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Abstract
Total kidney volume (TKV) is the main imaging biomarker used to monitor disease progression and to classify patients 
affected by autosomal dominant polycystic kidney disease (ADPKD) for clinical trials. However, patients with similar TKVs 
may have drastically different cystic presentations and phenotypes. In an effort to quantify these cystic differences, we devel-
oped the first 3D semantic instance cyst segmentation algorithm for kidneys in MR images. We have reformulated both the 
object detection/localization task and the instance-based segmentation task into a semantic segmentation task. This allowed us 
to solve this unique imaging problem efficiently, even for patients with thousands of cysts. To do this, a convolutional neural 
network (CNN) was trained to learn cyst edges and cyst cores. Images were converted from instance cyst segmentations to 
semantic edge-core segmentations by applying a 3D erosion morphology operator to up-sampled versions of the images. 
The reduced cysts were labeled as core; the eroded areas were dilated in 2D and labeled as edge. The network was trained 
on 30 MR images and validated on 10 MR images using a fourfold cross-validation procedure. The final ensemble model 
was tested on 20 MR images not seen during the initial training/validation. The results from the test set were compared to 
segmentations from two readers. The presented model achieved an averaged R2 value of 0.94 for cyst count, 1.00 for total 
cyst volume, 0.94 for cystic index, and an averaged Dice coefficient of 0.85. These results demonstrate the feasibility of 
performing cyst segmentations automatically in ADPKD patients.

Keywords  Autosomal dominant polycystic kidney disease · Magnetic resonance imaging · Three-dimensional instance 
segmentation · Cyst volume · Convolutional neural networks

Introduction

Autosomal dominant polycystic kidney disease (ADPKD) 
is a genetic disorder with approximately 140,000 people 
currently diagnosed in the USA [1]. It is characterized by 
the development of multiple cysts in the kidneys. As the 
number and size of the cysts increase, they interfere with the 
kidney’s ability to filter waste products from the blood and 
often leads to end-stage renal disease [2].

Many studies have shown that total kidney volume (TKV) 
is a useful prognostic biomarker in combination with age 

and estimated glomerular filtration rate for use in clinical 
trials and to predict renal function decline [3–5]. Although 
TKV is important, there is much more structural informa-
tion that could be characterized. For instance, other image-
derived biomarkers such as cyst number and size would pro-
vide further insight regarding the disease status [6]. ADPKD 
patients with similar TKVs may present with different kid-
ney cyst compositions (i.e., few large cysts, many small 
cysts, or a combination of large and small cysts). This added 
information is likely clinically significant and currently is 
one factor used for the classification of typical and atypical 
imaging groups in ADPKD patients [7]. Moreover, Bae et al. 
[8] recently proposed that the exclusion of prominent exo-
phytic cysts could improve the classification of patients. This 
cyst assessment, however, is often performed manually using 
the ellipsoid equation to approximate the cysts volumes or 
by user-dependent semi-automated methods.
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During the past few years, machine learning (particu-
larly deep learning) has been successfully implemented 
for the segmentation of natural images (i.e., images taken 
with an RGB camera) [9–11]. As a result, researchers in 
medical image analysis have translated and developed new 
technologies for the segmentation of several organs and 
tissues [12]. In ADPKD, fully automated methods using 
deep neural networks have been implemented to segment 
polycystic kidneys in CT scans with and without contrast 
enhancement reaching a Dice coefficient of 0.86 and 0.92, 
respectively [13, 14]. Fully automated models have also 
been implemented for T2-weighted MR images [15, 16] 
showing accurate results (Dice = 0.97).

Instance segmentation, however, goes one step further 
and is capable of segmenting examples of the same class 
(e.g., separating each instance of a car or cell in an image). 
Mask R-CNN [17] is a widely used method to generate 
instance segmentation by applying an object detection 
algorithm. Most applications of Mask R-CNN have been 
geared towards segmentation of natural images [18–21] and 
some for histopathology and 2D medical images [22–26]. 
For 3D images, however, the higher dimension of the scans 
can significantly increase GPU memory requirements. Only 
a couple of radiological studies have reported the use of 
Mask R-CNN, for the segmentation of lung nodules in chest 
CT [27] and hemorrhage evaluation in head CT [28]. The 
instance cyst segmentation task, on the other hand, poses a 
bigger challenge, not only because of the higher number of 
instances (up to thousands of cysts), which makes its imple-
mentation using an object detection approach unfeasible, but 
also due to the highly connected/clustered nature of the cysts 
in ADPKD.

