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Ontologies play a pivotal role in knowledge representation across various artificial intelligence 
domains, serving as foundational frameworks for organizing data and concepts. However, the 
construction and evolution of ontologies frequently lead to logical contradictions that undermine 
their utility and accuracy. Typically, these contradictions are addressed using an Integer Linear 
Programming (ILP) model, which traditionally treats all formulas with equal importance, thereby 
neglecting the distinct impacts of individual formulas within minimal conflict sets. To advance 
this method, we integrate cooperative game theory to compute the Shapley value for each 
formula, reflecting its marginal contribution towards resolving logical contradictions. We further 
construct a graph-based representation of the ontology, enabling the extension of Shapley values 
to Myerson values. Subsequently, we introduce a Myerson-weighted ILP model that employs 
a lexicographic approach to eliminate logical contradictions in ontologies. The model ensures 
the minimum number of formula deletions, subsequently applying Myerson values to guide 
the prioritization of deletions. Our comparative analysis across 18 ontologies confirms that our 
approach not only preserves more graph edges than traditional ILP models but also quantifies 
formula contributions and establishes deletion priorities, presenting a novel approach to ILP-based 
contradiction resolution.

1. Introduction

Ontologies are indispensable in artificial intelligence, providing a structured approach to knowledge representation. They provide 
a set of representational primitives that can model a domain of knowledge or discourse, including the definition of concepts, intercon-
nections between them, and axioms [1]. In computer science, ontologies enhance resource sharing and foster mutual understanding 
across diverse systems and applications, thereby underpinning semantic web services [2]. Additionally, the application of ontologies 
extends to various other fields such as natural language processing, intelligent search, and recommendation systems [3,4].

Logical contradictions frequently arise during the construction, revision, and mapping of ontologies [5–7]. These contradictions 
typically manifest as inconsistencies and incoherences within the ontology: inconsistency implies the absence of a viable model for 
the ontology, while incoherence pertains to the presence of unsatisfiable concepts, which are deemed to represent empty sets. Given 
that ontologies with such contradictions yield invalid conclusions when subjected to standard reasoning processes, resolving these 
contradictions is both crucial and challenging [8].
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The resolution of logical contradictions in ontologies hinges on the concept of minimal conflict sets, which offer a precise repre-
sentation of these contradictions [9–12]. To address these contradictions, one can compute minimal conflict sets through debugging 
methods and subsequently remove at least one formula from each set. This approach aims to retain as many formulas as possible to 
preserve the ontology’s semantic integrity. One approach involves Reiter’s Hitting Set Tree (HST) algorithm [13]. Schlobach et al. 
proposed determining the minimal hitting set among all minimal incoherence-preserving subsets of an incoherent ontology, where the 
removal of each hitting set could reinstate the coherence of ontologies [14]. Kalyanpur et al. proposed a method to acquire the rank 
of axioms in minimal unsatisfiability-preserving subsets and calculating a hitting set with minimal path rank [15]. Qi et al. introduced 
algorithms that employ scoring functions or weighted approaches to expedite the hitting set search and reduce the search space [6]. 
Recently, another significant method involves using integer linear programming (ILP), as proposed by Ji et al. [16], which treats 
the formulas in a minimal conflict set as decision variables and linear constraints, aiming to remove the fewest formulas possible. 
Notably, this ILP model can process a large ontology in 500 milliseconds, a task at which the HST method may fail, provided a time 
limit of 1000 seconds is set. The focus of this paper is on this ILP-based strategy for eliminating logical contradictions in ontologies.

The ILP model efficiently eliminates logical contradictions but treats all formulas as equally important. This does not fully exploit 
the varying contributions of formulas in resolving contradictions and often overlooks the potential for more optimal solutions that 
include the fewest formulas. To enhance this methodology, this paper introduces an inconsistency measure based on the Shapley value, 
as proposed by Hunter et al. [17]. This measure quantifies the inconsistency within minimal inconsistent subsets and correlates these 
inconsistencies with specific Shapley values, integrating the principles of cooperative game theory [18].

Drawing on the work of Hunter et al. [17], we initially define the ontology’s structure as a transferable utility game (TU game) 
from a cooperative game perspective, and then apply the Shapley value to assign a specific value to each formula within minimal 
conflict sets. To deepen our analysis of the interactions among formulas, we incorporate commonsense reasoning, constructing a 
commonsense reasoning graph for the ontology. This allows us to extend the Shapley value to the Myerson value based on the graph 
structure. To minimize deletions and preserve ontology semantics, we employ a lexicographic method [19] in our Myerson value-
weighted ILP model. This model prioritizes minimizing the number of formula deletions and then preferentially removes formulas 
with higher Myerson values. We conducted experiments on 18 ontology datasets, generating random graphs (repeatedly) to model 
commonsense reasoning and comparing the ILP model against our Myerson-weighted model. Our findings indicate that the Myerson-
weighted model generally retains more edges within the ontology graph compared to the standard ILP model. Our contributions are 
as follows:

• We enhance the process of resolving logical contradictions in ontologies by introducing a cooperative game approach to measure 
the value of formulas within minimal conflict sets, and augmenting the standard ILP model with deletion preferences based on 
these values.

• We introduce a Myerson-weighted linear programming model utilizing the lexicographic method to systematically address logical 
contradictions in ontologies. The model prioritizes semantic preservation and then selectively targets formulas for deletion based 
on Myerson value.

• Our extensive testing on 18 ontologies demonstrates that, on average, our proposed Myerson-weighted ILP model retains ap-
proximately 4% more edges in the ontology graph compared to the standard ILP model.

The paper is structured as follows: Section 2 provides preliminaries to aid comprehension. Section 3 outlines our primary theories 
and methodologies. Section 4 presents experimental evidence validating the efficacy of our approach. Finally, Section 5 concludes 
the article and discusses directions for future research.

