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Abstract. The restrictive nature of the blood brain barrier 
(BBB) brings a particular challenge to the treatment of central 
nervous system (CNS) disorders. The effect of ultra‑wide band 
electromagnetic pulses (UWB‑EMPs) on BBB permeability 
was examined in the present study in order to develop a safe 
and effective technology that opens the BBB to improve treat-
ment options for CNS diseases. Rats were exposed to a single 
UWB‑EMP at various field strengths (50, 200 or 400 kV/m) and 
the BBB was examined using albumin immunohistochemistry 
and Evans blue staining at different time periods (0.5, 3, 6 and 
24 h) after exposure. The expression and distribution of zonula 
occludens 1 (ZO‑1) were evaluated using western blotting to 
identify a potential mechanism underlying BBB permeability. 
The results showed that the BBB permeability of rats exposed 
to UWB‑EMP increased immediately following UWM‑EMP 
treatment and peaked between 3 and 6 h after UWB‑EMP 
exposure, returning to pre‑exposure levels 24 h later. The 
data suggested that UWB‑EMP at 200 and 400 kV/m could 
induce BBB opening, while 50 kV/m UWB‑EMP could not. 
The levels of ZO‑1 in the cerebral cortex were significantly 
decreased at 3 and 6 h after exposure; however, no change 
was observed in the distribution of ZO‑1. The present study 
indicated that UWB‑EMP‑induced BBB opening was field 
strength‑dependent and reversible. Decreased expression of 
ZO‑1 may be involved in the effect of UWB‑EMP on BBB 
permeability.

Introduction

An increasingly aging population and deterioration in the 
quality of the environment are contributing to the increased 
incidence of central nervous system (CNS) diseases such as 
stroke, traumatic brain injury, brain tumors and neurode-
generative disorders  (1). According to previous statistics, 
in 2015 the number of mortalities and disability‑adjusted 
life‑years from neurological disorders were 9.40 and 250.7 
million individuals, respectively, which suggests that CNS 
diseases are amongst the leading causes of disability and 
mortality worldwide (2). It is reported that the median survival 
of patients with glioblastoma is only 4‑15 months, and the 
5‑year survival rate is <5% (3). One of the reasons for the 
poor therapeutic effect of drugs used in the treatment of CNS 
diseases is that they cannot effectively be delivered to the 
lesions in the brain due to the blood‑brain barrier (BBB) (4). 
The BBB consists of non‑fenestrated brain microvascular 
endothelial cells (BMECs), which form the lining of brain 
capillaries, and adjacent cells including astrocytes and peri-
cytes (5). BMECs are highly specialized structures due to their 
extensive tight junctions (TJs) between them (6). They play an 
important role in BBB function by restricting and precisely 
regulating the exchange of molecules between the peripheral 
circulatory system and CNS (7). Consequently, as a result of 
the presence of the BBB, numerous drugs with a molecular 
weight of >400 Da cannot reach the lesions in the brain (8), 
severely reducing the therapeutic effect of drugs used in the 
treatment of CNS diseases. Therefore, safe regulation of 
the permeability of the BBB has become a key issue in the 
treatment of CNS diseases.

During previous decades, various methods have been 
evaluated to overcome the problems associated with BBB 
permeability, such as local delivery strategies to bypass the 
BBB and physical mechanisms to breach the BBB (8). The 
former, which is extremely invasive, primarily refers to 
convection‑enhanced delivery (CED) that uses positive pres-
sure to inject anti‑cancer agents directly into brain tumors 
and thus bypass the BBB  (9). The latter includes focused 
ultrasound, photodynamic therapy and electromagnetic micro-
wave pulsed (EMP) radiation (10). All these processes have 
been reported to open the BBB reversibly in a less invasive 
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manner than CED (11‑13). However, focused ultrasound and 
photodynamic therapy must be used with microbubbles and 
photosensitizers, respectively, which makes these two methods 
more complicated and higher‑risk (14,15).

