  proceed  compared  to
other techniques such as MRI or intrusive methods[2].

Consequently,  most  works  to  automatically  analyze
seizures have been done on these signals through time
series processing methods.

EEG-based  seizure  detection  has  been  extensively
studied;  however,  it  has  rarely  reached  performance
that  could  durably  help  neurologists.  This  is  due  to
several factors. The complexity of the epilepsy and the
brain waves is the first one. The EEG signals are non-
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stationary  and  the  statistical  features  of  these  signals
are  different  between  patients  over  time.  The  second
factor  is  the  quality  of  the  data  sets  used  for  the
machine learning task.

An ideal data set needs to be a good representation
of  all  the  varieties  of  EEG  signals  that  could  appear
during  epileptic  seizure.  Even  if  high  performances
were obtained with some of the publicly available data
sets,  they  have  typically  inherent  restrictions.  For
instance,  they can be too specific,  regarding a certain
type  of  population  as  the  Children's  Hospital  Boston
(CHB)-Massachusetts  Institute  of  Technology  (MIT)
data  set[3].  Indeed,  this  data  set  is  only  focused  on
teens  and  children,  as  it  is  generally  recognized  that
EEG signals differ with age[4], it is potentially difficult
to  generalize  the  resulting  work  on  adults.  It  is  also
particularly  more  dedicated  to  the  prediction  tasks
thanks  to  the  long  duration  of  the  recordings.  Good
results on this task are presented[5]. Data sets can also
be  too  small  or  incompletely  documented  such  as
Bonn data set where there is no indication of the type
of seizure and patients features[6].  With this one, very
high  performance  with  various  deep  learning
architectures  using  raw  data  was  achieved,  but  that
seems  hard  to  generalize  on  more  sophisticated  data
sets[7].

Therefore,  these  experiments  do  not  correspond  to
clinical  conditions,  and  the  results  are  not
representative  of  current  clinical  performances.  This
state  of  fact  initiated  the  development  of  the  Temple
University Hospital EEG Seizure Corpus (TUSZ). Up
to now, it is the largest open source corpus of this kind
and represents an accurate characterization of clinical
conditions[8].  TUSZ  is  a  complex  data  set  offering  a
great  diversity  in  terms  of  patients,  seizures  or  EEG
montages  (the  placement  of  the  electrodes).  Machine
learning  models  have  been  proposed[8–  9],  and  these
works  are  based  on  deep  architectures  but  the  results
are  not  yet  convincing.  Some  architectures  obtained
good  specificities  but  sensitivities  are  still  low,
resulting in a low rate of false alarms but at the price
of  missing  a  lot  of  seizures.  The  first  versions  of  the
data  set  were  used  for  these  studies.  They  were
already offering more  patients  and a  wider  variety  of
seizures  types  for  the  studies  than  the  other  seizures
corpora, the latest versions providing even more.

All  these  observations  led  us  to  the  following
question:  Does  the  increase  of  data  lead  to  better
results? We saw that a common difficulty for generic
modeling  is  the  lack  of  data,  both  in  quantity  and
quality,  to  obtain  relevant  results  through  machine
learning and for having models that apply well to data
from new patients.

To  increase  the  amount  of  training  data,  we  first

worked on a more recent release of the TUSZ offering
a  larger  training  set,  with  a  classic  approach  to
machine learning and data partitioning. This gives the
first method. The second method is based on a leave-
one-out  approach  with  iterations,  in  the  manner  of
cross-validation,  to  extend  the  training  set  with  the
data of the test set. It means that, at each iteration, we
keep  a  patient  of  the  initial  test  set  for  the  testing
phase  and  perform  the  training  and  validation  of  the
model on the rest of the data. XGBoost is the selected
algorithm for our classifier. It is a fast implementation
of  the  gradient  boosting classifier  which allows us  to
perform quickly the multiple iterations required by the
second  method.  As  it  is  a  decision  tree  based
algorithm,  it  has  also  the  advantage  to  be
interpretable;  the  measure  of  the  importance  of
features  on  the  training  set  is  returned  by  the
algorithm.  As  inputs  of  our  algorithm,  temporal  and
frequential  features  (computed  on  segments  of  1
second)  are  used  with  some  others  processed  by  a
specific  python  library  for  EEG  signals,  called
pyEEG.  The  methods  are  applied  to  the  two  most
important  subsets  of  the  TUSZ  in  terms  of  montage
leading to multiple experiments.

As  a  result,  with  a  fast  computing  approach,  we
managed to present results that matched the best in the
Temple  University  Hospital  (TUH)  literature[8].  We
showed  that  increasing  the  amount  of  data  improves
performance.  We  analyzed  the  performances  by  type
of seizure and we showed that the seizures categorized
as  generalized  were  easier  to  recognize.  Finally,  the
interpretable  property  of  the  XGBoost  algorithm
shows the features and the EEG channels that are the
most  discriminant  to  distinguish  a  seizure  from  the
background,  or  ictal  from  interictal  activity.
Interpretability  is  important  as  much  as  the
collaboration between data scientists and clinicians in
the early steps of such a study[10]. Therefore, we report
in the discussion section some ideas that resulted from
our discussions with neurologists.

As the first official release of the TUSZ was done in
April 2017, there is not a lot of available literature on
machine  learning  techniques  applied  to  this  data  set.
Most  of  the  experiments  come  from  Prof.  Picone's
team  at  Temple  University  and  have  led  to  deep
learning approaches.

