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Abstract

Brown adipose tissue (BAT) was thought to disappear after infancy. Recent studies finding BAT 

in patients undergoing positron emission tomography/computed tomography (PET/CT) have 

renewed the interest in deciphering the relevance of this tissue in humans. Available data suggests 

that BAT is more prevalent in children than in adults, and that its activation during adolescence is 

associated to significantly less gains in weight and adiposity. Data also shows that pediatric 

patients with metabolically-active BAT on PET/CT examinations have significantly greater 

muscle volume than patients with no identifiable BAT. Both the activity and the amount of BAT 

increase during puberty. The magnitude of the increase is higher in boys when compared to girls, 

and closely related to gains in muscle volume. Hence, concurrent with the great gains in skeletal 

muscle during infancy and puberty, all infants and adolescents accumulate large amounts of BAT. 

These observations are consistent with in vitro investigations suggesting close interactions 

between brown adipocytes, white adipocytes, and myocites. In this review, we discuss the 

potential role of this tissue in regulating weight and musculoskeletal development in children.

INTRODUCTION

It has been nearly five centuries since Konrad Gessner described a tissue that was “neither 

fat, nor flesh – but something in between (1),” five decades since Robert E. Smith showed 

the capacity of brown adipose tissue (BAT) to dissipate energy as heat (2), and five years 

since the ranks of the obese overtook the number of malnourished in the world (3), but 

whether BAT has any relevance to human health and disease beyond helping to maintain 

normal body temperature in newborns remains unknown. The belief that BAT involutes 
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soon after birth and the lack of techniques to adequately measure BAT in humans have 

limited our understanding of the relevance of this tissue.

New data showing that some adults and most children have BAT, coupled with the 

development of imaging techniques that provide reliable BAT measurements, has renewed 

the interest in deciphering the physiology of this tissue (4, 5). In this review, we discuss 

recent advances in our understanding of the potential role of this tissue in regulating weight 

and musculoskeletal development in children and adolescents.

ANATOMY, PHYSIOLOGY, AND PATHOLOGY OF BAT

The adipose organ is a complex endocrine system, composed of white and brown fat. White 

adipose tissue (WAT) serves as the primary site of energy storage, storing triglycerides 

within individual adipocytes, while BAT stores little fat, burning it instead to produce heat 

and regulate body temperature (6, 7). Compared to WAT, BAT is highly vascularized and 

innervated by the sympathetic nervous system. Moreover, white adipocytes are spherical and 

unilocular, while the brown adipocyte is usually smaller and characterized by multilocular 

lipid droplets and an abundance of mitochondria expressing uncoupling protein-1 (UCP1) 

(7). In humans, BAT is recognized primarily in the cervical-supraclavicular area, where it is 

present across a wide range of ages (4, 5, 8, 9). To date, the sole known function of BAT is 

to dissipate energy through the uncoupling of oxidative respiration from the production of 

adenosine triphosphate (ATP), an action regulated by UCP1 (7, 10, 11). This type of heat 

production is known as nonshivering thermogenesis.

In a thermoneutral state, the activity of UCP1 in the mitochondrial membrane is inhibited by 

ATP in the cytoplasm. During cold acclimation, sympathetic stimulation triggers the 

proliferation and differentiation of precursor cells towards the development of BAT (12). 

Mitochondrial biogenesis and increased synthesis of UCP1 are hallmarks of the thermogenic 

recruitment process. The release of norepinephrine, associated with a cold environment, 

interacts with β-adrenergic receptors in the cell membrane of the brown adipocyte leading to 

the hydrolysis of triglycerides and the production of free fatty acids (13). The increase in 

free fatty acids in the cytoplasm overcomes ATP inhibition by interacting with UCP1, 

leading to its activation. UCP1 increases proton leakage across the inner membrane of 

brown adipocyte mitochondria dissipating energy in the form of heat rather than ATP (12).

Besides UCP1, four additional uncoupling proteins are expressed by the human genome. 