2. Preliminary

2.1. Cooperative game

Cooperative games, which are a branch of game theory, explore how groups can collaborate to achieve mutually beneficial out-
comes [20]. These games have diverse applications in a wide range of fields, including economics, political science, computer science, 
and social psychology [21,22]. A cooperative game with transferable utility is mathematically represented as a tuple (𝑁, 𝑣) [23], 
where 𝑁 denotes the set of players, and 𝑣 is the characteristic function that assigns a value to each subset of players, indicative of the 
coalition’s worth.

The Shapley value is a significant solution concept in cooperative game theory that allocates the total worth of a coalition among 
its members [18]. It was first introduced in 1953 and has become one of the most widely studied and applied concepts in cooperative 
game theory. Specifically, the Shapley value assigns a unique payoff to each player 𝑖 in a cooperative game (𝑁, 𝑣), representing the 
average marginal contribution of player 𝑖 over all possible orders of coalition formation. The formal definition of the Shapley value 
for player 𝑖 is given by Eq. (1):

𝑆ℎ𝑖(𝑁,𝑣) =
∑

𝑆⊆𝑁⧵{𝑖}

𝑠!(𝑛− 𝑠− 1)!
𝑛!

(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)), for all 𝑖 ∈𝑁. (1)

Furthermore, the Shapley value satisfies the following properties:
2

Efficiency: Ensures the sum of the Shapley values equals the total worth of the grand coalition.
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Linearity: Guarantees the Shapley value is a linear function of the coalition’s worth.
Symmetry: Two players contributing equally across all coalitions receive identical Shapley values.
Null-player: A player who adds no value to any coalition receives a zero payoff.

2.2. Graph theory

Graph theory is a branch of mathematics focused on the study of graphs, which are structured as collections of vertices (or nodes) 
connected by edges. [24]. This field has wide-ranging applications in disciplines such as computer science, engineering, and social 
sciences, among others.

In graph theory, a graph is represented as 𝐺 = (𝑉 , 𝐸), where 𝑉 = {𝑣1, ..., 𝑣𝑛} is the set of vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is the set of 
edges connecting these vertices. Vertices are commonly denoted by 𝑣, 𝑢, or 𝑤, and 𝑣𝑖 or 𝑣𝑗 for specific instances. The neighbors of 
a vertex 𝑣 are denoted as 𝑁(𝑣), representing vertices directly connected to 𝑣. A path in a graph is defined as a sequence of distinct 
nodes connected consecutively by edges. A graph is considered connected if there exists a path between every pair of nodes in that 
graph. A cut vertex, denoted as 𝑣 ∈ 𝑉 , in a connected graph (𝑉 , 𝐸), as a vertex that, upon its removal along with all its edges, divides 
the graph into disconnected components. In other words, the graph (𝑉 ⧵ {𝑣}, 𝐸 ⧵ {{𝑣, 𝑤} ∈𝐸 ∶𝑤 ∈ 𝑉 }) is disconnected.

2.3. Description logic ontology and logical contradiction

A Description Logic Ontology (DLO) comprises a set of concepts, roles, and axioms. Concepts are used to represent sets of individ-
uals in a domain, while roles represent binary relations between individuals [25]. Axioms are statements that define the meanings 
of concepts and roles in the ontology. In DLO, concepts are defined with constructors, such as negation, conjunction, disjunction, 
existential restriction, and universal restriction. Roles in DLO are defined with properties, such as transitivity, reflexivity, and sym-
metry. Axioms in DLO define the relationships between concepts and roles in the ontology, and they can be classified as TBox and 
ABox axioms. TBox axioms define the terminology of the ontology, including the hierarchy of concepts and the properties of roles, 
whereas ABox axioms define the instances of the ontology, including the individuals and their relationships.

The presence of logical contradictions in DLOs poses a significant challenge, arising when two or more statements within the 
ontology conflict with each other [26]. Such contradictions often lead to inconsistencies, necessitating the computation and removal 
of minimal sets of axioms, a process known as axiom pinpointing [27]. To aid in understanding and resolving these contradictions, 
several key definitions are crucial:

Definition 1 (Unsatisfiable concept). [28] A concept name 𝐶 in an ontology , is unsatisfiable iff, for each interpretation  of , 
𝐶 = ∅.

Definition 2 (Incoherent ontology). [28] An ontology  is incoherent iff there exists an unsatisfiable concept name in .

Definition 3 (Inconsistent ontology). [28] An ontology  is inconsistent iff it has no model.

Definition 4 (Minimal unsatisfiability-preserving sub-ontology). [29] Let 𝐶 be an unsatisfiable concept in an ontology . An ontology 
′ ⊆ is a minimal unsatisfiability-preserving sub-ontology (MUPS) of  w.r.t. 𝐶 if 𝐶 is unsatisfiable in ′ and satisfiable in every 
sub-ontology ′′ ⊂′.

Definition 5 (Minimal incoherence-preserving sub-ontology). [29] Let  be an incoherent ontology. An ontology ′ ⊆  is a minimal 
incoherence-preserving sub-ontology (MIPS) of  if ′ is incoherent and every sub-ontology ′′ ⊂′ is coherent.

Definition 6 (Minimal inconsistent sub-ontology). [30] An ontology ′ ⊆ is a minimal inconsistent sub-ontology (MIS) of , if ′ ⊆

is inconsistent and every sub-ontology ′′ ⊂′ is consistent.

These definitions express that a MUPS, MIPS, or MIS is a minimal subset of an ontology that retains a specific property, namely, 
unsatisfiability, incoherence, or inconsistency, respectively. The removal of such subsets can effectively resolve the corresponding 
issues within the ontology. Since our approach does not require specification of the particular type of conflict, we employ the term 
minimal conflict set to refer to these subsets.