Some studies have implemented more traditional seg-
mentation approaches to generate instance and seman-
tic cysts segmentations for ultrasound and CT imaging 
[29–32], by applying intensity- and shape-based methods. 
In MR imaging, two semi-automated approaches have 
been implemented to perform kidney cyst segmentations. 
The first approach used a k-means clustering method 
followed by connected components analysis to provide 
instance cyst segmentations [33]. The second approach 
used a region-based method to create binary signal-inten-
sity maps to generate semantic cyst segmentations [34]. 
Most of these approaches rely on intensity information 
which may include other areas with similar intensity val-
ues such as the renal pelvis, and exclude some cysts with 
different signal intensities (e.g., hemorrhagic cysts). A 
fully automated method may be able to overcome these 
problems and provide more accurate cyst quantification 
parameters, particularly for severe cases where manual 
segmentation and semi-automated methods are not eas-
ily performed. Thus, in this paper, we propose a deep 

learning model for 3D instance cyst segmentation in 
order to measure total cyst volume (TCV) as well as cyst 
count and cystic index.

Materials and Methods

This retrospective imaging study was reviewed and 
approved by our Institutional Review Board. 3D manual 
segmentation of individual cysts in MR images from 
ADPKD patients is a very difficult and time consuming 
task. To alleviate the process of creating a reference stand-
ard dataset an initial model was implemented. The initial 
model was trained on 15 3D MR images, validated on 5 
images and tested on an additional 5 images. The output 
and framework of the initial model were then used for the 
improved final model.

Initial Model: MRI Dataset

Twenty-five (n = 25) patients with ADPKD and available 
MRI imaging representative of different stages of cyst 
development and kidney enlargement were identified from 
our PKD Imaging Database. Only coronal T2-weighted fat 
saturated scans showing no blur artifacts and acquired with 
a 3-T field strength (n = 23) and 1.5-T field strength (n = 2) 
were selected for this study. As images were taken over a 
period of several years, the specific MR acquisition varied, 
but all consisted of matrix size 256 × 256 × Z (with FOV 
and Z large enough to cover the full extent of the kidneys). 
The median image voxel size was 1.37 mm (range 0.82 
to 1.56 mm) in-plane, with a median slice thickness of 
3.0 mm (range 3.0 to 9.0 mm).

TKVs obtained by applying automatic kidney segmen-
tation [35] were available for all cases. The scans were 
sorted based on their TKV and randomized into training 
(n = 15), validation (n = 5), and test (n = 5) sets as shown 
in Fig. 1 by stratified sampling to ensure similar kidney 
size distribution among sets.

Fig. 1   Visualization of the TKV distributions for training, validation, 
and test datasets for the initial model development. The bars represent 
the mean TKV in each set
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Initial Model: Reference Standard

Cyst Segmentation: Test Set

The cysts were manually traced by two trained readers using 
the software PKD-GUI (available online at https://​github.​
com/​TLKli​ne/​Insta​nceCy​stSeg) developed in-house. The 
software allows for freehand tracing, and the final segmen-
tations were saved as compressed NIFTI files. The readers 
used only one label to trace all cysts excluding renal pelvis, 
vessels, normal renal tissue, and high intensity areas smaller 
than 4 voxels which could not be differentiated from image 
noise. Additionally, the readers were blinded to patient infor-
mation and the other reader’s tracings.

Instance Cyst Segmentation: Test Set

An initial instance cyst segmentation was generated from the 
manual cyst tracings by applying a 3D watershed algorithm 
to a 3D Euclidean distance map based on the MRI and cyst 
segmentation images (MATLAB, v.R2018b). The algorithm 
assigned different labels to each cyst in ascending order. 
The instance cyst segmentation was later reviewed by the 
same reader that performed the manual cyst segmentation 
and was corrected when necessary (i.e., by splitting or merg-
ing labels) using the in-house software described previously.