While UCP1 is exclusive to brown adipose tissue, UCP2 is expressed ubiquitously, UCP3 is 

mainly expressed in skeletal muscle, and UCP4 and UCP5 are expressed in the brain (14). 

The physiological functions of these proteins are not well understood, but could have 

profound significance in our understanding of conditions such as diabetes, obesity, thyroid 

disease, and aging. Thyroid hormone, an important regulator of energy expenditure, is not 

only necessary for the full expression of UCP1, but also induces UCP3 expression and 

UCP3-mediated uncoupling in skeletal muscle mitochondria of rodents (14).

There are two rare pathological disorders closely related to BAT. Hibernomas are benign 

tumors arising from brown adipocytes that have primarily been described in the neck, axilla, 

thoracic regions, and retroperitoneum most commonly in young adults (15). Subcutaneous 
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fat necrosis of the newborn is another clinical condition, often associated with asphyxia or 

hypothermia, that pathologically is characterized by focal areas of fat necrosis that are 

infiltrated by macrophages and, brown adipocytes at several stages of degeneration (16).

RECENT ADVANCES IN PEDIATRIC BAT RESEARCH

Until recently, the accumulated information on the thermogenic effect of BAT was derived 

from studies on rodents and hibernating mammals, with little awareness of its potential 

relevance to humans. Although first described in neonates back in 1902 (17), BAT only 

began to take on a life of its own a century later with the introduction of positron emission 

tomography/computed tomography (PET/CT). Today, a large body of evidence indicates 

that metabolically active BAT is present in a significant number of cancer patients 

undergoing PET/CT examinations (4, 5, 8, 10). There is, however, a strikingly higher 

prevalence of BAT depiction in pediatric PET/CT examinations (ranging from 31 to 77%) 

(4, 18-22) when compared to the prevalence in adults (5) – approximately 1 in 2 children 

versus 1 in 20 adults.

The depiction of BAT by PET/CT in children, like in adults, is related to environmental 

temperature and season. BAT activity is observed in most studies during cold exposure (4, 

23), consistent with histological evidence indicating that BAT is universally present in 

children and adults (24, 25). The percentage of PET/CT studies with metabolically active 

BAT is also higher in the winter months. This is true even in children living in warmer 

climates and when studies are obtained under thermoneutral conditions (4, 18). Indeed, it is 

becoming increasingly apparent that photoperiod and day length are strong determinants of 

BAT activity, independent of environmental temperature (6, 26).

Visualization of BAT in children is also dependent on disease status, weight, body 

composition, and the degree of sexual development (4, 18, 27, 28). Although excessive 

calorie intake has also been suggested to stimulate BAT activity in mice, whether diet 

induces BAT activation and thermogenesis in humans is the subject of considerable 

discussion (29). However, UCP1 polymorphisms have been reported to influence 

postprandial thermogenesis after a high fat meal in healthy boys (30).

A recent study in children with lymphoma found that while only about 10% of the PET/CT 

exams at diagnosis exhibited BAT, close to 80% of the follow-up exams displayed BAT 

when the patients were in remission (27). Although, the mechanism responsible for the 

suppression of BAT activity is unknown, patients with lymphomas have high circulating 

levels of tumor necrosis factor alpha (TNF-α) (31), a pluripotent cytokine reported to elicit 

apoptotic degeneration of brown adipocytes (32). This cytotoxic effect is known to be 

mediated by the p55 TNF-α receptor subtype, and its deletion has been shown to increase 

thermogenesis with an associated increase of UCP1 expression in BAT (33).

In contrast, the visualization of metabolically active BAT in adult patients with cancer is 

thought to be independent of disease status (34). Unfortunately, the low BAT prevalence, 

long treatment courses, and relatively poor survival rates greatly hinder longitudinal 

assessments of BAT in adult populations.

Gilsanz et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2013 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Association of BAT to Weight and Measures of White Adiposity in Children

Data from animal studies indicate that a reduced amount or function of BAT leads to 

obesity, insulin resistance, and dyslipidemia, while an increased amount or function protects 

against weight gain and its co-morbidities (35-38). Studies in humans also suggest that 

WAT and BAT are inversely related (5, 6, 8, 11, 34). Lean patients exhibit greater BAT 

activity than obese subjects, and most studies in adult patients report a negative relation 

between body mass and/or body fat and the degree of metabolically active BAT (5, 6, 9). 