In order to clearly explain how logical contradictions can be eliminated based on the ILP approach, we use Algorithm 1 for 
illustration. Initially, the algorithm requires an ontology and a set of minimal conflict sets CONF(), as input. Line 1 initializes 𝐶 , 
an empty set of constraints. Line 2 constructs 𝐹 , aggregating all formulas across the minimal conflict sets from CONF(). In Line 3, 
𝑋 is defined, a set of decision variables where each variable 𝑥𝑖 corresponds to a formula 𝜙𝑖 in 𝐹 . An iteration starts from Line 4 to 
Line 7 for each minimal conflict set 𝑐𝑜𝑛𝑓𝑗 . Line 5 creates 𝑋𝑐𝑜𝑛𝑓𝑗

, a subset of 𝑋 comprising variables linked to the formulas in 𝑐𝑜𝑛𝑓𝑗 . 
Line 6 enforces a constraint ensuring that the sum of decision variables in 𝑋𝑐𝑜𝑛𝑓𝑗

is at least one, signifying that at least one formula 
from each conflict set is selected. This constraint is then added to 𝐶 in Line 7. After processing all conflict sets, Line 9 applies binary 
constraints to each decision variable, mandating that each 𝑥𝑖 can only take values 0 or 1. Line 10 establishes the objective function 𝑍 , 
3

which sums all 𝑥𝑖 in 𝑋 and aims to minimize this sum, reflecting the goal to select the minimal number of formulas. Line 11 involves 
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Algorithm 1 An ILP model for eliminating ontology contradictions.
Require: An ontology , a set of minimal conflict sets CONF().
Ensure: A solution set 𝑆 of formulas.
1: 𝐶 ⟵ ∅
2: 𝐹 ⟵

⋃
𝑐𝑜𝑛𝑓𝑗∈𝐶𝑂𝑁𝐹 () 𝑐𝑜𝑛𝑓𝑗

3: 𝑋 ⟵ {𝑥𝑖|𝜙𝑖 ∈ 𝐹}
4: for all 𝑐𝑜𝑛𝑓𝑗 ∈ CONF() do

5: 𝑋𝑐𝑜𝑛𝑓𝑗
⟵ {𝑥𝑖|𝜙𝑖 ∈ 𝑐𝑜𝑛𝑓𝑗 , 𝑥𝑖 ∈𝑋}

6: 𝐶𝑗 ⟵
∑

𝑥𝑖∈𝑋𝑐𝑜𝑛𝑓𝑗

𝑥𝑖 ≥ 1
7: 𝐶 ⟵ 𝐶 ∪ {𝐶𝑗}
8: end for

9: 𝐶 ⟵ 𝐶 ∪ {𝑥𝑖 ∈ {0, 1}|𝑥𝑖 ∈𝑋}
10: 𝑍 ⟵

∑
𝑥𝑖∈𝑋 𝑥𝑖

11: 𝑅 ⟵ 𝐼𝐿𝑃𝑠𝑜𝑙𝑣𝑒𝑟(𝑍, 𝐶, 𝑚𝑖𝑛)
12: 𝑆 ⟵ {𝜙𝑖|(𝑥𝑖 = 1) ∈𝑅}
13: return 𝑆

the ILP solver optimizing 𝑍 subject to the constraints 𝐶 , and Line 12 assembles the solution set 𝑆 from the formulas corresponding 
to decision variables set to 1 in the results 𝑅 from the solver. Finally, Line 13 returns 𝑆 , representing the minimal subset of formulas 
necessary to eliminate the identified logical contradictions.

3. Method

The traditional ILP method treats all formulas involved in logical contradictions with equal importance, solving the programming 
model to derive a solution set aimed at resolving these contradictions within an ontology. However, this approach fails to consider 
the inherent variability in the significance of formulas within minimal conflict sets, thus inadequately refining the contradiction 
elimination process. To address this limitation, we incorporate insights from inconsistency measure theory, as introduced by Hunter 
et al., which quantitatively measures the inconsistency within minimal inconsistent subsets of an inconsistent belief base 𝐾 , defined 
as MI(𝐾) = {𝐾 ′ ⊆𝐾 ∣𝐾 ′ ⊢ ⊥ 𝑎𝑛𝑑 ∀ 𝐾 ′′ ⊂𝐾 ′, 𝐾 ′′ ⊬⊥}, as illustrated in Eq. (2) [17].

𝐼MI(𝐾) = |MI(𝐾)| (2)

where |MI(𝐾)| represents the size of MI(𝐾). Leveraging this theoretical foundation, our method adapts the ILP model to more finely 
eliminate logical contradictions by considering the differential significance of formulas within ontologies. Subsequently, Section 3.1
defines the ontology in the context of cooperative games and presents the computation of the Shapley value for formulas in minimal 
conflict sets; Section 3.2 defines the graph of the ontology on the basis of common-sense reasoning and proposes the computation 
of the Myerson value for formulas in minimal conflict sets; Section 3.3 propose the Myerson weighted model for eliminating logical 
contradictions in ontologies.

3.1. The Shapley value in the minimal conflict set

Let (𝑁, 𝑣) represent a TU game, where 𝑁 is the set of players, and 𝑣 is the characteristic function that assigns a value to each 
subset 𝑆 ⊆ 2𝑁 . In cooperative game theory, the characteristic function is used to measure the value of different player coalitions. 
Within the realm of ontology contradiction resolution, this theoretical framework is particularly applicable to minimal conflict sets 
comprised of distinct formulas. Assume  = {𝜙𝑖} represents an ontology that contains logical contradictions, with each 𝜙𝑖 acting as a 
formula player. The coalition formed to eliminate these contradictions comprises various 𝜙𝑖 , defined as the set of minimal conflict sets 
CONF() = {𝑐𝑜𝑛𝑓𝑗}. The solution set for resolving these contradictions, denoted by 𝜆, includes one or more formulas selected from 
each 𝑐𝑜𝑛𝑓𝑗 , with 𝜆 ∩ 𝑐𝑜𝑛𝑓𝑗 ≠ ∅ for 𝑐𝑜𝑛𝑓𝑗 ∈ CONF(). Definition 7 formalizes the TU game for an ontology with logical contradictions.

Definition 7 (The TU game for an ontology). Let  be an ontology contains logical contradictions. The set CONF() = {𝑐𝑜𝑛𝑓𝑗} rep-
resents the set of minimal conflict sets of . The TU game for the ontology is defined by the tuple (𝑁 , 𝑣), where 𝑁 is the set of 
players corresponding to the formulas in CONF(), defined as 𝑁 =

⋃
𝑐𝑜𝑛𝑓𝑗∈𝐶𝑂𝑁𝐹 () 𝑐𝑜𝑛𝑓𝑗 . The characteristic function 𝑣 assigns a 

worth 𝑣(𝑆) to each coalition 𝑆 ∈ 2𝑁 .