Initial Model: Data Pre‑processing

Reference Standard: Training and Validation Sets

To expedite the cyst segmentation process for the train-
ing and validation sets, a previously developed automated 
semantic cyst segmentation algorithm was used to perform 
the one label cyst segmentation [36]. Next, the resulting seg-
mentation underwent the 3D watershed process described 
in the previous section. Finally, the images were reviewed 
by Reader 1.

Prior to training the deep learning model, the segmen-
tation masks were converted to semantic segmentations as 
cyst-edge and cyst-core. The edge was obtained by subtract-
ing the cyst mask with the 3D dilated cyst mask (using a 
6-connected structuring element). The cyst core was the 
same as the cyst mask. The conversion process was per-
formed in a cyst-by-cyst fashion (MATLAB, v.R2018b).

Initial Model: Semantic Instance Cyst Segmentation

Deep Learning Model

The deep learning model is based on the U-Net neural net-
work [37] using inception modules similar to the previous 
work [36]. The input to the model consists of 4 images:  

3 consecutive MR slices and 1 kidney segmentation mask 
corresponding to the middle MR input image. The output of  
the model is the predicted edge-core image for the middle 
input image (Fig. 2). For the first and last MRI slices of 
an exam, the first and third input images were zero-padded 
matrices, respectively.

Training the Model

The model was trained on an NVidia graphical processing 
unit (model: Tesla P40) using the Keras python library and 
Python 3.6.1. The number of epochs was set to 200 with 
a batch size of 6. The evaluation of the segmentation was 
assessed by the Jaccard loss function,

where r is the reference segmentation, p is the predicted 
segmentation, and N is the number of voxels. The Adam 
optimizer was used with learning rate = 1e−3.

Initial Model: Data Post‑processing

In order to assign an individual label to each cyst, a con-
nected components algorithm with 6 neighbor voxel con-
nectivity was applied to the cores segmentation at the output 
of the deep learning model.

Final Model: MRI Dataset

Thirty five (n = 35) 3D MR images from patients with 
ADPKD and available 1.5-T or 3-T T2-weighted coronal fat 
saturated images representative of a wider range of different 
stages of cyst development and kidney enlargement were 
added to the data set from the initial model. TKV segmen-
tations were available for all cases. In total, 60 MR images 
with matrix size of 256 × 256 × Z or 512 × 512 × Z (with 
FOV and Z large enough to cover the full extent of the kid-
neys) comprised the final dataset. The median image voxel 
size was 1.41 mm (range 0.8 to 1.88 mm) in-plane, with a 
median slice thickness of 4.0 mm (range 3.0 to 9.0 mm).

The images were sorted based on their TKV measure-
ments. Forty MR images (including the 25 images from the 
initial model) were used for training and validation using a 
fourfold cross-validation technique. The remaining 20 MR 
images were used for testing. Figure 3 shows the TKV dis-
tributions for all the sets.

Final Model: Reference Standard

Instance cyst segmentations of the newly added 35 MR 
images were generated using the initial model. Two 

Jaccard loss =

∑N
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independent readers revised the testing images (n = 20) and 
one reader revised the training/validations images (n = 15). 
Finally, all 60 instance cyst segmentation masks and corre-
sponding MR images were up-sampled to a 512 × 512 × 3Z 
matrix size by using bilinear and bicubic interpolations, 
respectively. An opening operation was applied to each cyst 
instance to preserve the exact instance segmentation after 
post-processing (i.e., dilation after erosion of the core).

The instance segmentations were converted to semantic 
edge-core segmentations where the core was the result of the 
3D eroded cyst instances and the edge was obtained by add-
ing the 3D inner and 2D outer cyst instance edges. The 3D 
and 2D morphological operations were performed using a 
3 × 3 × 3 voxel 6-connectivity kernel and a 3 × 3 voxel 4-con-
nectivity kernel, respectively.

Final Model: Ensemble Learning

Four models were obtained from the fourfold cross-valida-
tion sets using the U-Net architecture shown in Fig. 2. The 
three models with the best performance on the validation  
set were combined as the final ensemble model. The output 
was generated by majority voting of the three edge and core 
segmentations. A diagram of the final ensemble model is 
shown in Fig. 4. The ensemble model is available online, 
located at https://​github.​com/​TLKli​ne/​Insta​nceCy​stSeg.