Other studies, however, find no relation between BAT and body mass (39, 40) or measures 

of adiposity (40, 41). Similar discrepancies are reported in pediatric cross-sectional studies; 

while one observed an inverse relationship between body mass index (BMI) and BAT 

activity (20), others found no significant differences in the weight, BMI, or measures of 

subcutaneous adiposity between children with and without functioning BAT (18, 23).

The activation of BAT in children has been shown to be related to changes in weight and 

adiposity (28). Pediatric cancer patients with no visualization of BAT at diagnoses, but with 

evidence of BAT activity at follow-up PET/CT studies gained significantly less weight and 

subcutaneous and visceral adiposity than those who remained without BAT activity when 

disease-free. On average, increases in weight and subcutaneous fat were three times greater, 

and those in visceral fat six times greater, in children who did not demonstrate any BAT 

activity when compared to children who had metabolically active BAT (28).

The results of a recent study based on magnetic resonance imaging (MRI), provide 

additional evidence that overweight/obese children have significantly less total (functional 

and non-functional) BAT in the supraclavicular area than lean, healthy children (81) (Figure 

1). Moreover, there appears to be a strong inverse relation between magnetic resonance 

imaging measures of BAT and weight or BMI% in overweight/obese children. Interestingly, 

the strength of this negative relation is similar to the strength of the positive correlation 

between values of WAT and these anthropometric measures.

Although BAT activation could decrease WAT as a result of increased energy consumption 

(8), it is also possible that WAT suppresses BAT function. The white adipocyte is known to 

produce cytokines and chemokines, such as TNF-α, IL-6, and monocyte chemoattractant 

protein 1, that induce inflammation and could potentially have cytotoxic effects on BAT (42, 

43). Additionally, an increase in BAT could directly lead to an increase in muscle function 

and energy expenditure, which in turn leads to a decrease in adiposity. Studies are needed to 

establish the direction of causality between BAT activity and WAT accumulation and the 

degree to which this relationship is mediated by muscle.

Association of BAT to Muscle Development in Children

Recent data shows that pediatric patients with metabolically active BAT on PET/CT 

examinations have significantly greater muscle volume than patients with no identifiable 

BAT (18). On average, boys and girls who exhibit BAT have approximately 33 to 50% 

greater muscle volume than patients who do not exhibit BAT (18). This clinical observation 

is consistent with information that brown adipocytes and myocytes share many features, 

including an abundance of mitochondria, energy expenditure via oxidative phosphorylation, 
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and sympathetically mediated adaptive thermogenesis (38, 44-46). They also express 

myogenic factors, such as myf5, and may derive from a common lineage in the paraxial 

mesoderm (46, 47). Further support for a muscle-BAT link comes from a landmark 

investigation indicating that exercise-induced gains in muscle lead to an increase in the 

amount of cells with a brown fat phenotype (48). This study identifies a new hormone, 

irisin, as an exercise-induced myokine that allegedly activates the induction of brown 

adipocytes in white adipose tissue depots, a process known as white fat “browning.”

Skeletal musculature increases substantially during puberty. Gains in musculature associated 

with sexual development closely equal the growth of all other organs, systems, and tissues 

combined. Concurrently, a higher prevalence and large amounts of BAT are also present 

during adolescence. Whereas less than 20% of PET/CT exams in pre-pubertal girls or boys 

exhibit metabolically active BAT, more than 75% of such studies in pubertal teenagers 

display BAT uptake (4). Additionally, the volume of BAT increases during puberty in both 

sexes (Figure 2). The magnitude of the increase is substantially greater during the late stages 

of sexual development, higher in boys when compared to girls, and closely related to gains 

in muscle volume (18). While the reasons for the pubertal increase in BAT are unknown, 

data suggest that sex steroids and growth hormone have a marked effect on BAT activity 

(49, 50). Interestingly, past postmortem studies suggests UCP1 activity to be higher in 

teenagers compared to neonates (51).