Our previous studies demonstrated that in vivo (non‑inva-
sive) exposure of rats to EMP with a field strength of 200 kV/m 
and a pulse width of 14 nsec caused a temporary and revers-
ible increase in BBB permeability; the permeability peaked 
at 3 h after EMP exposure (13). Moreover, the transendothelial 
electrical resistance of an in vitro BBB model, established 
by co‑culturing primary rat BMECs and astrocytes, is lower 
after EMP exposure, which indicates increasing BBB perme-
ability (16,17). Li et al (18) also reported that exposure of rats 
to EMP facilitated lomustine to penetrate the BBB and be 
delivered the site of a brain tumor. Nevertheless, for clinical 
application of EMP, it is important to evaluate the relationship 
between the biological effect of EMP and parameters such as 
electric field strength and exposure duration. Compared with 
traditional EMP, ultra‑wide band EMP (UWB‑EMP) exhibits 
a shorter rise time (within the psec range), higher instantaneous 
peak power and wider spectrum (19). Thus far, there have been 
very few studies focusing on the effects of UWB‑EMP on 
BBB permeability. In the present study, a range of EMP field 
strengths and post‑exposure durations were used to examine 
the potential of UWB‑EMP to alter BBB permeability in rats 
with the aim of facilitating the development of techniques to 
be applied in clinical settings.

Materials and methods

Animals. A total of 138  male Sprague‑Dawley (SD) rats, 
weighing 220±20 g (age, 7 weeks), were obtained from the 
Laboratory Animal Center of Air Force Medical University. 
Rats were acclimatized for 1 week, and housed in groups of 
6 in polycarbonate cages under a 12:12‑h light‑dark cycle, 
60% humidity and a temperature of 23±2˚C with ad libitum 
access to food and tap water. They were fasted for 12 h prior to 
use in the experiments, which were conducted in accordance 
with the National Institutes of Health Guide for the Care and 
Use of Laboratory Animals (20) and approved by the Animal 
Experimentation Ethics Committee of Airforce Medical 
University (approval no. IACUC‑20180503).

UWB‑EMP exposure and experiment protocols. The 
UWB‑EMP exposures were conducted in a microwave 
chamber which housed the UWB‑EMP generator (Northwest 
Institute of Nuclear Technology) and a platform to place 
animals. During exposure, rats were kept individually in a 
special transparent polymethyl methacrylate box (6x6x20 cm) 
and placed on the platform. UWB‑EMP pulses were generated 
by a spark gap pulse generator and transmitted as previously 
described  (21). The pulse repetition rate was 10  Hz and 
the pulse duration was 0.9 nsec. Appropriate electric field 
strength was achieved by modifying the distance between the 
UWB‑EMP generator and the platform.

The first experiment was conducted to investigate BBB 
permeability at different time periods following a single 
UWB‑EMP exposure at  400  kV/m (total 20,000 pulses). 
A total of 90 SD rats were randomly divided into 5 groups 
(n=18/group, evenly split for Evans blue (EB) staining, 

immunohistochemistry and western blotting): Group 1, sham 
exposure (without UWB‑EMP transmission in the same 
microwave chamber); and groups 2‑5, examination of BBB 
at 0.5, 3, 6 and 24 h, respectively, after a single UWB‑EMP 
exposure at a field strength of 400 kV/m for 20,000 pulses.

A second experiment was conducted to investigate the 
effect of different field strengths of UWB‑EMP on BBB. 
A total of 48 SD rats were randomly divided into 4 groups 
(n=12/group, evenly split for EB staining and albumin 
immunohistochemistry): Group 1, sham exposure (without 
UWB‑EMP transmission in the same microwave chamber); 
and groups 2‑4, UWB‑EMP exposure at a field strength of 50, 
200 and 400 kV/m for a total of 20,000 pulses, respectively. 
Thus, the average specific absorption rates of groups 2‑4 
were 1.10x10‑4, 1.75x10‑3  and 7.01x10‑3 W/kg, respectively. 
The BBB permeability was examined at 3 h after UWB‑EMP 
exposure.