For the purpose of resolving logical contradictions in ontologies, for any coalition 𝑆 ∈ 2𝑁 , the characteristic function 𝑣(𝑆) is 
defined as follows:

𝑣(𝑆) =

{
1, if 𝑆 ∈ CONF()
0, otherwise

(3)

According to Eq. (3), only the formulas that belong to the minimal conflict set are considered eligible for forming coalitions 𝑆
to eliminate logical contradictions within the ontology. It is crucial to note that every formula within a given 𝑐𝑜𝑛𝑓𝑗 holds equal 
4

importance in resolving the contradictions; the removal of any formula would breakdown the conflict. Therefore, with reference to 
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Eq. (2) [17], the value assigned to each formula within 𝑐𝑜𝑛𝑓𝑗 can be equal and determined according to the cardinality of 𝑐𝑜𝑛𝑓𝑗 . 
Definition 8 defines the Shapley value in the minimal conflict set.

Definition 8 (The Shapley value in the minimal conflict set). Given the TU game (𝑁, 𝑣) for an ontology , let CONF() = {𝑐𝑜𝑛𝑓𝑗} be 
the set of minimal conflict sets based on , and 𝑁 =

⋃
𝑐𝑜𝑛𝑓𝑗∈CONF() 𝑐𝑜𝑛𝑓𝑗 . The Shapley value of 𝜙𝑖 ∈𝑁 is defined as Eq. (4):

Sh𝜙𝑖
(𝑁, 𝑣) =

∑
𝑆∈2𝑁

(
∑
𝜙𝑖∈𝑆

𝑣(𝑆)|𝑆| )
=

∑
𝑐𝑜𝑛𝑓𝑗∈CONF()

(
∑

𝜙𝑖∈𝑐𝑜𝑛𝑓𝑗

1|𝑐𝑜𝑛𝑓𝑗 | )
(4)

where 𝑆 represents the minimal conflict set containing 𝜙𝑖 in CONF(), |𝑆| denotes the cardinality of 𝑆 , and 𝑣(𝑆) denotes the value 
of 𝑆 .

The Shapley value of 𝜙𝑖 is derived by summing its marginal contributions across all minimal conflict sets to which it belongs. The 
marginal contribution is equal to 𝑣(𝑐𝑜𝑛𝑓𝑗 ) divided by the cardinality of 𝑐𝑜𝑛𝑓𝑗 , since the formulas in 𝑐𝑜𝑛𝑓𝑗 are equally important for 
breaking conflict and should be assigned the same value. To elucidate this process, consider the Example 1:

Example 1. Given an ontology  consisting of seven formulas, denoted as  = {𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6, 𝜙7}. Let CONF() =
{{𝜙1, 𝜙2, 𝜙3}, {𝜙1, 𝜙4, 𝜙6},
{𝜙3, 𝜙4, 𝜙5, 𝜙6}} be the set of minimal conflict sets based on . The Shapley value of each formula is then calculated as follows:

Sh(𝜙1)(𝑁, 𝑣) =
1
3 +

1
3 = 2

3 Sh(𝜙2)(𝑁, 𝑣) =
1
3 Sh(𝜙3)(𝑁, 𝑣) =

1
3 +

1
4 = 7

12

Sh(𝜙4)(𝑁, 𝑣) =
1
3 +

1
4 = 7

12 Sh(𝜙5)(𝑁, 𝑣) =
1
4 Sh(𝜙6)(𝑁, 𝑣) =

1
3 +

1
4 = 7

12

For further clarification, consider 𝜙1, which is a member of the minimal conflict sets 𝑐𝑜𝑛𝑓1 = {𝜙1, 𝜙2, 𝜙3} and 𝑐𝑜𝑛𝑓2 = {𝜙1, 𝜙4, 𝜙6}, 
but not to 𝑐𝑜𝑛𝑓3 = {𝜙3, 𝜙4, 𝜙5, 𝜙6}. The value of each conflict set is 𝑣(𝑐𝑜𝑛𝑓1) = 1, 𝑣(𝑐𝑜𝑛𝑓2) = 1, and 𝑣(𝑐𝑜𝑛𝑓3) = 1. The contribu-

tion of 𝜙1 is evenly distributed based on the cardinality of the sets to which it belongs, resulting in Sh(𝜙1 ,𝑆=𝑐𝑜𝑛𝑓1)(𝑁, 𝑣) =
1
3 and 

Sh(𝜙1 ,𝑆=𝑐𝑜𝑛𝑓2)(𝑁, 𝑣) =
1
3 . Consequently, the overall Shapley value for 𝜙1 is computed as 13 +

1
3 = 2

3 .

3.2. The Myerson value in the minimal conflict set

3.2.1. Commonsense reasoning graph of an ontology

The Myerson value incorporates cooperative relationships among players by utilizing graph structures to allocate values among 
players in a TU game, where the values are assigned based on the connected components each player belongs to [31]. To elucidate 
the collaborative among the formulas, we define commonsense reasoning within the context of ontologies:

Definition 9 (Commonsense reasoning). Given an ontology  and the commonsense knowledge 
∑

be a set of formulas in . For any 
formulas 𝜙1 and 𝜙2 in , commonsense reasoning defined as 𝜙1 ⊢

∑ 𝜙2 iff 𝜙1, 
∑

⊢ 𝜙2.

Definition 9 establishes a relationship for understanding interactions among formulas based on shared knowledge. Notably, ⊢∑
represents a weaker form of reasoning compared to classical logical reasoning (⊢), as it incorporates a broader array of formulas 
into the reasoning process. To quantitatively assess the value of formulas based on their relationships in commonsense reasoning, we 
introduce the concept of a commonsense reasoning graph for an ontology.