Final Model: Post‑processing

From the initial model results, it was observed that, due to the 
lower image resolution on the Z axis, some cyst cores were 
connected to posterior/anterior cysts. In order to improve the 

conversion from semantic to instance segmentation and with 
the knowledge that cysts have a shape similar to a sphere, we 
first calculated the 3D Euclidean distance map on the cores 
segmentation. Then, the 3D Watershed algorithm was applied 
to split any cysts that might not be separated by the edge seg-
mentation. Next, with the objective to preserve cyst cores 
mainly composed by a few voxels that might be lost after the 
Watershed algorithm, a connected components algorithm with 
6-nearest neighbor connectivity was applied to the difference 
between the predicted core map and the 3D Watershed output. 
The labels of the 3D connected components instance segmen-
tation were assigned starting from one plus the last label from 
the 3D Watershed output. Then, the connected components 
instance segmentation was added to the watershed instance 
segmentation. Finally, all cyst instances were dilated in 3D 
by a 3 × 3 × 3 voxel 6-connected structuring element. The last 
post-processing step was the downsample of the image to its 
original shape.

Fig. 2   Architecture of the 
inception U-Net. The input 
is a 4-channel structure that 
consists of the MRI slice to be 
segmented, the corresponding 
kidney segmentation mask and 
the posterior and anterior MRI 
slices. The network includes 
inception modules followed by 
strided convolutions and drop-
out. The output of the U-Net 
is the edge-core segmentation. 
The output of the entire algo-
rithm is the 3D instance cyst 
segmentation

Fig. 3   Visualization of the TKV distributions for training/validation 
(blue dots) and test (pink dots) for the final model data set. The bars 
represent the mean TKV in each set
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Statistical Analysis

The initial and ensemble model were evaluated by comparing 
the automated instance cyst segmentations to the 3D refer-
ence standard cyst segmentations. The instance segmentations 
were binarized for voxel-wise comparison using the Jaccard 
index, Sorensen-Dice coefficient, precision, recall, and abso-
lute relative volume change. TCVs, calculated as the sum of 
all segmented voxels multiplied by the voxel volume, were 
evaluated by Bland–Altman analysis and linear regression. The 
total number of cysts was evaluated using linear regression. 
Lastly, the cystic index, defined as the percent of cyst volume 
over total kidney volume, was evaluated by a Bland–Altman 

analysis and linear regression. The statistical analysis was per-
formed using JMP (JMP, version 14) and MedCalc (MedCalc 
Statistical Software, version 19.1.3).

Results

Initial Model: 5‑Case Test Set—Cyst Segmentation

The results of the TCVs calculated from the segmentations 
performed by Reader 1, Reader 2, and those automatically 

Fig. 4   Architecture of the ensemble model. The MR image and 
the corresponding kidney segmentation are up-sampled by bilin-
ear and bicubic interpolation, respectively, to two matrices of size  
512 × 512 × 3Z. The input to the ensemble model is three con- 
secutive MR slices and the kidney mask corresponding to the second 
input MR slice. Three inception U-Nets with architecture shown in 
Fig. 2 generate 3 edge-core prediction masks for the second input MR 

slice. The final prediction is the outcome of a majority voting algo-
rithm at the voxel level. A 3D Watershed algorithm followed by a 3D 
connected components analysis is performed on the core prediction 
to obtain the instance cyst segmentation mask; then each instance 
is dilated in 3D by one voxel to incorporate the edges in the final 
instance cyst segmentation. Lastly, the predicted final instance seg-
mentation is downsampled to the original MR volume

Table 1   TCV measurements from Reader 1, Reader 2, and the initial 
model

Test set cases Reader 1 (mL) Reader 2 (mL) Initial model (mL)

K1 43.1 50.7 74.4
K2 105.8 124.2 88.1
K3 614.7 635.4 603.2
K4 726.6 793.8 530.2
K5 1723.1 1732.5 1622.6

Table 2   Similarity analysis between the reference standard and the 
initial model

ARVC absolute relative volume change

Similar-
ity metric 
(mean ± SD)