Association of BAT to Skeletal Development in Children

Two recent clinical studies suggest that BAT might be involved in the regulation of bone 

mass in humans. The first in young women with anorexia nervosa reported a positive 

relation between BAT and bone density in the axial skeleton, which was independent of 

disease status and body mass (52). The second study in children found the volume of BAT 

to be positively related to the amount of bone in the appendicular skeleton – a relation that 

was also independent of known major determinants of bone acquisition, such as height, 

weight, and gender (53).

The reason(s) for the association between BAT and bone mass are yet to be defined. 

Available data, however, supports a link between BAT and bone formation. The 

retinoblastoma protein was recently identified as a mesenchymal cell-fate regulator that 

controlled differentiation into either the brown adipocyte or the osteoblast (54). Several 

reports have found this key regulator to be capable of both inhibiting adipogenic 

differentiation and promoting osteoblast maturation (54, 55). Studies in animal models also 

suggest that BAT may be involved in regulating osteoblastogenesis. Heterotrophic 

ossification modeled by the bone morphogenic protein-2 is known to induce the 

accumulation of brown adipocytes and subsequently trigger chondrocyte development and 

bone formation (56). Moreover, mice lacking functional BAT have very low bone mass, 

reduced osteoblast activity, and increased bone resorption (57).

Regardless of the mechanism by which BAT influences skeletal growth, maintaining 

optimal bone mass depends on sensing and transducing mechanical loading information 

derived from muscle contractions (58). Therefore, the possibility exists for muscle to 

mediate the relationship between BAT and bone development (53). Support for the notion 
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that BAT is crucial to the maintenance of musculoskeletal integrity comes from two 

physiologic situations characterized by an abundance of BAT in which decreased skeletal 

loading and locomotion do not result in muscle or bone loss. Large hibernating mammals are 

remarkably able to maintain their muscle and bone mass despite losing a third of their 

weight and remaining immobile over a period of nearly seven months (58, 59). Similarly, 

infancy is a developmental stage associated with rapid increases in muscle and bone mass 

despite the lack of significant skeletal loading.

Studies are needed to determine the degree to which BAT contributes to the maintenance of 

muscle function in the absence of mechanical strains associated with loading or locomotion.

FUTURE DIRECTIONS

To date, most studies on the molecular regulation of BAT have been conducted in animal 

models and suggest that at least two types of brown adipocytes from distinct lineages exist – 

myoblast origin and adipocyte origin (45). Classical brown adipocytes (i.e., “pre-existing” 

brown adipocytes) that reside in the interscapular BAT depot form during the prenatal stage 

from myoblastic-like myf5 positive precursors and have a gene profile similar to that of 

skeletal muscle (46) (Figure 3A). These myf5 positive cells differentiate into brown 

adipocytes through the action of the transcriptional regulators PRDM16, PPARγ, and/or C/

EBP-β. Additionally, pockets of a second, distinct type of brown adipocyte are found 

sporadically in the WAT of adult animals that have been exposed to chronic cold or to 

PPARγ agonists. While these inducible brown adipocytes, also known as brown-in white 

(BRITE) cells, possess many of the biochemical and morphological characteristics of brown 

adipocytes, including the presence of multilocular lipid droplets and UCP1 expression (60), 

they arise from a non-myf5 cell lineage (Figure 3B).

There should ultimately be increased scope for studies decoding the transcriptional control 

of human brown fat development. This is especially pertinent as the gene profile of 

specialized tissues, such as BAT, has a very different molecular signature in humans 

compared with mice (61). Recent data reports differences in the response of UCP1 mRNA to 

hormonal stimulation even between rat and mouse brown adipocytes (62). Emerging 

questions that must be address regarding the biological significance of the two types of 

brown adipocytes in humans include: What are the molecular or functional differences 

between the two types of brown adipocytes? Are the molecular signatures of these cells in 

humans closer to that of myocytes or white adipocytes? How relevant is the inducible-brown 