Definition 10 (The commonsense reasoning graph of an ontology). Given an ontology  and CONF() = {𝑐𝑜𝑛𝑓𝑗} denotes the set of 
all minimal conflict sets based on , and 𝑁 =

⋃
𝑐𝑜𝑛𝑓𝑗∈CONF() 𝑐𝑜𝑛𝑓𝑗 . Let 

∑
be a set of formulas within  that constitutes the 

commonsense knowledge. The commonsense reasoning graph, 𝐺 = (𝑉 , 𝐸), is a directed graph where 𝑉 = {𝜙𝑖 ∣ 𝜙𝑖 ∈ 𝑁} = 𝑁

comprises nodes corresponding to all formulas in 𝑁, and 𝐸 = {< 𝜙𝑖, 𝜙𝑗 >∣ 𝜙𝑖, 𝜙𝑗 ∈ 𝑉 𝑎𝑛𝑑 𝜙𝑖 ⊢
∑ 𝜙𝑗} represents the relationships of 

commonsense reasoning with 
∑

between the formulas.

The TU game of an ontology with commonsense reasoning is represented as a triple (𝑁 , 𝑣, 𝐸), where (𝑁, 𝑣) defines the TU 
game of the ontology , while (𝑁, 𝐸) is portrayed as the directed graph 𝐺. This graph illustrates the commonsense reasoning 
relationships between the formulas, which correspond to the players in the game.

3.2.2. Benefit distribution for the elimination of logical contradictions

In the distribution of the Myerson value, the value assigned to each player is determined by the strongly connected component of 
5

the graph to which the player belongs. Building upon the Myerson value, we analyze subgraphs that correspond to coalitions within 
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Algorithm 2 The Myerson value of Formulas in the Minimal Conflict Set.

Require: An ontology , a set of minimal conflict sets CONF(), and commonsense reasoning relationships 𝑅 = {< 𝜙𝑎, 𝜙𝑏 >∣ 𝜙𝑎, 𝜙𝑏 ∈, ∑ ⊂ 𝑎𝑛𝑑 𝜙𝑎 ⊢
∑ 𝜙𝑏} .

Ensure: A dictionary 𝑀 containing the Myerson values of formulas.
1: 𝑁 ⟵

⋃
𝑐𝑜𝑛𝑓𝑗∈𝐶𝑂𝑁𝐹 () 𝑐𝑜𝑛𝑓𝑗

2: 𝐸 ⟵ {< 𝜙𝑎, 𝜙𝑏 >∈𝑅 ∣ 𝜙𝑎, 𝜙𝑏 ∈𝑁}
3: 𝐺 ⟵ (𝑁, 𝐸)
4: 𝑀 ⟵ {𝑚𝑖 = 0 ∣ 𝜙𝑖 ∈𝑁}
5: for all 𝑐𝑜𝑛𝑓𝑗 ∈ CONF() do

6: 𝐸𝑗 ⟵ {< 𝜙𝑎, 𝜙𝑏 >∈𝐸 ∣ 𝜙𝑎, 𝜙𝑏 ∈ 𝑐𝑜𝑛𝑓𝑗}
7: G(𝑐𝑜𝑛𝑓𝑗 ) ⟵ (𝑐𝑜𝑛𝑓𝑗 , 𝐸𝑗 )
8: 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )) ⟵ FindSCC(G(𝑐𝑜𝑛𝑓𝑗 )) ⊳ Identify strongly connected components.
9: for all 𝜖 ∈ 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )) do

10: for all 𝜙𝑖 ∈ 𝜖 do

11: 𝑚𝑖 ⟵𝑚𝑖 +
1|𝜏(G(𝑐𝑜𝑛𝑓𝑗 ))|⋅|𝜖| ⊳ Update the Myerson value for 𝜙𝑖 .

12: end for

13: end for

14: end for

15: return 𝑀 ⊳ Return the dictionary of the Myerson values.

Fig. 1. Illustration of the directed graphs utilized in Example 2, comprising 𝐺 (a) and its subgraphs (b).

the commonsense reasoning graph 𝐺. For each minimal conflict set 𝑐𝑜𝑛𝑓𝑗 within CONF(), we define G(𝑐𝑜𝑛𝑓𝑗 ) as the subgraph of 
𝐺 induced by the nodes corresponding to the formulas in 𝑐𝑜𝑛𝑓𝑗 . The Myerson value for formula players in a graph-restricted TU 
game is then calculated as shown in Eq. (5):

𝑀𝑦𝜙𝑖
(𝑁, 𝑣,𝐸) =

∑
𝑐𝑜𝑛𝑓𝑗∈𝐶𝑂𝑁𝐹 ()
𝜖∈𝜏(G(𝑐𝑜𝑛𝑓𝑗 ))

(
∑
𝜙𝑖∈𝜖

1|𝜏(G(𝑐𝑜𝑛𝑓𝑗 ))| ⋅ |𝜖| ) (5)

where 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )) denotes the set of strongly connected components of G(𝑐𝑜𝑛𝑓𝑗 ), and 𝜖 denotes the strongly connected component 
in 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )) that contains 𝜙𝑖.

To elucidate the computation of the Myerson value for formulas within minimal conflict sets, we detail Algorithm 2. The algorithm 
begins by taking as inputs the ontology  and a set of minimal conflict sets, CONF(), along with commonsense reasoning relationships 
that establish connections between the formulas. Initially, line 1 constructs 𝑁 by aggregating all formulas from each minimal conflict 
set in CONF(). Line 2 then creates a set of edges 𝐸 from the reasoning relationships that involve formulas within 𝑁 . Line 3 constructs 
𝐺 as the graph consisting of nodes 𝑁 and edges 𝐸. Line 4 initializes the Myerson values of all formulas in 𝑁 to zero. The algorithm 
proceeds to iteratively process each conflict set, designated by lines 5 to 14. Within this loop, line 6 extracts the relevant edges 𝐸𝑗 for 
each 𝑐𝑜𝑛𝑓𝑗 , and line 7 constructs the subgraph G(𝑐𝑜𝑛𝑓𝑗 ) using the nodes in 𝑐𝑜𝑛𝑓𝑗 and edges 𝐸𝑗 . Line 8 identifies the set of strongly 
connected components 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )) in G(𝑐𝑜𝑛𝑓𝑗 ), which are crucial for computing the Myerson values. Lines 9 to 13 involve iterating 
through each component 𝜖 within 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )), updating the Myerson value 𝑚𝑖 for each formula 𝜙𝑖 based on the cardinality of the 
component 𝜖 and the total number of components in 𝜏(G(𝑐𝑜𝑛𝑓𝑗 )). Finally, line 15 returns the dictionary 𝑀 containing the Myerson 
values for all formulas.