All animals were anesthetized by intraperitoneal admin-
istration of 1% sodium pentobarbital (45 mg/kg). In the first 
experiment, animals were sacrificed at different time periods 
after UWB‑EMP exposure according to the grouping. In 
the second experiment, animals were sacrificed at 3 h after 
exposure, prior to subsequent procedures, including cardiac 
puncture and perfusion.

EB staining. EB staining is frequently used as a marker to 
evaluate BBB opening due to its ability to bind to plasma 
albumin (22). At 30 min prior to sacrifice, each animal was 
injected intravenously (4 ml/kg) with 4% EB (MP Biomedicals, 
LLC). After perfusion with 0.9% normal saline and subse-
quently 4% paraformaldehyde, brains were removed and 
frozen at ‑80˚C, and then embedded in Tissue‑Tek® O.C.T.™ 
cryostat‑embedding compound (Sakura Finetek USA, Inc.). 
Brains were sectioned at a thickness of 30 µm. Randomly 
selecting six visual fields, EB extravasation was visualized 
using a f luorescence microscope (Leica Microsystems 
GmbH; total magnification, x400) with green light excitation. 
Quantification was performed using a scoring system by three 
experienced, blinded, independent lab technicians as previ-
ously described (13). Briefly, four frozen sections containing 
the frontal cortex from each rat were selected and a total of 
24 sections were examined in each group. The comprehensive 
score (CS) of EB leakage was determined based on: i) Quantity 
of EB fluorescence spots; ii)  intensity of fluorescence; and 
iii)  range of fluorescence spots. Fluorescence range and 
intensity were divided into four levels from weak to strong as 
follows: Negative, 0; small range/weak intensity; 1; moderate 
range/intensity, 2; large range/strong intensity, 3. The CS of EB 
leakage for each section was obtained by adding the quantity 
of EB spots, the value for EB intensity and the value for EB 
range. The average score of 4 sections was the final CS of EB 
leakage for each rat.

ELISA. Blood was collected from each rat via cardiac punc-
ture prior to perfusion. Whole blood samples were stored 
at  4˚C overnight to separate serum via natural precipita-
tion. A rat S100β ELISA kit (sensitivity of 37.5  pg/ml; 
cat.  no. E‑EL‑R 0868; Wuhan Elabscience Biotechnology 
Co., Ltd.) was used to measure serum S100β levels according 
to the manufacturer's instructions. The absorbance of the 
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final yellow product was detected spectrophotometrically 
at 450 nm wavelength (Bio‑Rad Laboratories, Inc.) and the 
optical density values were converted into concentrations via 
a standard curve.

Immunohistochemistry. After anesthesia and perfusion, the 
brains were dissected and fixed in 4% paraformaldehyde at 
room temperature overnight. Paraffin‑embedded sections 
with a thickness of 5  µm were prepared, dewaxed and 
hydrated. Hydrogen peroxide‑methanol solution (3%) was 
used to eliminate the endogenous peroxidase activity at 
room temperature for 15 min, and 0.01 M citrate buffer was 
used for antigen retrieval in the microwave. Sections were 
washed three times with PBS and blocked with 5% normal 
donkey serum (cat. no. SL050; Beijing Solarbio Science & 
Technology Co., Ltd.) in PBS at room temperature for 30 min. 
Then, the slides were incubated with sheep anti‑albumin 
antibody (1:500; cat. no. A110‑134A; Bethyl Laboratories, 
Inc.) and rabbit anti‑zonula occludens 1 (ZO‑1) antibody 
(1:100; cat. no. 61‑7300; Zymed; Thermo Fisher Scientific, 
Inc.) at 4˚C overnight. After washing with PBS, horseradish 
peroxidase (HRP)‑conjugated donkey anti‑sheep antibody 
(1:500; cat. no. ab6900; Abcam) or FITC‑conjugated goat 
anti‑rabbit antibody (1:100; cat.  no.  A22120; Abbkine 
Scientific Co., Ltd.) was added to the slides and incubated 
for 2 h at room temperature. For albumin immunohistochem-
istry, the color was developed using 2,2'‑diaminobenzidine 
(Boster Biological Technology) at room temperature for 
~5  min. Following hematoxylin counterstaining (room 
temperature; 1 min), slides were sealed with neutral gum. A 
total of 24 sections in each group were observed and photo-
graphed using a light microscope (Nikon Corporation; total 
magnification, x400). Semi‑quantitative evaluation of albumin 
immunohistochemistry was conducted in a similar manner to 
quantification of EB fluorescence.