Several  architectures  are  extensively  described[8]

and the results presented were the first reported on this
data set. In this paper, the authors report a number of
64  patients  on  whom  algorithms  were  trained  and  a
number  of  50  patients  for  the  testing.  Various
architectures  are  applied,  including  Hidden  Markov
Models (HMM), Long Short-Term Memory (LSTM),
Convolutional  Neural  Networks  (CNN)  combined
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with  MultiLayer  Perceptron  (MLP)  and  a  hybrid
CNN/LSTM  model.  Dimensionality  reduction  is
usually  performed,  through  (Incremental)  Principal
Component  Analysis  [(I)PCA].  The  results  are  based
on  metrics  that  are  calculated  permissively  with  the
Any  Overlap  method  (OVLP);  it  consists  in
considering a totally good detection if a detected event
touches  at  least  a  period  of  time  (a  segment)  of  the
real  event,  instead of  calculating the  metrics  segment
by segment. Specificity varies between 70% and 80%
except  in  the  hybrid  CNN/LSTM  model  where  an
outstanding specificity of 96.86% is reached, resulting
in  a  very  low  false  alarm  rate  of  7  FA/24  hours.  On
the other hand, sensitivity is always low, 30% for this
last  model  and  up  to  40% for  the  others  with  a  false
alarm rate at minimum 77 FA/24 hours.

A similar work uses Gated Recurrent Units (GRU),
a  particular  kind  of  Recurrent  Neural  Networks
(RNN) that is faster but less accurate than LSTM[9]. A
CNN/GRU approach is  compared to  the  CNN/LSTM
approach and shows the same sensitivity (30%) and a
slightly  lower  specificity  (91%).  Initialization
techniques  and  regularization  methods  are  also
discussed.  Although  version  1.1.1  of  TUSZ  was
reported to be used in this case, with 196 patients for
training and 50 for testing, the results remained in the
same order of magnitude compared to the first paper.

Hence, none of as of today state of art models have
been able to reach satisfying sensitivities and, except a
deep  complex  CNN/LSTM  architecture  with  many
layers,  specificities,  and  false  alarm  rates  are  not
outstanding neither.

Gradient  Boosting  is  an  ensemble  method  using
boosting  principles.  In  short,  it  fits  a  classifier
(generally  a  decision  tree)  to  the  data  given  in  input
and  calculates  residuals.  A  new  classifier  is  then
adjusted on these residuals. The procedure is repeated
while  the  validation  error  decreases.  There  are  many
advantages  to  using  gradient  boosting  models  based
on  decision  trees;  they  have  the  innate  property  of
being  robust  to  correlated  features,  the  normalization
of  these  ones  is  not  required  and  finally  estimates  of
feature importance can be provided. This last property
can  give  significant  insights  into  the  features  and  on
the analysis process.

XGBoost  library  is  an  efficient  and  distributed
implementation of the Gradient Boosting algorithm[11].
The main strength of XGBoost is its scalability which
allows  parallel  and  distributed  computing  and  makes
learning  and  model  exploration  faster.  Moreover,
several  other  improvements  were  added  such  as
techniques for reducing overfitting giving to XGBoost
better  performances  than  the  generic  boosting
algorithm.  We used  the  XGBoost  library  through  the
python package for this work.

Although Gradient Boosting is known to reach high
performances  in  several  tasks  and  is  easier  to
parameterize  than  deep  learning  architectures,  there
was  no  use  of  it  on  "Big  Data"  seizure  detection
corpus  such  as  TUSZ,  to  the  best  of  our  knowledge.
However,  we  have  to  mention[12] where  a  Gradient
Boosting approach is used on Freiburg data set (which
is  not  publicly  available  anymore)  made  of  21
patients. Their approach is patient-specific in the sense
that  they  built  a  custom  model  for  each  patient.  The
data  of  one  patient  is  actually  split  in  a  train  subset
and  a  test  subset,  before  feeding  a  model.  The
procedure  is  repeated  for  all  the  other  patients,
resulting in as many models as patients. In the present
work, we use the opposite approach which consists of
generic modeling.

Concerning the interpretable property we are trying
to  exploit  by  means  of  XGBoost,  we  must  mention
that  several  other  works  approach  the  problem  in  a
similar  way[13–  14].  Both  works  consider  generic
modeling  on  multiple  patients  and  use  the  Bonn data
set  for  this  purpose.  The  first  one  uses  decision  tree-
based  modelization,  including  a  random  forest
classifier.  The  conclusion  emphasizes  the  good
performance  of  the  random forest  algorithm which  is
an ensemble method similar to gradient boosting. The
second  tries  to  establish  rules  from  a  fuzzy  logic
system.  The  interpretability  of  the  resulting  fuzzy
rules  is  discussed.  Bonn  data  set  only  provides  one
EEG channel which limits the scope of interpretation.

Materials and methods

Data set

TUSZ is a subset of the larger EEG signals database
from  the  TUH.  TUSZ  data  set  is  remarkable  by  the
high number of patients and configurations it contains.
Indeed,  in  the  considered  version  1.2.1  of  this  subset
released  in  April  2018,  there  are  266  patients  in  the
training set (of whom 118 suffering from seizures), 50
in  the  test  set  (of  whom  38  suffering  from  seizures),
and  more  than  40  different  configurations  of
electrodes.