The Myerson value provides a graph-based extension to the concept of the Shapley value by taking into account the strongly 
connected component of the graph to allocate values to each coalition. To accommodate the existence of strongly connected compo-
nents, the value 𝑣(𝑐𝑜𝑛𝑓𝑗 ) is initially distributed equally among these components. The value is then equitably distributed among the 
formulas within these components. Particularly, in scenarios where 𝐺 be a directed complete graph, with |𝜏(G(𝑐𝑜𝑛𝑓𝑗 ))| = 1, and |𝜖| = |𝑐𝑜𝑛𝑓𝑗 |, the Myerson value My𝜙𝑖

(𝑁, 𝑣, 𝐸) aligns directly with the Shapley value Sh𝜙𝑖
(𝑁, 𝑣). This equivalence is illustrated 

in Example 2.

Example 2. Consider the ontology  = {𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6, 𝜙7} in Example 1, and CONF()= {{𝜙1, 𝜙2, 𝜙3}, {𝜙1, 𝜙4, 𝜙6}, {𝜙3, 
6

𝜙4, 𝜙5, 𝜙6}}. Calculated Shapley values are as follows:
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Algorithm 3 The Myerson Weighted Model based on Lexicographic Method.
Require: An ontology , a set of minimal conflict sets CONF(), and a dictionary 𝑀 containing the Myerson values of formulas.
Ensure: 𝑆 : a solution set of formulas.
1: 𝐶 ⟵ ∅
2: 𝐹 ⟵

⋃
𝑐𝑜𝑛𝑓𝑗∈𝐶𝑂𝑁𝐹 () 𝑐𝑜𝑛𝑓𝑗

3: 𝑋 ⟵ {𝑥𝑖|𝜙𝑖 ∈ 𝐹 , 𝑖 = 1, 2, ..., |𝐹 |}
4: for all 𝑐𝑜𝑛𝑓𝑗 ∈ 𝐶𝑂𝑁𝐹 () do

5: 𝑋𝑐𝑜𝑛𝑓𝑗
⟵ {𝑥𝑖|𝜙𝑖 ∈ 𝑐𝑜𝑛𝑓𝑗 , 𝑥𝑖 ∈𝑋}

6: 𝐶𝑗 ⟵
∑

𝑥𝑖∈𝑋𝑐𝑜𝑛𝑓𝑗

𝑥𝑖 ≥ 1
7: 𝐶 ⟵ 𝐶 ∪ {𝐶𝑗}
8: end for

9: 𝐶 ⟵ 𝐶 ∪ {𝑥𝑖 ∈ {0, 1}|𝑥𝑖 ∈𝑋}
10: 𝑍𝐼𝐿𝑃 ⟵

∑
𝑥𝑖∈𝑋 𝑥𝑖

11: 𝑆𝐼𝐿𝑃 ⟵ 𝐼𝐿𝑃𝑠𝑜𝑙𝑣𝑒𝑟(𝑍𝑏, 𝐶, 𝑚𝑖𝑛)
12: 𝑛 ⟵ |{𝜙𝑖|(𝑥𝑖 = 1) ∈ 𝑆𝐼𝐿𝑃 }|
13: 𝐶 ⟵ 𝐶 ∪ {

∑
𝑥𝑖∈𝑋 𝑥𝑖 ≤ 𝑛}

14: 𝑍 ⟵
∑

𝑥𝑖∈𝑋 −𝑚𝑖 ⋅ 𝑥𝑖, where 𝑚𝑖 ∈𝑀

15: 𝑅 ⟵ 𝐼𝐿𝑃𝑠𝑜𝑙𝑣𝑒𝑟(𝑍, 𝐶, 𝑚𝑖𝑛)
16: 𝑆 ⟵ {𝜙𝑖|(𝑥𝑖 = 1) ∈𝑅}
17: return 𝑆

Sh(𝜙1)(𝑁, 𝑣) =
2
3 Sh(𝜙2)(𝑁, 𝑣) =

1
3 Sh(𝜙3)(𝑁, 𝑣) =

7
12

Sh(𝜙4)(𝑁, 𝑣) =
7
12 Sh(𝜙5)(𝑁, 𝑣) =

1
4 Sh(𝜙6)(𝑁, 𝑣) =

7
12

The directed graph 𝐺 = (𝑉 , 𝐸), with 𝑉 = {𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6}, and 𝐸 = {< 𝜙1, 𝜙2 >, < 𝜙1, 𝜙6 >, < 𝜙2, 𝜙1 >, < 𝜙3, 𝜙6 >, 
< 𝜙5, 𝜙3 >, < 𝜙6, 𝜙5 >, < 𝜙6, 𝜙1 >}, as shown in Fig. 1. We then calculate the Myerson value of each formula as follows:

My(𝜙1)(𝑁, 𝑣,𝐸) =
1

2×2 +
1

2×2 = 1
2 My(𝜙2)(𝑁, 𝑣,𝐸) =

1
2×2 = 1

4

My(𝜙3)(𝑁, 𝑣,𝐸) =
1

2×1 +
1

2×3 = 2
3 My(𝜙4)(𝑁, 𝑣,𝐸) =

1
2×1 +

1
2×1 = 1

My(𝜙5)(𝑁, 𝑣,𝐸) =
1

2×3 = 1
6 My(𝜙6)(𝑁, 𝑣,𝐸) =

1
2×2 +

1
2×3 = 5

12

In a scenario where 𝐺 is a directed complete graph, each subgraph 𝐺(𝑐𝑜𝑛𝑓𝑗 ) also becomes complete. For instance, considering 
𝜙2 within 𝑐𝑜𝑛𝑓1, which contains a strongly connected component of size three, Thus, My(𝜙2)(𝑁, 𝑣, 𝐸) = 1

1×3 = 1
3 , and which is 

equivalent to Sh(𝜙2)(𝑁, 𝑣).