Reader 1 vs Reader 2 Reader 1 vs 
initial model

Reader 2 vs 
initial model

Dice 0.87 ± 0.05 0.84 ± 0.09 0.82 ± 0.09
Jaccard 0.77 ± 0.09 0.74 ± 0.14 0.71 ± 0.14
Precision 0.84 ± 0.08 0.87 ± 0.16 0.88 ± 0.14
Recall 0.91 ± 0.03 0.85 ± 0.11 0.80 ± 0.12
ARVC 0.09 ± 0.07 0.25 ± 0.15 0.24 ± 0.16
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obtained with the initial mode (ordered based on ascending 
TKV) are observed in Table 1. Bland–Altman analysis resulted 
in a bias and precision of − 8.9% ± 7.0% between Reader 1 and 
Reader 2, 0.9% ± 32.2% between Reader 1 and the initial model, 
and 9.5% ± 30.8% between Reader 2 and the initial model.

Table 2 summarizes the comparison of similarity met-
rics between Reader 1, Reader 2, and the initial model 
for the 5-case test set. Similar performance is observed 
between the readers and between each reader and the ini-
tial model.

Fig. 5   Three example images from the test set showing the segmen-
tations differences between Reader 1, Reader 2, and the initial auto-
mated model. The cyst colors show the difference between adjacent 
cysts and are assigned randomly; thus, we do not expect them to be 
the same between the readers and the automation. The arrows point to 

some differences between the segmentations. a Example of a severe 
ADPKD case. The average Dice coefficient from the 3 segmentations 
was 0.82. b Example of a mild PKD case. Average Dice coefficient 
was 0.89. c Example of a mild PKD case. Average Dice coefficient 
was 0.74
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Initial Model: 5‑Case Test Set—Cyst Count Analysis

The total number of cysts were K1, 102, 115, 224; K2, 96, 
99, 105; K3, 274, 178, 183; K4, 676, 755, 721; and K5, 
279, 177, 145 cysts, for Readers 1, 2, and the initial model, 
respectively. Linear regression analysis resulted in R2 = 0.94 
between Reader 1 and Reader 2, R2 = 0.82 between Reader 
1 and the initial model, and R2 = 0.96 between Reader 2 and 
the initial model.

A representative slice from three testing cases showing 
differences between Reader 1, Reader 2 and the initial model 
is presented in Fig. 5. The yellow arrows point to cysts that 
were segmented differently between readers or between the 
readers and the automated method. In most cases, the model 
assigned one label to clustered cysts. The red arrow shows 
a difference between Reader 1 and Reader 2, where Reader 
1 excluded the bright intensity area seen as part of the renal 
pelvis but Reader 2 interpreted the area as a cyst.

Final Model: 20‑Case Test Set—Cyst Segmentation

Table 3 summarizes the similarity metrics between Reader 
1, Reader 2, and the final model for the 20-case test set. We 
observed that the similarity metrics between Reader 1 and 
Reader 2 show higher agreement compared to the results 
from the initial 5-case test set. This could be caused by a 
bias effect since both readers started from an initial instance 
segmentation generated by the initial model. Furthermore, 
we observed similar performance between the final model 
and both readers, taking into consideration that the test set 
includes a wide range of ADPKD phenotypes.

Bland–Altman analysis of the TCV resulted in a bias and 
precision of 12.5% ± 10.1% between Reader 1 and Reader 
2, 10.2% ± 11.2% between Reader 1 and the ensemble 
model, − 2.3% ± 9.9% between Reader 2 and the ensemble 
model, and 4.3% ± 9.3% between the average of Reader 1 
with Reader 2 and the ensemble model. Linear regression 
analysis resulted in perfect agreement (R2 = 1.00) between 

Reader 1 and the ensemble model, Reader 2 and the ensem-
ble model, and the readers average with the ensemble 
model. Regression analysis between Reader 1 and Reader 
2 showed almost perfect correlation with R2 = 0.98. Fig-
ure 6 shows the Bland–Altman and linear regression plots 
for TCV.