TUSZ  data  set  was  established  by  identifying  the
sessions  in  the  TUH EEG Corpus that  were  the  most
likely to contain seizure events. Three annotation tools
were  used  to  identify  events  of  clinical  interest:
Natural  Language  Processing  (NLP),  a  commercial
software,  and  a  three-pass  system[15].  Then  an
annotation  team  manually  annotated  the  data  and
showed  that  the  NLP  approach  had  been  the  most
efficient as the first step, revealing again the difficulty
to  automatically  detect  seizure  events  in  a  large  data
set of EEG[16].
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This  data  set  contains  a  huge  diversity  of
configurations,  in  terms  of  sampling  rate,  references
or montages (placement and connections between the
electrodes).  However,  two  major  montages
predominate  in  the  data  set:  "Average  Reference"
(AR) for which the potentials are measured relatively
to  the  average  value  of  a  subset  of  electrodes  and
"Linked Ears" (LE) for which the reference is located
on  the  ear,  electrically  quiet.  Previous  researches
offered  more  statistics  about  TUH  data  sets[16–  17] and
more  considerations  on  the  montages  and  their
consequences[18].

Nevertheless,  all  recordings  contain  the  electrodes
of  the  standard  10/20  placement.  We  call  "channels"
the  derivations  of  electrodes  obtained  with  the  TCP
bipolar  montage  also  called  "double-banana".  They
are  shown  in Fig.  1,  which  comes  from  a  previous
study[19].

The  recordings  are  split  into  six  file  folders:  three
theoretically  for  training  purpose  and  the  three
remaining  for  the  test.  Each  folder  contains  one
specific montage, either AR, LE, or a slight variant of
AR.  This  variant  is  less  represented  and  was  not
considered for this study.

For  each  patient,  there  are  one  or  several  sessions
themselves  containing  files  related  to  one  or  more
recordings. There are five files for each recording. The
.edf  file  contains  the  raw  EEG  signals  and  a  header
containing  useful  information  (frequency,  duration,
date).  The  .lbl  file  contains  event-based  annotations
that  catch  the  beginning  and  end  of  each  event  on
every channel of the 22 shown in Fig. 1.  An event is
either  background  or  a  particular  type  of  seizure.
Practically  those  annotations  may  indicate  if  an  ictal
phase begins or ends earlier or later on some channels.
The .lbl_bi  is  very similar  to the previous one except
that the events are just binary (bckg and seiz). The .tse
file  contains  label-based  annotations  that  catch  the
beginning  and  end  of  each  event  globally  for  all  the
channels.  These  are  the  most  frequently  used  in
Machine  Learning  research  as  they  allow  to  give  a

single overall target for each time step. The .tse_bi file
is  very  similar  to  the  previous  one  except  that  the
events  are  just  binary  (bckg  and  seiz).  For  each
session,  there  is  also  a  .txt  file  that  contains  general
information about the patient, the recordings, in a non-
structured way.

Epileptic  seizures  are  usually  classified  into  two
main  categories.  The  first  category  is  the  generalized
crisis  which  begins  bilaterally  and  synchronously
from  the  outset  in  both  cerebral  hemispheres.  The
second  category  is  the  partial  or  focal  crisis  which
starts  in  a  localized  part  of  the  brain.  It  can  be
accompanied by a loss of consciousness; the abnormal
electrical  activity  that  started  from  the  focused
location in the brain can gradually extend to the entire
brain; the crisis may end in convulsions.

However,  TUSZ  is  following  a  more  refined
classification[20].  In  this  data  set  10  different  types  of
seizures  are  defined,  though  some  of  them  are  less
represented.  Several  types  of  seizures  are  covered  by
the  generalized class  or  by the  focal  one.  Among the
generalized  seizures,  we  find  the  "absence"  which
results in a momentary alteration of consciousness, the
"tonic  crisis"  characterized  by  a  strong  variation  of
muscle tone, the "clonic crisis" characterized by jerks
and the generalized "tonic-clonic" crisis characterized
by  convulsions,  and  also  the  atonic  and  myoclonic
seizures.  Among  the  focal  seizures,  we  can
specifically distinguish the complex and simple partial
seizures if respectively there is a loss of consciousness
or not. In Table 1, we have extracted from the data set
all  the  information  about  the  distribution  in  terms  of
segments  of  each  type  of  seizures  in  several  folders.
The  segments  have  in  the  present  case  a  duration  of
one second. We can note in this table that non-specific
seizures are dominant.

Motivation of the proposed approach

Since we worked on the TUSZ data set, we tackled
the  problem  of  seizure  detection  through  different
angles. Prior work was based on the transformation of
EEG  signals  into  features  and  the  comparison  of
several  classification  models.  We  noticed  during  that
experiment  the  good  performances  of  ensemble
learning  methods  as  random  forest  and  gradient
boosting.  Moreover,  the  use  of  high-performance
version of gradient boosting like XGBoost allowed to
considerably  reduce  the  training  time,  and  thus  to  be
more  focused  on  fast  iterations  and  optimization  of
parameters  and  hyper-parameters.  We  also  noticed
that the results were good when training and test  sets
were  built  after  mixing  non-overlapping  ictal  and
inter-ictal  segments  on  the  whole  population  of
recordings. Unfortunately, this method led to a kind of
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Fig.  1   Placement  and  connections  of  electrodes  in  a  10/20
placement with bipolar TCP montage.
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data  leakage  as  a  segment  of  one  recording  was  not
really  different  from  its  direct  neighbor  of  the  same
state.  Hence,  results  were  less  impressive  when  we
tried to  classify  EEG segments  on new patients.  This
work  was  using  the  first  version  of  the  data  set  and
limited to 59 patients for the training.

Interested by the abilities and the promises of some
deep  learning  algorithms  to  directly  extract  features
from  complex  time-series  without  preprocessing,  we
investigated that field without the expected success, as
dealing  with  raw  data  is  really  resources-demanding.
Another  attempt  by  using  EEG  features  with  a  deep
learning  algorithm  (Long  Short-Term  Memory,
LSTM)  came  crashing  down  on  the  wall  of  bad
performances related by the TUH literature[8].