adipocyte for the control of energy homeostasis as well as for obesity and metabolic 

disease? Of note are data indicating that preadipocytes isolated from supraclavicular fat in 

humans, ages 35-64 years, are capable of differentiating into brown adipocytes in vitro, 

regardless of PET status (63). Hence, molecular pathways of brown fat development should 

be intact and can be reactivated in adult humans. In this regard, synthetic PPARγ ligands 

such as thiazolidinedione, widely used in drugs to treat type 2 diabetes, can direct white 

preadipocytes into mature brown adipocytes (64-66); this PPARγ ligand-induced browning 

effect is reported to be mediated through stabilization of the PRDM16 protein (67).
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Recently, we examined the relevance of BRITE cells in humans by analyzing the molecular 

signature of human BAT isolated from infants and adolescents. To our surprise, BAT in 

children predominantly expressed BRITE cell-selective genes rather than pre-existing brown 

fat-selective genes. This data indicate that human BAT possesses molecular signatures that 

resemble beige cells (82).

Obesity has become the leading cause of preventable death. Since lean children appear to 

have greater BAT activity than obese subjects, there is considerable interest in defining the 

mechanisms responsible for relations between BAT and body composition. As it also seems 

that BAT and muscle mass are positively related and higher muscle mass is associated with 

better insulin sensitivity and lower risk of pre-diabetes (68), it is imperative that we examine 

the influence that BAT has on metabolic health. Specifically, there is a need to establish 

whether a deficiency in BAT in early postnatal life permanently increases the risk of obesity 

and its comorbidities throughout life.

Of equal importance is to determine how the transcriptional and epigenetic regulatory 

networks that govern human brown adipocytes respond to early stages of human postnatal 

growth. Post-mortem studies indicate that BAT is established in fetuses within the fifth 

month of gestation (69). At the time of birth, BAT abundance peaks as reflected by levels of 

UCP1, before declining over the next 9 months (51). Studies are needed to examine the 

degree to which BAT accounts for phenotypic differences among infants, and the degree to 

which BAT is influenced by maternal health and diet, gestational age, birth weight, and 

feeding practice. For example, current data shows that compared to formula-fed infants, 

breast-fed (BF) infants are leaner and grow more slowly (52). Not only do BF infants grow 

at different rates during infancy, but breastfeeding appears to have a profound long-term 

influence on metabolism and disease risk later in life (70). The notion that BAT accounts for 

the leaner phenotype of BF infants is supported by observations that leptin, ghrelin, 

adiponectin, resistin, and obestatin, all hormones involved in energy balance regulation, are 

identified in breast milk (71). Indeed, both leptin and adiponectin concentrations in breast 

milk have recently been found to influence UCP1 expression in BAT and negatively 

correlate with infant body weight (72).

Given that BAT is a highly dynamic and elusive tissue that can exist in a variety of states 

depending on a wide spectrum of environmental factors, other non-invasive approaches 

beyond PET/CT are needed to assess the relevance of this tissue in humans. Thermal 

imaging is a rapid, nonionizing, and acceptable technique that can reliably quantify 

thermogenesis within the supraclavicular region in humans (73, 74). Increases in BAT 

activity are closely related to a rise in depot temperature. However, the accuracy of these 

measures decreases in obese subjects since it is influenced by the amount of subcutaneous 

tissue in the supraclavicular fossa (75).

MRI developments will likely be a major driving force in deciphering the relevance of BAT 

in children. Based on the cytological differences in lipid content and degree of 

vascularization between BAT and WAT, fast magnetic resonance techniques are being 

developed that provide reliable BAT measures which can be applied even to infants without 

the need for sedation (76, 77) (Figure 4). It should be noted that BAT depots contain a 
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mixture of multilocular brown adipocytes interspersed within unilocular white adipocytes, 

and that no imaging modality currently has sufficient resolution to localize microscopic 

deposits of brown adipocytes within a mixed cell population.