3.3. Eliminating ontology contradiction based on the Myerson value

Classical methods for resolving logical contradictions in ontologies typically strive to minimize the number of formula deletions. 
Once the Myerson values for the formulas are computed, it is intuitive to eliminate those with the lowest values from the ontology’s 
commonsense reasoning graph using a weighted ILP model. However, this direct approach does not guarantee that the resulting 
solution set contains the minimal number of formulas. Thus, we introduce a Myerson-weighted model that employs the lexicographic 
method, as outlined in Algorithm 3. To minimize redundancy, the results of Algorithm 2 serve as inputs for Algorithm 3.

Algorithm 3 constructs an ILP model to resolve ontological contradictions using a lexicographic method. Its primary objective is 
to minimize the number of formulas removed from the ontology, while its secondary objective focuses on removing formulas with the 
highest Myerson values. Lines 1 to 11 of Algorithm 3 mirror the process of Algorithm 1, constructing the ILP model to compute the 
solution set 𝑆𝐼𝐿𝑃 with the goal of minimizing formula removal. Line 12 defines 𝑛 as the count of elements in 𝑆𝐼𝐿𝑃 that are assigned 
a value of 1, indicating the minimal number of formulas that need to be removed. Line 13 ensures that the cardinality of the final 
solution set does not exceed 𝑛. Line 14 integrates the Myerson values into the objective function as negative coefficients, aligning 
with the minimization goal. Lines 15 to 17 involve solving the ILP model to derive the final solution set 𝑆 , where the formulas 
corresponding to decision variables set to 1 are selected as the resolution.

This method effectively addresses ontological contradictions by prioritizing minimal impact on the semantics of the ontology and 
leveraging the calculated Myerson values to guide the removal of less crucial formulas, thereby preserving the integrity and utility 
of the ontology.

4. Experiments

4.1. Experimental setting

The experiment was performed on a Windows 11 operating system, powered by an Intel(R) Core(TM) i7-13700K CPU. The de-
velopment of the experimental software was conducted using Python 3.8. To construct the linear programming model for solving 
7

the ultimate solution set, we employed the Python library provided by CPLEX 20.1.0. NetworkX 2.8.4 was utilized to handle the 
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Table 1

Details of ontologies used in the experiments, the Formulas and Minimal 
Conflict Sets columns denote the corresponding quantities, and the Cardi-
nality of Solution Set denotes the least number of formulas contained in the 
solution set of the ILP model.

Ontology Formulas Minimal Cardinality of
Conflict Sets Solution Set

Lily-cmt-conference 20 42 1
Lily-edas-ekaw 35 28 4
miniTambis 38 28 3
Geography 41 31 9
Wiktionary-cmt-confof 49 52 3
proton 61 41 8
VeeAlign-edas-iasted 36 91 2
ALOD2Vec-confof-edas 26 118 1
Economy 110 66 8
Transportation 119 135 13
LogMapLt-cocus-crs_dr 50 225 2
Wiktionary-confof-edas 26 274 1
MaasMatch-cmt-sigkdd 72 309 3
MGED 131 334 3
CHEM-A 57 412 1
AROMA-cmt-cocus 94 535 4
km1500-5000 99 1620 8
km1500_i500-3500 811 17947 19

graph-related operations. The ontology processing and computation of minimal conflict sets were facilitated using the OWL API,1

and computed the set using the ontology debugging algorithm based on correlation, as documented in [32]. The experimental code 
and datasets are publicly accessible via the website2 to ensure complete reproducibility.

4.2. Datasets and metrics

For empirical validation, we employed a collection of ontology datasets from [16,33,34]. Eighteen ontologies were selected for 
this study, chosen based on the dimensions of their formula sets and the complexity of their conflict sets, as detailed in Table 1. This 
selection was made without the deep semantic analysis of the ontologies. The column labeled Cardinality of Solution Set in Table 1
specifies the count of elements within the solution sets, reflecting our objective to minimize the number of deletions required for 
resolving contradictions.

The construction of relationships (edges) as elaborated in Section 3.2 relies on extensive prior knowledge of the specific tasks under 
investigation. In our experiments, we employed thirty random seeds for each ontology to produce directed graphs. Subsequently, we 
calculated averages to demonstrate the findings. Fig. 2 showcases an instance of a randomly generated graph that derives from the 
ontology. The left side of the figure portrays the entirety of the ontology, while the right side depicts subgraphs of the 9 minimal 
conflict sets.

To demonstrate the advantages of the proposed Myerson weighted model, we use the ILP model by Ji et al. [16] (referred to as 
Algorithm 1) as a baseline for comparison. For clarity in presentation, we use the term CILP to denote the classical ILP model [16]
and MILP for the Myerson weighted model in subsequent sections of the remaining part.

To quantitatively assess the impact of formula deletion on the structural integrity of the ontology graph, we introduce Eq. (6) to 
calculate the edge loss rate:

Edge Loss Rates =
|𝐸|− |𝐸′ ||𝐸| (6)

where |𝐸| denotes the total number of edges in the original ontology graph, while |𝐸′ | indicates the number of edges remaining 
after formulas have been removed.

4.3. Results analysis

Table 2 illustrates the outcomes of logical contradiction elimination efforts using the CILP and MILP models across eighteen 
ontology datasets. To contextualize the size of each ontology, we include a column (NF/NMCS) that lists the number of ontology 
formulas alongside the count of minimal conflict sets. Additionally, the table incorporates an evaluation metric that measures the 
percentage of edge loss within the ontology graph, thereby quantifying the impacts of formula deletions from the solution sets. This 
metric is reported independently for both CILP and MILP. A lower percentage reflects better model performance in terms of preserving 

1 http://owlapi .sourceforge .net/.
8

2 https://github .com /Peng -weil /Eliminating _Contradictions _Myerson.

http://owlapi.sourceforge.net/
https://github.com/Peng-weil/Eliminating_Contradictions_Myerson
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Fig. 2. Illustration of the directed graph of an ontology used in the experiment. The edges of the graph represent the relationships of commonsense reasoning between 
formulas.