Based  on  these  previous  approaches,  we  made
several  observations.  Firstly,  the  EEG  features
approach  is  still  relevant  for  performance  issues.
Secondly,  XGBoost  is  efficient  and  allows  it  to
quickly  iterate.  Furthermore,  there  is  a  bad
generalization of new patients in the test set.

Taking up the last point, there are two ways to solve
this  issue.  Either  we  move  backward  and  consider
patient-specific  modeling,  or  we  increase  the  amount
of  training  data  for  generic  modeling.  The  second
choice  is  more  relevant  and  it  would  be  indeed
interesting  to  see  to  which  extent  the  increase  of  the
amount of  data would help to improve performances.
EEG features and XGBoost will be the baseline of the
two  methods  introduced  hereafter.  The  first  method
aims to  evaluate  the  performance  of  a  classic  split  in
terms of train, validation and test sets on version 1.2.1
of  TUSZ.  With  the  second  method,  we  search  to
increase  the  training  data  set  by  replacing  the  classic
split  into  a  leave-one-out  approach.  It  is  a  common
technique used to increase a training set when there is

a lack of data.

First  method:  EEG  Features+standard
partitioning+XGBoost

The method is presented in Fig. 2. We first applied
a  preprocessing  step  to  extract  features  from  the  raw
EEG  signals.  These  features  are  temporal  and
frequential.  We  based  ourselves  on  the  literature
review  and  Python's  library  PyEEG[21].  A  total  of  22
features  were  then  considered,  which  are  statistical
parameters  (mean,  variance,  skewness,  kurtosis,
interquartile  range,  minimum  and  maximum),  other
temporal  features  (Hjorth  complexity  and  mobility,
Petrosian  fractal)  and  frequency  features  (spectral
density  in  the  five  frequency  rhythms:  alpha,  beta,
gamma, delta, theta), the corresponding ratios, spectral
centroid,  and  monotony.  As  for  the  frequential
features,  the  five  frequency  ranges  were  defined
according  to  previous  studies[22].  Delta  range  was  the
lowest, between 1 and 4 Hz, theta was between 4 and
8  Hz,  alpha  between  8  and  13  Hz,  beta  between  13
and  35  Hz  and  gamma  35  Hz  upwards.  Gamma
rhythm was rarely modified by a seizure.

We  split  the  raw  EEG signal  into  non-overlapping
1-second  segments  and  computed  these  features  for
each  of  the  22  channels  in  the  bipolar  montage,
resulting  in  a  22×22=484  features  vector  for  each
segment.  This  preprocessing  step  was  computed
offline  and  each  feature  matrix n_segments×
n_features was stored by recording.

After  this  preprocessing  step,  the  segments  of  the
TUSZ training set were randomly split in 80% of train
and  20% of  validation.  Then  XGBoost  with  400
estimators of depth 3 was trained. The ratio parameter
was used to take into account class imbalance between
non-seizure  and  seizure  segments.  The  learning  rate
was  set  to  0.1.  To  avoid  problems  of  speed  and
memory,  we  chose  to  work  with  "gpu_hist"  as  tree
method,  which  is  the  XGBoost  fast  histogram
algorithm for GPU. The internal evaluation metric for
the validation data was set to "AUC".

Once the model converged, the model was tested on

Table  1   Seizure  segments  distribution  by  type  in  the
different folders
Seizure
code Seizure type AR

train
AR
test

LE
train

LE
test

FNSZ Focal non-specific 13 088 23 301 10 186 3 418

GNSZ Generalized non-specific 6 743 14 226 10 230 122

SPSZ Simple partial 1 327 364 167 0

CPSZ Complex partial 8 551 8 114 5 811 784

ABSZ Absence 14 0 479 339

TNSZ Tonic 424 857 0 0

CNSZ Clonic 0 0 0 0

TCSZ Tonic clonic 795 1 335 938 2 343

ATSZ Atonic 0 0 0 0

MYSZ Myoclonic 0 1 178 0 0

AR: average reference; LE: linked ears.
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Fig. 2   First method based on a classical.
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all  the  recordings  of  the  test  set.  For  each  recording,
the model tried to predict the class of each segment. A
smoothing  function  was  then  applied  to  those
predictions  to  avoid  isolated  and  improbable
seizure/non-seizure states. This function was a sliding
window  on  19  segments  applying  a  simple  majority
vote.  At  the  end  of  the  test  set  classification,  we  had
confusion matrices for all the recordings and we could
compute confusion matrices by patient or by types of
seizures.  Similarly,  an  overall  confusion  matrix  was
computed  by  summing  all  the  recording  confusion
matrices.

Second method: EEG features+LOOCT+XGBoost

The second method is similar to the first one except
that  we  applied  a  specific  partitioning  technique  to
increase  the  training  data.  This  method,  detailed  in
Algorithm  1,  is  close  to  a  cross-validation  method
called  leave-one-out  cross  validation  (LOOCV).
Actually, one should rather call it in this case LOOC-
Test as explained below, as a single patient is left out
for  the  test  at  each  iteration.  Similarly  to  a  cross-
validation  method,  we  combined  at  the  end  the  test
results  from  the  multiple  rounds  to  come  up  with  an
estimate  of  the  model's  predictive  performance.  This
second method is summarized in Fig. 3.

For each recording, we had a matrix of size matrix
n_segments×n_features and the binary labels for each
time  segment  (seizure  or  background).  In  the
algorithm,  one  can  see X as  a  list  of  length
number_of_patients where each component is made of
these  features  matrices  for  all  the  recordings  of  that
patient,  while y is  the  corresponding  binary  target
vector.  We also needed to store separately the IDs of
the patients in the TUSZ train sets and test sets.