Bland–Altman analysis of the cystic index resulted in 
a bias and precision of 12.6% ± 10.5% between Reader 1 
and Reader 2, 10.2% ± 11.2% between Reader 1 and the 
ensemble model, − 2.4% ± 9.8% between Reader 2 and 
the ensemble model, and 4.3% ± 9.4% between the both 
readers average and the ensemble model. The best cyst 
index correlation was between the average of both read-
ers and the ensemble model (R2 = 0.94). Linear regression 
analysis resulted in R2 = 0.90 between Reader 1 and Reader 
2, R2 = 0.92 between Reader 1 and the ensemble model, 
R2 = 0.90 between Reader 2 and the ensemble model. Fig-
ure 7 shows the Bland–Altman and linear regression plots 
for cystic index.

Final Model: 20‑Case Test Set—Cyst Count Analysis

The total number of cysts obtained from the instance cyst 
segmentations were analyzed by correlation (Fig. 8). Reader 
2 and the ensemble model showed the strongest correlation 
with an R2 = 0.96, where the model detected slightly more 
cysts than Reader 2. Comparison between Reader 1 and the 
final ensemble model show good agreement (R2 = 0.88), 
where Reader 2 identified more cysts than the ensemble 
model for most cases. The inter-observer average cyst count, 
however, showed excellent agreement with the ensemble 
model cyst count (R2 = 0.94) (Fig. 8d). Lastly, the com-
parison between Reader 1 and Reader 2 showed the lowest 
agreement with an R2 = 0.83, where Reader 1 identified more 
cysts than Reader 2.

A representative slice from three testing cases is pre-
sented in Fig. 9. We can observe that the automated method 
provides good instance segmentations for ADPKD cases 
with multiple-clustered cysts (which are the most challeng-
ing cases for the algorithm) and the results look visually on 
par with the instance segmentations from the two readers.

Finally, a comparison between TKV (i.e., the main imag-
ing biomarker for ADPKD assessment) and TCV and cyst 
count is shown in Fig. 10. Linear regression analysis shows 
that 98% of the variation in TCV is explained by its linear 
association with TKV; however, only 53% of the variation 
in cyst count is explained by its linear association with TKV. 
This provides evidence that cyst count can offer additional 
phenotypic information beyond TKV.

Table 3   Similarity analysis between Reader 1, Reader 2, and the 
ensemble model

ARVC absolute relative volume change

Similarity met-
ric (mean ± SD)

Reader 1 vs Reader 2 Reader 1 vs 
final model

Reader 2 vs 
final model

Dice 0.91 ± 0.06 0.84 ± 0.09 0.85 ± 0.07
Jaccard 0.84 ± 0.1 0.73 ± 0.12 0.74 ± 0.1
Precision 0.97 ± 0.03 0.88 ± 0.07 0.84 ± 0.08
Recall 0.86 ± 0.09 0.80 ± 0.11 0.86 ± 0.08
ARVC 0.11 ± 0.08 0.12 ± 0.7 0.07 ± 0.09
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Fig. 6   Bland–Altman plots (a, 
c, e, g) showing the TCV agree-
ment between Reader 1, Reader 
2, and the final automated 
ensemble model. Linear regres-
sion plots (b, d, f, h) show 
good TCV correlations between 
Reader 1, Reader 2 and the 
automated ensemble model
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Fig. 7   Bland–Altman plots (a, 
c, e, g) showing the cystic index 
agreement between Reader 
1, Reader 2, and the final 
automated ensemble model. 
Linear regression plots (b, d, 
f, h) showing the cystic index 
correlations between Reader 1, 
Reader 2, and the automated 
ensemble model
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Discussion

In this study, we present the first deep learning approach to 
segment multiple clustered cyst instances in MR images for 
ADPKD patients. The comparison of the predicted TCV, 
cyst count, and cystic index to the results from two readers 
showed that an automated approach can produce accurate 
3D instance cyst segmentations.

Deep learning models require large amounts of data to 
produce the best results. The lack of 3D annotated images 
was a major bottle neck at the beginning of the study. The 
5 manually segmented images in the initial test set required 
several weeks to complete and were very labor intensive. 
The most challenging images are the ones from advanced/
severe ADPKD patients where multiple cysts are clustered 
together and the boundaries are not as defined as when the 
cysts are surrounded by kidney parenchyma. To overcome 
this obstacle, the study was divided in two sections to solve 
this problem by active learning. The first part of the study 
included an initial model trained on a small dataset. The sec-
ond part of the study included the development of the final 
model using a larger dataset, where the reference standard 
was initialized by the initial model.