Western blot analysis of ZO‑1 and heat‑shock protein 70 
(HSP70). Brains were immediately dissected after euthanasia, 
and the cortex was separated on ice and stored at ‑80˚C. The total 
protein in the cortex was obtained with a whole protein extrac-
tion kit (cat. no. KGP250; Nanjing KeyGen Biotech Co., Ltd.) 
and then quantified using a bicinchoninic acid assay kit (Boster 
Biological Technology). A total of 40 µg of each protein sample 
was loaded per lane and then separated via 8% SDS‑PAGE and 
transferred onto PVDF membranes (EMD Millipore). After 
blocking in TBS‑0.1% Tween‑20 and 5% nonfat dry milk at 
room temperature for 1 h, the membranes were incubated with 
rabbit polyclonal anti‑ZO‑1 antibody (1:1,000; cat. no. 61‑3700; 
Zymed; Thermo Fisher Scientific, Inc.), rabbit anti‑HSP70 
antibody (1:1,000; cat.  no.  ab181606; Abcam) and mouse 
anti‑GAPDH antibody (1:2,000; cat. no. ab8245; Abcam) at 4˚C 
overnight. After rinsing with TBS‑0.1% Tween 20, membranes 
were then incubated HRP‑conjugated goat anti‑rabbit IgG 
(1:5,000; cat. no. ab6721; Abcam) and HRP‑conjugated goat 
anti‑mouse IgG (1:5,000; cat. no. ab6789; Abcam) at room 
temperature for 2 h. Finally, the membranes were washed 
four times and developed using an Immobilon Western 
Chemiluminescent HRP Substrate kit (EMD Millipore). Gray 
value analysis was performed using QuantityOne software 
version 4.6.8 (Bio‑Rad Laboratories, Inc.).

H&E staining. Paraffin‑embedded sections (5  µm) were 
prepared as described above. After conventional gradient 
dewaxing, three sections containing the frontal cortex from 
each rat (total of 18 sections of each group) were stained in 
hematoxylin staining solution for 5 min. Following rinsing 
with tap water for 2 min, sections were placed in an alcohol 
hydrochloride differentiation fluid for 10 sec and rinsed with 
tap water for ~10 min until the blue color returned. Then, the 
sections were stained with eosin for 1 min, then washed with 
distilled water and dehydrated with gradient alcohol. Finally, 
the sections were rendered transparent with xylene and sealed 
with neutral gum. All procedures were performed at room 
temperature. The morphology of brain tissue was observed 
in five random visual fields of each section using a light 
microscope (Nikon Corporation; total magnification, x200).

Statistical analysis. The normality of variables was evaluated 
using Lilliefors test. Data were expressed as the mean ± SD if 
they were normally distributed (S100β concentration, relative 
amount of HSP70 and ZO‑1). If non‑normally distributed (CS 
of EB fluorescence, CS of albumin immunohistochemistry), 
the data were expressed as the median (interquartile range). 
One‑way ANOVA and Tukey's multiple comparison test were 
applied for comparisons of normally distributed data, whereas 
Kruskal‑Wallis H test followed by Dunn‑Bonferroni test for 
post hoc comparisons was used to analyze non‑distributed 
data. All data were analyzed using SPSS 22.0 software (IBM 
Corp.), and P<0.05 was considered to indicate a statistically 
significant difference.