Table 2

Comparison of edge loss rates (%) after elimination of logical contradictions. Bold indi-
cates a significant impact on the ontology, where the loss rate decreases by 3% or more. 
NF/NMCS correspond to the Number of Formulas and Minimal Conflict in the ontology, 
respectively.

Ontology NF/NMCS CILP (%) MILP (%) CILP - MILP

Lily-cmt-conference 20/42 10.93 8.08 2.85
Lily-edas-ekaw 35/28 29.47 22.86 6.61

miniTambis 38/28 16.27 12.53 3.74

Geography 41/31 50.97 40.60 10.37

Wiktionary-cmt-confof 49/52 24.33 20.34 3.99

proton 61/41 28.16 23.40 4.76

VeeAlign-edas-iasted 36/91 15.32 13.08 2.24
ALOD2Vec-confof-edas 26/118 8.63 8.63 0
Economy 110/66 46.62 45.26 1.36
Transportation 119/135 34.16 31.61 2.55
LogMapLt-cocus-crs_dr 50/225 11.13 9.17 1.96
Wiktionary-confof-edas 26/274 8.05 8.05 0
MaasMatch-cmt-sigkdd 72/309 10.43 7.18 3.25

MGED 131/334 19.16 18.99 0.17
CHEM-A 57/412 9.28 8.46 0.82
AROMA-cmt-cocus 94/535 13.23 8.28 4.95

km1500-5000 99/1620 16.90 15.12 1.78
km1500_i500-3500 811/17947 36.03 29.25 6.78

the integrity of the graph. The differential impact, expressed as the edge loss rate difference between CILP and MILP, is tabulated 
in the CILP-MILP column. Variations exceeding 3% are highlighted in bold to underscore significant performance discrepancies 
between the models.

In the experimental setup, to control for variability, we generated the ontology graph using 30 random seeds. The findings 
indicate that the MILP model outperforms CILP in terms of retaining more edges within the ontology graph following formula 
deletions, particularly noted in the cases of the Geography, Lily-edas-ekaw, and AROMA-cmt-cocus ontologies. The Myerson value 
computation, pivotal in this analysis, ensures equitable distribution of benefits across each strongly connected component of the 
graph. This process extends to individual formulas within those components, wherein formulas situated in parts of a minimal conflict 
set devoid of edges are assigned higher Myerson values. This characteristic of the Myerson value supports the preservation of more 
edges, substantiating the efficacy of this approach in maintaining the structural integrity of the ontology graph.

To effectively integrate the Myerson value into the objective function, the MILP model must initially identify the solution set of
CILP and then impose additional constraints to optimize the minimization of the final solution set, a process known as the lexico-
graphic method. Consequently, the computational duration for MILP typically doubles that of CILP. However, given the substantial 
9

advancements in efficiency CILP has demonstrated over tree-based methods in resolving logical contradictions, where solution sets 
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Table 3

Computational time consumption for CILP and MILP.

Ontology CILP (ms) MILP (ms)

Lily-cmt-conference 8 13
Lily-edas-ekaw 7 14
miniTambis 6 9
Geography 7 11
Wiktionary-cmt-confof 10 18
proton 9 14
VeeAlign-edas-iasted 8 13
ALOD2Vec-confof-edas 10 18
Economy 7 16
Transportation 9 18
LogMapLt-cocus-crs_dr 15 33
Wiktionary-confof-edas 16 28
MaasMatch-cmt-sigkdd 16 39
MGED 16 31
CHEM-A 16 32
AROMA-cmt-cocus 17 32
km1500-5000 69 170
km1500_i500-3500 615 1428

for most ontologies are computed in milliseconds, the increased processing time required for MILP remains within a permissible 
range. Table 3 details the time consumed by both CILP and MILP, utilizing the same CPLex solver configuration.

5. Conclusion and discussion

This research advances the classical ILP model, which historically treated all formulas within ontologies as equally significant, 
by differentiating their contributions using theory from cooperative game theory. Specifically, we calculated the Shapley value for 
each formula based on its marginal contribution within minimal conflict sets. Furthermore, we employed commonsense reasoning to 
construct an ontology graph, extending our theoretical framework from Shapley values to Myerson values based on graph structures. 
Our proposed Myerson-weighted ILP model adheres to a lexicographic method, which prioritizes minimizing the removal of formulas 
and strategically utilizes Myerson values to guide the selection process. Our evaluation across 18 ontology datasets demonstrates that 
this enhanced approach enables the model to retain more structural edges of the ontology graph compared to traditional ILP methods.

There are limitations to this work. The computational process for deriving Shapley and Myerson values, while streamlined, does 
not simplify the inherently complex construction of formula-based graphs. This aspect of ontology engineering continues to require 
significant expertise to manage the intricacies involved in graph construction and to adhere to established graph construction stan-
dards. Additionally, while our model shows promise on medium-sized datasets, scaling this approach to larger ontologies typical 
in enterprise or internet environments presents considerable challenges. The complexity and dynamic nature of such large-scale 
ontologies frequently necessitate more sophisticated algorithms or parallel processing techniques to maintain practicality.

Future research should explore several promising directions. First, the development of automated tools could simplify the pro-
cess of graph construction in large-scale ontologies, reducing the need for expert intervention. Second, the application of distributed 
computing frameworks for the computation of Myerson and Shapley values could improve the scalability of our methods. These 
frameworks would facilitate the handling of larger datasets by distributing computational loads across multiple nodes, potentially 
accommodating real-time updates and dynamic changes within ontology structures. Lastly, enhancing our model with adaptive al-
gorithms that dynamically adjust parameters in response to changes in the ontology could provide a robust solution for maintaining 
logical consistency in dynamic environments.
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