The results from this study are on par with the results 
obtained by Bae et al. [33], where he proposed a semi-
automated method to generate instance cyst segmentations. 
The TCV bias reported using the semi-automated segmenta-
tion compared to a region-based volume was − 9% with an 
R2 = 0.98 for cyst count. In our study, the TCV bias between 
the readers and the fully automated method were 10.2% and 
− 2.3%, respectively, with an R2 = 0.94 for cyst count. It is 
worth mentioning that the testing set in our study included 
cases with higher TCV and larger number of cysts, and the 
proposed ensemble model does not require any user input.

Cysts in MR images can be shown with different inten-
sities depending on the cyst composition. Most cysts 
in ADPKD are simple cysts (i.e., do not contain solid 
components) and are shown as hyperintense regions on 
T2-weighted MR images. Complicated cysts (e.g., proteina-
ceous, hemorrhagic, infected cysts), however, are often seen 
as hypointense regions [38]. Another source of difference in 
cyst intensity is observed depending on the strength of the 
magnetic field of the MR scanner. Three-tesla scanners have 
a higher magnetic field strength and provide higher SNR, 
thus better image quality and cyst contrast. To provide accu-
rate cyst segmentations, the automated method is required 

Fig. 8   Linear regression plots 
showing the cyst count cor-
relations between Reader 1 and 
Reader 2 (a), Reader 1 and the 
ensemble model (b), Reader 
2 and the ensemble model (c), 
and the average count between 
Reader 1 and Reader 2 com-
pared to the ensemble model (d)
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Fig. 9   Test set example images showing three instance segmentations 
generated by Reader 1, Reader 2, and the ensemble automated model. 
The cyst colors are unique to each cyst and are assigned randomly; 
thus, we do not expect them to be the same between readers and the 

automation. a Example of a moderate ADPKD case. The average 
Dice coefficient from the 3 segmentations was 0.88. b Example of a 
severe ADPKD case. Average Dice coefficient was 0.87. c Example 
of a severe ADPKD case. Average Dice coefficient was 0.87
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to be intensity invariant. With the goal of increasing model 
generalizability, the final ensemble model was trained on 
images acquired with 1.5-T and 3-T MR scanners. Moreo-
ver, we included images presenting complicated cysts in a 

wide range of ADPKD phenotypes and images with differ-
ent resolutions. Furthermore, the cohort included cases with 
TKVs ranging from volumes close to that of normal kidneys 
(~ 290 mL) up to cases reaching almost 10,000 mL, which 

Fig. 10   Linear regression plots 
between a TKV and the ensem-
ble model TCV and b TKV and 
ensemble model cyst count

Fig. 11   Two example images 
acquired with 1.5-T MR scan-
ners. In order to show the 
cyst segmentation difference 
between the initial model and 
final model, the instance cyst 
segmentations were converted 
to binary maps. The pink color 
shows the initial model predic-
tion and the teal color shows 
the final model prediction. The 
agreement between the two 
models is shown as white. S 
sagittal view, C coronal view, A 
axial view
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practically covers the whole range of TKVs in ADPKD. Two 
examples of the improved generalizability of the ensemble 
model over the initial model can be observed in Fig. 11, 
where the final model was able to identify cysts with lower 
intensities.

The conversion from instance cyst segmentation to 
semantic edge-core segmentation for training the model is 
another key step, particularly for clustered cysts. The seman-
tic edge segmentation for the initial model was generated  
by applying a dilation morphology operator. This approach 
was chosen because some cysts are present on only one slice 
and an erosion approach would not preserve these cysts  
after the conversion. The dilation method provided a good 
estimation of the cyst edges on the in-plane view (x and y  
view) but, due to the lower resolution on the Z dimension, 
the posterior and anterior cyst edges interfered with adja-
cent cysts. For the final model, we decided to generate the 
semantic edge segmentation applying the erosion morphol-
ogy operator. To preserve all cysts, the MR images and the 
corresponding instance segmentations were interpolated to  
a size 512 × 512 × 3Z. Thus, cysts present on only one  
slice would be interpolated to 2 additional slices. We up-
sampled the images with in-plane matrix size of 256 × 256 to 

512 × 512 because the ensemble model requires a consistent 
input matrix size. To account for the higher class imbalance 
(core class >> edge class) due to the interpolation, we per-
formed a 2D dilation of the edges. The improved preserva-
tion of TCV and cyst count of the erosion approach over the 
dilation approach can be observed in Fig. 12.