Results

Inf luence of a single UWB‑EMP exposure on BBB 
permeability at different time periods after exposure. The 
permeability of the BBB was evaluated via EB and albumin 
extravasation into the brain parenchymal cells, and the levels 
of S100β in serum at different time periods after a single 
exposure to UWB‑EMP at the field strength of 400 kV/m. The 
fluorescence images of EB in sham‑exposed controls revealed 
very few or no red fluorescence spots, which are indicative 
of perivascular albumin leakage, in the cortex (Fig. 1A). In 
animals exposed to UWB‑EMP, there was a greater number 
of fluorescence spots at 0.5 h, which was further increased 
at 3 and 6 h. However, at 24 h after UWB‑EMP exposure, the 
leakage was similar to that observed in sham‑exposed controls 
(Fig. 1A). The CS for EB fluorescence in 3 h post‑exposure 
group [6.625 (6.000, 7.313); P=0.001] and 6 h post‑exposure 
group [6.125 (5.375, 6.500); P=0.013] was significantly higher 
compared with the sham group [0.000 (0.000, 1.625); Fig. 1A]. 
The CSs obtained from immunohistochemical analysis of 
albumin extravasation showed perivascular albumin leakage 
at 0.5 h after UWB‑EMP exposure [5.500 (5.000, 6.000); 
P=0.535] compared with the sham group [0.000 (0.000, 
0.125); Fig. 1B]. At 3 h after exposure, both the number of 
microvessels with albumin exudation and the extent of exuda-
tion increased [10.250 (10.188, 10.750); P=0.001], and the 
CS of albumin extravasation peaked at 6 h [10.500 (10.188, 
11.375); P=0.003]. However, at 24 h, albumin distribution in 
UWB‑EMP‑exposed animals resembled that in sham‑exposed 
controls (Fig. 1B). The levels of S100β in serum were also 
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significantly increased at  6  h after UWB‑EMP exposure 
(371.292±25.190 ng/ml; P<0.001), while at other exposure 
time points, there was no significant difference between 
UWB‑EMP‑exposed and sham‑exposed animals (Fig. 1C).

Influence of UWB‑EMP field strength on BBB. Following 
the observation that the highest increase in BBB perme-
ability occurred between 3 and 6 h after a single UWB‑EMP 
exposure, the influence of field strength on the BBB was then 
examined. The CSs for albumin immunostaining and EB 

fluorescence in sham‑exposed animals were not significantly 
difference compared with those exposed to UWB‑EMP 
at 50 kV/m (Fig. 2). However, when UWB‑EMP exposure was 
conducted with a field strength of 200 or 400 kV/m, marked 
perivascular extravasation of albumin and EB fluorescence 
was observed in the cerebral cortex of the rats (Fig. 2). The 
CSs of EB fluorescence and exudation of albumin in animals 
exposed to UWB‑EMP at 400 kV/m [9.250 (8.688, 11.813) and 
10.125 (9.875, 12.313), respectively] were notably increased 
compared with in the 200 kV/m UWB‑EMP group [6.375 

Figure 1. (A) EB fluorescence and (B) albumin immunohistochemical staining of the cerebral cortex of rats at different time points after a single UWB‑EMP 
exposure (scale bar=50 µm) and the CSs for EB staining and albumin immunohistochemistry are presented as the median (interquartile range). (C) Serum 
S100β levels in rats at different time points after UWB‑EMP exposure. The concentration of serum S100β is presented as the mean ± SD. *P<0.05, **P<0.01, 
***P<0.001 vs. sham group. CS, comprehensive score; EB, Evans blue; UWB‑EMP, ultra‑wide band electromagnetic pulse.
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(5.625, 7.563) and 4.750 (4.188, 5.375), respectively] although 
the differences were not statistically significant (P=0.637 and 
P=0.813, respectively; Fig. 2).