Lastly, emerging evidence indicates circadian rhythms in BAT activity (78). Data in mice 

using PET/CT shows a diurnal rhythm in glucose uptake by BAT (79). Studies are needed to 

establish the rhythms in clock gene expression in BAT in humans and whether the activity 

of this tissue increases during night. Given the close association between exercise-induced 

muscle function, the release of irisin, and the formation of brown fat-like adipocytes (48), it 

is essential to investigate the possible correlate to complete the cycle: Does sleep-induced 

BAT activity promote structural and metabolic changes in skeletal muscle? And which 

brown adipokine(s) governs this adaptive response? Only then will we be in a position to 

begin to understand the mechanism(s) by which musculoskeletal development progresses 

during periods of inactivity.

CONCLUSIONS

Brown fat is known to have been present in mammals over 150 million years ago, and was 

considered an evolutionary advantage due solely to its unique ability to enhance survival in 

cold environments (7, 80). However, it is becoming increasingly clear that this tissue may 

have greater relevance to human health. The main areas of progress in BAT research during 

the last decade have been: 1) the general acceptance that this tissue is present in humans of 

all ages and especially abundant during adolescence, 2) the recognition that BAT may not 

only dissipate energy in the form of heat, but may also be a key determinant of weight and 

musculoskeletal development during childhood, and 3) insights into the complex 

transcriptional controls of brown fat development. Although much more work is needed, it is 

tempting to think that our challenge for the next decade lies in delineating the molecular 

regulation of BAT in humans and the crosstalk between brown and white adipocytes and 

myocytes. Defining the implications that BAT has for early human growth and how it 

influences health as we age is a most attractive and promising field of research.
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Figure 1. 
Presence of BAT and BMI percentile. Coronal MR views of a (A) healthy 11-year old boy 

with a BMI in the 79th percentile depicting both white and brown fat (represented by a 

yellow/green fat fraction) and of an (B) obese 11-year old boy with a BMI in the 98th 

percentile showing only white fat (represented by a red fat fraction). The fat fraction (%) 

scale is represented on the right.
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Figure 2. 
Gains in brown adipose tissue during adolescence. Regardless of sex, BAT volume 

increased with age in boys (black) and girls (white) (r = 0.77 for boys and r = 0.72 for girls; 

both P’s < .001). (Adapted from Journal of Pediatrics, Vol. 160, Gilsanz V, Smith ML, 

Goodarzian F, Kim M, Wren TA, Hu HH, Changes in brown adipose tissue in boys and girls 

during childhood and puberty, pp. 604-609.e1, Copyright 2012, with permission from 

Elsevier.)
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Figure 3. 
Differential developmental origins of brown and white adipocytes. Brown adipose tissue (A) 

and white adipose tissue (B) have separate developmental origins in the embryo. (A) BAT 

and skeletal muscle originate during the prenatal stage from precursors in the 

dermomyotome that express engrailed-1 (En1) and myf5. PRDM16, PPARγ, PGC-1α and 

UCP1 are functional markers of brown adipose cells in the developmental, homogenous 

deposits of BAT. (B) The embryonic stem cells of the white adipose lineage remain to be 

well defined. The “inducible”-brown adipocytes in WAT develop in response to cold, β-

adrenergic stimulation or PPARγ agonists. These cells may be derived from myf5(−) brown 

precursors or directed differentiation from white preadipocytes or from mature white 

adipocytes. (Adapted from Cell Metabolism, Vol. 11, Kajimura S, Seale P, Spiegelman BM, 

Transcriptional control of brown fat development, pp. 254-62, Copyright 2010, with 

permission from Elsevier.)
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Figure 4. 
Imaging characteristics of brown and white adipose tissue in infancy. Axial (A, B) and 

coronal (C, D) MR views of a 4 month infant depicting both white fat (white arrow) and 

brown fat (brown arrow) at the level of thoracic inlet. Compared to white fat, brown fat is 

hypointense/darker in the fat images (A, C), and has a lower fat fraction (green versus red) 

in the co-registered fat and water images (B, D). (Adapted from Sharp LZ, Shinoda K, Ohno 

H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S. 

Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 

2012;7(11):e49452.)
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