The design of the final model included the voting ensem-
ble of three different models. These models were the top 
three best performing models on the validation set obtained 
from the fourfold cross-validation method. The ensemble 
model with the majority voting algorithm were implemented 
since voting ensembles are characterized by being more sta-
ble and have better performance than single models [36]. 
The agreement results between the individual models, the 
ensemble model and the readers can be found in the sup-
plemental material section.

One limitation of MR imaging is the low resolution to 
show microcysts. The mean voxel volume in this study was 
0.0076 ± 0.0034 mL. However, due to the inherent noise pre-
sent on MR images (i.e., salt and pepper noise), we imple-
mented a lower cyst size threshold of 4 voxels (mean in-
plane diameter 2.76 ± 0.48 mm) after post-processing.

Fig. 12   Effect of applying the 
semantic segmentation conver-
sion to 40 reference standard 
instance cyst segmentations 
(training and validation sets) 
and back-converting to the 
instance segmentation (“Post”). 
a The dilation morphol-
ogy approach resulted in a 
TCV bias and precision of − 
11.8% ± 9.5%. b The erosion 
morphology approach resulted 
in a TCV bias and preci-
sion of − 0.01% ± 0.02%. c, 
d Linear regression showing 
the cyst count before and after 
applying the dilation and ero-
sion morphology approaches, 
respectively
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Object detection approaches to perform instance segmen-
tations for overlapping and clustered instances are becoming 
increasingly popular due to their high performance on natu-
ral and 2D medical images [18–26]. However, the high GPU 
memory requirements make this approach impossible to 
implement for 3D images with a large number of instances. 
Liu et al. [27] implemented a Mask R-CNN based model for 
the segmentation of lung nodules on CT images. Although, 
lung nodules are not present in the same quantity as cysts in 
ADPKD, Liu et. al used a patch-based strategy to account 
for the dimensionality of the CT scans and limited GPU 
memory. In an effort to reduce computational complexity 
some researchers have used methods similar to the 4 color 
theorem for training the deep learning algorithm to predict 
2D instance segmentations [39]. Although, this approach 
works well for 2D images, it is unclear to know how many 
colors would be necessary for 3D images, particularly for 
our problem of automatically identifying and separately dis-
tinguishing hundreds to thousands of cysts. In this study, 
we used a semantic instance segmentation approach, which 
performed very similarly to two experienced readers and, 
although, we used morphology operators to convert the 
images from instance to semantic and semantic to instance 
segmentations, we have shown that these operations do not 
have an effect on the final cyst volume and total cyst num-
ber. Future development of instance segmentation strate-
gies may lower the need of such high memory requirements 
and yield the implementation of cyst instance segmentation 
using an object-localization/detection based method.

The main study limitation was the lack of a gold standard. 
The exact number of cysts and TCV values were not available; 
thus, we relied on the accuracy of two trained medical image 
readers. Another limitation was the small cohort size, which 
prevented us from analyzing the clinical value of these new 
imaging biomarkers; nonetheless, this is our main objective for 
future work. Lastly, the images were only from our institution 
acquired with the same imaging protocol. A larger dataset with 
samples from different institutions and machine vendors could 
help further generalize the cyst instance model. Additionally, 
this work can be extended through active learning to other MR 
sequences such as T2-weighted non-fat saturated images and 
T1-weighed images, which may add new cyst morphology 
information to the model. Furthermore, a similar architecture 
could be applied to other image modalities such as CT scans.

Conclusions

We have developed a fully automated method for 3D instance 
segmentation of renal cysts in T2 MR images for ADPKD 
patients with mild, moderate, and severe disease. Future studies 
with a larger dataset are needed to better understand how these 
additional biomarkers relate to the patient’s disease state and 
prognosis.
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