Effect of UWB‑EMP exposure on ZO‑1 in the cortex. ZO‑1 
is a major TJ protein important for maintaining BBB perme-
ability in the brain (23). Western blot analysis was conducted to 
evaluate the expression of ZO‑1, while immunohistochemical 
staining was performed to observe the distribution of ZO‑1. The 
results showed that the expression levels of ZO‑1 at 3 and 6 h 
after UWB‑EMP exposure (0.942±0.025 and 0.871±0.033, 
respectively) were significantly decreased (P=0.012 and 
P<0.001, respectively) and, at 24 h after UWB‑EMP exposure, 
the expression of ZO‑1 (0.984±0.025) was slightly lower than 
that of sham‑exposed controls (the difference was not statisti-
cally significant; P=0.758; Fig. 3B). However, the distribution 
of ZO‑1 did not notably vary at different exposure time points 
following UWB‑EMP exposure (Fig. 3A).

Effect of UWB‑EMP on HSP70 levels in cortex. Western blot 
analysis of HSP70 expression showed that the expression levels 
of HSP70 at different time points after UWB‑EMP exposure 
were not significantly altered (Fig. 4A).

Effect of UWB‑EMP on the morphology of cerebral cortex. 
The safety of UWB‑EMP exposure was evaluated by analyzing 

morphological changes in H&E‑stained cerebral cortex 
sections. The data indicated no markedly histopathological 
abnormalities in any animals exposed to UWB‑EMP (Fig. 4B).

Discussion

The development of safe and effective technology to permit 
access through the BBB is of paramount importance to 
combating CNS diseases. Oscar and Hawkins (24) observed 
that a single exposure of rats to 1.3 GHz of continuous or 
pulsed microwave radiation can increase the permeability of 
the BBB in the medulla, cerebellum and hypothalamus, but 
not in the hippocampus and cortex. Albert and Kerns (25) 
also observed reversible opening of the BBB in random areas 
of the brains of hamsters exposed to 2.45 GHz microwave 
radiation. A number of other in vitro and in vivo studies in rats 
reported similar observations of enhanced permeability of the 
BBB (26‑29). Conversely, Soderqvist et al (30,31) conducted 
studies in humans, using serum S100β, transthyretin and 
β‑trace protein as markers to examine the impact of 890 MHz 
microwave radiation on BBB integrity; however, they failed 
to observe an association or an effect of microwave exposure 
on the human BBB. These contradictory results may be due to 
differences in experimental subjects, varying methodologies 
and, most importantly, diverse microwave exposure param-
eters. Furthermore, most of the studies that reported impaired 

Figure 2. (A) EB fluorescence and (B) albumin immunohistochemical staining of the cerebral cortex of rats after ultra‑wide band electromagnetic pulse 
exposure with different electric field strengths (scale bar=50 µm) and the CSs for EB staining and albumin immunohistochemistry are presented as the median 
(interquartile range). *P<0.05, ***P<0.001 vs. sham group. CS, comprehensive score; EB, Evans blue.
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BBB integrity following exposure to microwaves focused on 
adverse effects of long‑term exposure and did not consider 
the thermal effect of microwave radiation, which can damage 
normal tissue seriously. The ideal microwave exposure that can 
be applied to assist drugs in penetrating the BBB is preferably 
a single non‑thermal exposure.

UWB‑EMP is widely used in radar technology, elec-
tronic countermeasures and wireless communications (32). 
They have a sub‑nsec rise time and a pulse width within a 
small number of nsec. The ultra‑short rise time results in its 
ultra‑wide spectrum, and the ultra‑short pulse width allows a 
high peak power density without producing hyperthermia (33). 
Therefore, the influence of a single UWB‑EMP exposure 
of varying electric field strength was examined on BBB 
permeability in the present study. The results indicated that 
the BBB permeability of rats began to increase immediately 
after UWB‑EMP exposure, reaching a maximum between 
3‑6 h after exposure and returning to normal within 24 h. 
Subsequent experiments indicated that UWB‑EMP exposure 

with different field strength induced field strength‑dependent 
effects on BBB permeability, as BBB permeability increased 
with increasing UWB‑EMP field strength.