Then,  the  algorithm  could  be  applied.  At  each
iteration,  one  patient  was  left  out  of  the  training data
and  was  kept  for  the  test.  The  segments  of  the  other
recordings  were  randomly  split  in  80% of  train  and

20% of validation. Then similarly to the first method,
a  XGBoost  model  was  trained,  conserving  the  same
parameters.

Once the model converged, the model was tested on
each recording of the patient left away. Thus, for each
recording, the model tried to predict the class of each
segment.  The smoothing function was still  applied as
post-processing.

The  number  of  iterations  of  the  LOOCT  method
was equal to the number of patients in the original test
set present in the TUSZ. These were the only patients
that are "left  out" by the algorithm in order to have a
kind  of  comparison  to  the  first  method  in  terms  of
population.

At  the  end  of  all  the  iterations,  we  had  confusion
matrices for all  the recordings and we could compute
a  confusion  matrix  by  patient  or  by  type  of  seizure.
Similarly,  an  overall  confusion  matrix  was  computed
by summing all the recording confusion matrices.

Metrics

The  seizure  detection  is  a  classification  problem,
thus  the  evaluation  of  the  models  was  based  on
confusion  matrices  (Fig.  4).  The  number  of  true
positives  (TP)  was  in  this  case  the  number  of  EEG
segments  correctly  classified  as  seizure;  the  true
negatives  (TN)  were  the  number  of  EEG  segments
correctly  classified as  background;  the  false  positives
(FP)  were  the  number  of  EEG segments  classified  as
seizure that were actually background (False Positives
are  also  known  as  false  alarms  in  the  medical  field);
the  false  negatives  (FN)  were  the  number  of  EEG
segments  classified  as  background  though  it  is
actually seizure.

The  confusion  matrices  are  used  to  compute  some
interesting  ratios.  Specificity,  also  known  as  true
negative rate, is defined by

Speci f icity =
T N

T N +FP
(1)

Sensitivity (or Recall) is the probability to detect an
element of the positive class, and it is defined by
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Fig. 3   Second method based on a LOOCT approach.

Algorithm 1　Leave-one-out cross test with XGBoost

1: for i in test_patients_indexes do

2: LeaveOneOutPatient= (X, y)[i]

3: other-patients: (X, y)\LeaveOneOutPatient

4: XGBoost.fit (other_patients, validation_split=0.2)

5: for record in LeaveOneOutPatient do

6: 　pred=XGBoost.predict (X[record])

7: 　pred=smooth(pred)

8: 　Confusion_matrix (y[record], pred)

9: end for
10: end for
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Sensitivity =
T P

T P+FN
(2)

Precision is the fraction of correct instances among
all the detected instances, it is defined by

Precision =
T P

T P+FP
(3)

Finally, the last metric we had been interested in is
a  measure  of  accuracy,  a  metric  that  evaluates  the
overall  quality  of  the  model.  The  standard  accuracy
might not be the best metric to look at, as the classes
in  the  present  case  are  highly  imbalanced.  We  used
instead  another  measure  of  accuracy,  the  more
appropriated F1-Score, which is the harmonic average
of the precision and recall

F1 =
2 × Sensitivity × Precision

Sensitivity+Precision
(4)

In  the  literature  presented  above,  sensitivity  and
specificity  were  mainly  used,  as  well  as  the  false
alarm rate.  It  is  obviously  an  important  metric  in  the
case  of  seizure  detection,  and  we  also  communicated
results in this sense for comparison. Note that, in this
literature,  sensitivity  and  specificity  were  computed
using  the  OVLP[8,23].  OVLP  is  more  a  method  to
calculate  metrics  in  a  permissive  way  than  a  metric
per se.  OVLP is  based on an event  decomposition of
the  EEG  signal.  Instead  of  looking  at  each  segment
(also  called  epoch),  OVLP  only  considers  the  events
(i.e. continuous  sequence  of  seizure  or  background)
that  occur. Fig.  5 shows  a  potential  drift  of  the
method.  The  signal  above  shows  the  reference,
divided  in  segments  of  equal  length  while  the  signal
below is the hypothesis, i.e. the sequence predicted by
the  model.  While  one  would  count  true/false
negatives/positives  by  matching  each  pair  of
corresponding segments, OVLP considers that the true
positive  rate  is  100% as  soon  as  the  hypothesis
overlaps  the  reference  for  at  least lambda segments,
where lambda is  often  set  to  1  to  guarantee  that  the
events do overlap. Thus, in the example, true positive
rate is 100% while traditional metrics only counts one
segment as a true positive.

In Table  1,  we  have  deliberately  retrieved  the

distribution  of  types  of  seizures  in  terms  of  seizure
segments instead of events, because it seems to us that
the impact on the models of the number of segments is
more  relevant  and  reliable.  Effectively  the  global
ratios  of  events  and  of  segments  are  different.  For
instance,  in  AR  train,  there  are  77  events  of  non-
specific  generalized  seizures  for  6  743  segments.  In
the LE train, there are 35 events for 10 230 segments.
It means that the non-specific generalized seizures are
way  longer  in  the  montage  LE.  This  information  is
hidden if we count by events.