S100β is a protein secreted by glial cells (34). Generally, 
the concentration of S100β in peripheral blood is very 
low; a clinical cutoff value ≤0.10 µg/l has been considered 
normal (35). When the BBB is damaged, S100β can enter the 
circulatory system in large quantities; thus, the S100β concen-
tration in serum can indirectly reflect the degree of BBB 
disruption (36). As the biological half‑life of plasma S100β is 
1‑2 h (24), its content also indicates the cumulative degree of 
BBB opening. In the present study, the S100β concentration in 
the serum was increased significantly at 6 h after UWB‑EMP 
exposure, which was similar to the results of the albumin 
immunohistochemistry experiments.

HSP70 is a major stress‑inducible protein, which can be 
induced by stimuli such as injury, heat and ultraviolet expo-
sure (37). The upregulation of HSP70 often indicates a stress 
state or even disease state (37). In the present study, the expression 

Figure 3. (A) Distribution and (B) expression of ZO‑1 in the rat cerebral cortex at different time points after ultra‑wide band electromagnetic pulse exposure 
(scale bar=100 µm, the relative amount of ZO‑1 is presented as the mean ± SD). *P<0.05, ***P<0.001 vs. sham group. ZO‑1, zonula occludens 1.

Figure 4. (A) Expression of HSP70 in rat cerebral cortex and (B) H&E staining at different time points after ultra‑wide band electromagnetic pulse exposure 
(magnification, x200; scale bar=50 µm, the relative amount of HSP70 is presented as the mean ± SD). HSP, heat shock protein 70.
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levels of HSP70 and brain histomorphology were analyzed to 
evaluate the safety of a single UWB‑EMP exposure. The results 
indicated that UWB‑EMP did not induce significant damage 
in the brain tissue of rats. Kovacs et al (38) reported that BBB 
opening induced by MRI‑guided focused ultrasound combined 
with microbubbles resulted in an immediate damage‑associated 
molecular pattern response, including elevated HSP70 levels. 
Compared with focused ultrasound combined with micro-
bubbles, UWB‑EMP exposure may cause insufficient damage 
in the brain to induce expression of HSP70. However, a compre-
hensive safety evaluation needs to be conducted.

The extensive TJs between BMECs are the structural 
basis of the BBB, regulating the diffusion of water, ions and 
macromolecules through the paracellular pathway (39). TJ 
consists of transmembrane proteins, cytoplasmic accessory 
proteins and cytoskeletal proteins (39). The ZO proteins are 
amongst the most integral cytoplasmic accessory proteins, 
which play a role in connecting transmembrane proteins to 
cytoskeletal proteins, signal transduction and transcriptional 
modulation  (40). In the present study, the expression and 
distribution of ZO‑1, a 220‑kDa protein belonging to the 
ZO protein family, were evaluated. Previous studies have 
shown that the abnormal expression or distribution of ZO‑1 
can lead to TJ integrity disruption, causing an increase in 
BBB permeability  (41‑44). In the present study, western 
blot and immunofluorescence analyses were conducted to 
determine whether ZO‑1 was involved in the disruption of 
BBB permeability following UWB‑EMP exposure. The 
results indicated that the expression of ZO‑1 was decreased 
significantly at 3 and 6 h after exposure. However, there was no 
notable effect on its distribution. The parallel changes in ZO‑1 
expression and BBB integrity suggested an important role for 
ZO‑1 in UWB‑EMP‑induced BBB opening in the rat brain.

Nevertheless, the present study has certain limitations. 
Although EB and albumin are common tracers to examine 
BBB leakage, their large molecular weights (~67 kDa) make it 
difficult to detect very small increases in BBB permeability. The 
use of tracers across a varied size range should be considered in 
further studies. Additionally, the present study only examined 
a single UWB‑EMP exposure. However, further investiga-
tions into the impact of repeated and long‑term exposure to 
UWB‑EMP are required to find an effective field strength and 
time period during which BBB permeability is increased.

In conclusion, UWB‑EMP exposure increased BBB permea-
bility transiently and safely in a field strength‑dependent manner. 
This was associated with changes in the expression of ZO‑1, 
which could be a mechanism involved in BBB permeability.
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