Results

Firstly, to get significant results in reasonable time,
we started by testing the two described methods on the
AR test  set.  The  results  are  thus  corresponding  to  36
patients,  899  recordings  containing  562  seizure
events,  and  more  than  49  000  seizure  segments.  The
population  of  each  subset  is  recalled  in Table  2.  The
events and segments are divided between all  types of
focals  and  all  types  of  generalized  seizures.  As  we
mentioned  before, Table  1 presents  a  more  detailed
classification,  but  the  two  non-specific  sets  are
dominant  and  the  other  types  are  not  enough
populated, so for a more refined analysis regarding the
results  and  the  content  of  the  corresponding  training
sets, we have decided to consider the two main seizure
classes: focal and generalized seizures.

The  results  of  the  experiments  are  summarized  in
Table  3.  The  ones  concerning  the  AR  Test  as  target
are in the first  section and numbered from 1 to 4.  As
one can see, due in particular to the LOOCT method,
we took a few liberties with the initial destinations of
each subsets.  So,  in  the first  section for  instance,  AR
Test  was  used  in  the  training  set  as  well.  For  this
round of  experiments,  sensitivities  by  type  of  seizure
are summarized in Table 4.

We  were  expecting  a  bit  more  from  the  second
method,  that  is  why  we  started  a  second  round  of
experiments with LE Test as test set. This subset was
smaller  than  the  AR  Test;  82  events  against  562  for
the AR Test. Note that these subsets have 10 patients
in common, and these ones were thus filtered out from
the  training  set  for  the  cases  where  the  AR  Test  set
was used in this role. These experiments are numbered
from 5 to 9 in Table 3.
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Fig. 4   Confusion matrix for seizure detection purpose.
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Fig. 5   Illustration of Any Overlap method.
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Discussion

On overall results

The  first  observation  answers  the  question  of  this
work:  by  increasing  the  amount  of  data,  we  improve
significantly the detection score. However, by looking
at  the  F1-score,  this  needs  to  be  discussed  as  it  is
mainly true for the first method using the classic split
of the data set. As one can see, in the experiment 2, by
adding  LE  Train  to  the  training  set,  all  metrics  are
improved  compared  to  the  experiment  1,  where  the
training set only consisted of the AR Train set; the F1-
score increases by 5% to reach 38%. That is less clear
with the second method LOOCT, the sensitivities  are
higher  than  those  with  the  first  method,  but  we
observed  a  high  number  of  False  Positive,  which
degrades  the  precision  and  the  specificity.  This
translates  into  a  stagnant  F1-score  at  36% for  the
experiments 3 and 4.

The  second  round  of  experiment  with  LE  Test  as
test  set  confirmed  the  interest  of  adding  the  LE  train
set  in  the  training  set.  The  use  of  the  second  method
shows  in  this  case  a  good  improvement  of  the  F1-

score, we are 4% over the best F1-Score obtained with
the first method (experiment 7). We also observed that
the addition of the AR Test  in the training set  do not
bring  the  strong  improvement  that  we  could  expect.
Even,  in  the  seventh  experiment,  we  observed  a
decrease in the precision and the specificity as we had
in the first round of experiments. This tends to say that
the  problem  is  not  the  second  method  but  the  use  of
the AR Test set as training material. This observation
must be nuanced by the difference in size between the
AR Test  and  LE Test  sets.  Nevertheless,  following  a
discussion  with  the  TUH Team,  we learned that  they
have  visually  observed  that  LE  files  were  much
cleaner compared to AR files in terms of signal noise
ratio  and  that  it  would  make  sense  to  get  bad
performances on AR compared to LE files. Moreover,
previous  studies  discussed  the  importance  of  the
montage  and  the  reference  point  as  it  practically
changes  the  nature  of  the  waveforms  even  by  using
the  conversion  to  the  bipolar  montage[19].  Another
explanation for the problem of adding AR Test in the
training set could lie in the properties of the inter-ictal
seizure  signals. Fig.  6 shows  a  recording  in  the  AR
Test  set.  Our  system,  based  on  frames  of  1  second,
detects  a  seizure  state  from  the  beginning  of  the
record.  The TUSZ annotations indicate  the beginning
of the seizure at 7 seconds. The EEG patterns are the
same  but  these  events  are  more  considered  as  inter-
ictal anomalies, as their duration is under 10 seconds.
We  can  imagine  the  problem  of  adding  these

Table 2   Cardinalities of the selected sets

Patients Recordings Focal events Generalized events Focal segments Generalized segments

AR train 124 1 220 376 102 22 966 7 976

LE train 129 322 310 100 16 164 11 647

AR test 36 899 312 250 31 779 17 596

LE test 24 49 38 44 4 202 2 804

Table 3   List of experiments – selected sets, methods and results

AR train LE train AR test LE test First method Second method Sensitivity Precision Specificity F1 (%)

1 train test x 35.80 31.65 92.46 33.60

2 train train test x 41.74 35.17 92.50 38.17

3 train train-test x 52.66 27.55 86.50 36.17

4 train train train-test x 53.87 27.57 86.20 36.47

5 train test x 71.65 28.67 73.04 40.95

6 train train test x 66.70 34.06 80.47 45.09

7 train train train test x 78.72 33.54 76.41 47.04

8 train train train-test x 72.59 39.61 83.26 51.25

9 train train train train-test x 71.61 40.01 83.76 51.33

Table 4   Sensitivity by type of seizure

Seizure type Experiment 1 Experiment 2 Experiment 3 Experiment 4

Focal 23.02% 27.68% 35.02% 37.61%

Generalized 59.50% 66.24% 81.51% 81.10%
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"background"  annotated  segments  in  a  training  set.
The intuition is  that  the accuracy would be penalized
by  increasing  the  false  negative  and  false  positive
rates. On the other hand, it is also probably the case in
the other subsets dedicated to the training set, the only
difference  is  that  the  proportion  of  patients  with
epilepsy is higher in the AR Test. These observations
also  explain  why  performances  are  so  low  on  the
TUSZ data set. To summarize, this advocates for two
things.  Firstly,  a  better  strategy  at  the  level  of  the
model  for  handling  these  inter-ictal  anomalies.
Secondly,  the  training  data  should  be  selected
cautiously.

Comparatively  to  the  performances  reported  in  the
TUH literature,  these results  are of the same order as
the  ones  of  their  best  model[9–10].  The  sensitivity  is
higher, while the specificity is a bit lower. In terms of
false alarm rate for the patients without epilepsy in the
test  set,  5  events  in  3  recordings  were  detected  on  a
total  of  82  recordings  in  the  second  experiment;  the
false  alarm  rate  was  then  estimated  around  8  FA/24
hours.  If  all  the  recordings  without  seizure  are
considered,  the  false  alarm  rate  rises  to  18  FA/24
hours.  This  denotes  a  good  capacity  of  the  model  to
distinguish  patients  with  epilepsy  from  the  others.
Furthermore, if we compute the scores by records and
not by segments, the precision rises to 64.33%, which
means  that  there's  a  majority  of  recordings  correctly
classified  on  all  the  recordings  detected  with  a
pathology  of  epilepsy.  The  other  metrics  are
unchanged.

On the results by type of seizure

If we look at the sensitivities by type of seizure for
the  first  round  of  experiments  in Table  4,  we  can
make the same observations in terms of improvement
in  function  of  the  used  training  sets.  Moreover,  by
making a proportional average of these scores with the
amount of focal and generalized segments in Table 2,
we can find back the sensitivities in Table 3. The main
information  that  we  can  draw  from  this  view  is  that
the  generalized  seizures  are  detected  more  efficiently
compared  to  focal  seizures.  This  was  expected;

nevertheless, we have to point out that the proportion
in  the  training  set  is  in  disfavor  of  the  generalized
seizures, this one oscillating between 25% (AR Train)
and  40% (LE  Train).  The  difficulty  to  detect  focal
seizures  is  due  to  the  fact  that  they  begin  in  one
specific  area  of  the  brain  with  later  a  potential
generalization,  while  the  electrical  discharge  of  the
generalized  seizures  is  directly  widespread  in  both
sides of the brain.

On the channel and feature importance

This  advocates  to  analyze  the  seizure  detection
problem  with  a  type-specific  approach  instead  of  a
generic  modeling;  however,  as  argument  for  the
generic approach, 11 patients on the 36 of the AR Test
encountered both focal and generalized seizures in the
same  recordings  or  in  several.  Nevertheless,  some
strategies should be adopted to deal with the different
locations  of  the  onsets  of  the  focal  seizures.  For
instance,  a  new  metric  that  takes  into  account  these
preoccupations,  such  as  the  importance  of
characterizing  the  beginning  of  a  seizure,  would  be
meaningful.

The  idea  of  type-specific  analysis  was  recalled  by
the study of the most important features and channels
that  were  more  decisive  during  the  training  to
discriminate  seizures  from  background.  Indeed,  the
coverage  of  specific  focal  seizures  in  the  training  set
may  have  an  incidence  on  the  importance  of  the
channels. Among all the experiments and the training
sets,  a  feature  on  two  channels  emerged,  namely  the
power spectral density on the beta frequency band for
the  channels  P4-O2  and  P3-O1.  These  two  particular
channels  were  located  symmetrically  in  the  posterior
region  of  the  head  between  the  parietal  and  occipital
area. After discussion of our results with neurologists
specialized in epilepsy from the University Hospital of
Saint-Luc  in  Brussels,  we  hypothesized  two  possible
explanations.

The  first  one  refers  indeed  to  the  type  of  seizure
from the location point-of-view. The locations of these
features  correspond  to  the  place  where  the  focal
seizures of occipital  origin start.  Generalized seizures
can also induce ictal  changes in this area due to their
widespread nature, they are nevertheless a minority in
the  training  sets,  and  focal  seizures  are  most
frequently observed. Considering the general statistics
of  epilepsy  among  all  populations,  occipital  seizures
have been reported to constitute 8% of the population
with  epilepsy  and  are  occasionally  subject  to  a
secondary generalization[24]. The dominant type of the
focal  seizures  is  generally  considered  to  be  the
Temporal  Lobe  Epilepsy  (TLE)  which  represents
more  than  60% of  all  focal  seizures[25];  this  type  of
seizure  rarely  spreads  to  the  occipital  lobes.  Taken

 

 

Fig.  6   Repetitive inter-ictal  generalized  spike  and  wave  dis-
charges alternated  with  global  EEG  signal  attenuation,  fol-
lowed by a generalized seizure (7 seconds from the start of the
segment).
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together, all these statistics do not directly explain the
location  and  the  importance  of  these  channels.
Moreover,  neurologists  reveal  that  a  bias  can exist  in
the  statistics  of  hospitals  specialized  in  epilepsy
compared  to  the  whole  population  with  epilepsy,  as
patients  with  refractory  epilepsy  (pharmacoresistant
epilepsy)  are  more  likely  to  be  redirected  through
these  institutions.  The  Temple  University  Hospital  is
indeed  accredited  as  a  level  4  epilepsy  center,  which
means that it has the professional expertise to provide
the  highest  level  medical  and  surgical  treatment  for
patients  with  refractory  epilepsy[26].  To  sort  out  this
question, we need to determine the exact locations of
all  the  included  seizures  from  the  data  set.  This
information is not explicitly given in the TUSZ, but it
could  be  retrieved  by  processing  the  .lbl  files
presented  before,  which  can  be  the  subject  of  future
work.

The  second  potential  explanation  concerns  the
general  physiological  activity  in  the  occipital  lobe.
When  reviewing  the  EEG,  neurologists  first  consider
the  occipital  region;  as  a  normal  background  activity
is  generally  observed  in  these  channels,  with  EEG
signals  less  polluted  by  artefacts  like  muscle  or  eye
movements,  it  helps  to  interpret  the  onset  of  an
eventual seizure. If this empiric method reveals indeed
visual discrimination of ictal and interictal phases, it is
likely  that  the  algorithm  has  found  the  same  rule.
Furthermore,  a  study from the  TUH aims to  measure
the  performance  of  their  model  if  fewer  channels  are
considered[27].  The removed channels  were chosen by
using  domain  knowledge  instead  of  using  a  proper
automated  and  optimized  selection  process.  If  only
two channels were to be preserved, one of them would
be located in the occipital region and the other bound
to  the  CZ  electrode  for  its  central  location.  The
removal  of  the  other  channels  is  justified  either  by
their susceptibility to noise or artefact interference, or
by  their  less  strategic  location.  So,  to  conclude  this
point, experts seem to be concerned by the activity in
the  posterior  region of  the  head and our  interpretable
models  suggest  this  location  for  the  most  important
features. The validation of this relation will also be the
subject of future work.

Below  the  power  spectral  density  on  the  beta
frequency band for the channels P4-O2 and P3-O1, we
can find other significant combinations. As there were
22  features  for  22  channels,  instead  of  enumerating
them,  we  did  a  global  analysis  presented  in  two
figures. Fig. 7 shows the averaged channel importance
over  all  the  features  and Fig.  8 shows  the  averaged
feature importance of all the channels. For the channel
importance,  we  find  first  the  two  already  mentioned
channels between the occipital  and parietal  area,  then
some others  between the central  and the parietal  area

or  between  the  temporal  and  occipital  area  or  purely
temporal. Two things are interesting to note. Firstly it
is  not  symmetric,  as  if  the  channels  in  the  right
hemisphere  are  more  important;  secondly,  the  less
important  channels  are  related  to  the  frontal  area,
indicating  that  EEG is  less  sensitive  to  abnormalities
in  the frontal  region.  Indeed,  the frontal  lobe is  a  big
lobe  and  many  regions,  especially  deep  mesial  ones
are not well captured by the EEG[27–28]. For the feature
importance,  the  power  spectral  density  on  the  beta
frequency  band  confirms  to  be  the  first  on  average,
closely  followed  and  far  above  the  others  by  the
Petrosian  Fractal  Dimension.  Various  studies  have
shown  the  interest  of  using  fractals  for  biosignals
analysis and seizure detection[29–30]. For the remaining
features,  we  note  the  good  performance  of  the  other
power  spectral  densities  in  alpha,  gamma,  and  theta
frequency bands and of the variance.

About the perspectives

In  this  paper,  we  analyzed  the  problem  of  seizure
detection  using  machine  learning  techniques  on  the
TUSZ  with  as  main  goal  to  understand  whether
increasing  the  amount  of  data  increased  performance
of seizure detection.  By using both a classic machine
learning approach and a leave-one-out method on two
subsets,  we  generated  experiments  based  on  training
sets  that  have  the  characteristic  of  being  large,
heterogeneous  and not  commonly  used  in  the  current
state-of-the-art.  Using  an  efficient  implementation  of
the  gradient  boosting  algorithm  called  XGBoost,  we
showed the potential of improvement that can be done
by adding more training data,  even if  this  one should
be  selected  cautiously.  We  presented  results  of  the
same  order  of  magnitude  than  the  corresponding
references  based  on  deep  learning  architectures.  The
performances  by  type  of  seizure  were  also  analyzed
and  showed  that  generalized  seizures  are  easier  to
recognize,  even if  they were under-represented in the
training  set.  Finally,  the  interpretable  property  of  the
XGBoost  algorithm  showed  that  a  feature  linked  to
two  specific  EEG  channels  between  the  parietal  and
occipital area was statistically the most discriminant to
distinguish  a  seizure  from a  non-seizure  (considering
segments of one second and a generic modeling done
with  the  proportions  by  type  of  seizure  proposed  by
the TUSZ).

In  further  works,  we  would  like  to  extend  this
approach to the future releases of the TUSZ with more
data. A larger data set means that the LOOCT method
would not be necessary anymore. Based on the actual
findings, we are planning to study an architecture that
would  be  more  able  to  discriminate  ictal  phase  from
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inter-ictal,  and  also  a  type  of  seizure  from  another,
either by using a multiclass classification approach by
distinguishing  focals  and  generalized  seizures,  either
by leaving aside  the  generic  approach or  by focusing
on  type-dependent  models.  The  use  of  interpretable
models  is  still  relevant  and  it  would  be  interesting  to
see  how  the  importance  of  the  features  evolves  in
function of the focal seizures and their onset locations.
We  are  also  interested  to  do  some  process  mining
based on the by-channel annotations by looking at the
order  of  (dis)  appearance  of  a  seizure  on  particular
channels in order to identify channels that are the most
critical.  One  of  the  goals  would  be  to  converge  to  a
system  capable  of  early  detection.  Such  a  fast
detection  is  critical  for  clinicians  because  it  allows
nurses  to  react  as  quickly  as  possible  with  the
appropriate actions.

From  a  technical  point  of  view,  deep  learning
models  could be  tested again.  Studying other  sources
of  signals  such  as  electrocardiograms  (ECG)  would
also  be  interesting  but  once  again,  we  suffer  from  a
lack of data resources.
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