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Abstract

The goal of diagnosing the coronavirus disease 2019

(COVID‐19) from suspected pneumonia cases, that is,

recognizing COVID‐19 from chest X‐ray or computed

tomography (CT) images, is to improve diagnostic ac-

curacy, leading to faster intervention. The most im-

portant and challenging problem here is to design an

effective and robust diagnosis model. To this end, there

are three challenges to overcome: (1) The lack of

training samples limits the success of existing deep‐
learning‐based methods. (2) Many public COVID‐19
data sets contain only a few images without fine‐
grained labels. (3) Due to the explosive growth of

suspected cases, it is urgent and important to diagnose

not only COVID‐19 cases but also the cases of other

types of pneumonia that are similar to the symptoms of

COVID‐19. To address these issues, we propose a novel

framework called Unsupervised Meta‐Learning with

Self‐Knowledge Distillation to address the problem of

differentiating COVID‐19 from pneumonia cases.

During training, our model cannot use any true labels

and aims to gain the ability of learning to learn by

itself. In particular, we first present a deep diagnosis
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model based on a relation network to capture and

memorize the relation among different images. Second,

to enhance the performance of our model, we design a

self‐knowledge distillation mechanism that distills

knowledge within our model itself. Our network is

divided into several parts, and the knowledge in the

deeper parts is squeezed into the shallow ones. The

final results are derived from our model by learning to

compare the features of images. Experimental results

demonstrate that our approach achieves significantly

higher performance than other state‐of‐the‐art meth-

ods. Moreover, we construct a new COVID‐19 pneu-

monia data set based on text mining, consisting of 2696

COVID‐19 images (347 X‐ray + 2349 CT), 10,155 ima-

ges (9661 X‐ray + 494 CT) about other types of pneu-

monia, and the fine‐grained labels of all. Our data set

considers not only a bacterial infection or viral infec-

tion which causes pneumonia but also a viral infection

derived from the influenza virus or coronavirus.
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1 | INTRODUCTION

The pandemic of the coronavirus disease 2019 (COVID‐19) has brought unprecedented disaster
to the life of humans. Facing the ongoing outbreak of COVID‐19, viral nucleic acid diagnosis
using real‐time polymerase chain reaction (RT‐PCR) is the accepted standard diagnostic
method to find COVID‐19 infected people.1‐3 However, due to political and economic reasons,
many hyperendemic regions and countries cannot use the RT‐PCR method to identify tens of
thousands of suspected patients.4‐6 To solve the lack of reagents, researchers are studying how
to diagnose COVID‐19 from chest X‐ray images or computed tomography (CT) scans.7‐9

The great success of deep learning methods in pneumonia diagnosis tasks has inspired
many researchers.10,11 The deep‐learning‐based COVID‐19 diagnosis methods are emerging
one after another. Still, these methods often fail to work on many data sets because there are
too few images of COVID‐19 in many publicly available data sets, and the previous trained deep
model was not trained on COVID‐19 well.12,13 Besides, it is unrealistic that a large number of
doctors label chest X‐ray or CT images, and a large number of patients share their images and
medical records without privacy during the ongoing outbreak of COVID‐19.

On the other hand, the initial symptoms of COVID‐19 are similar to those of influenza
pneumonia, and bacterial pneumonia.1,14 The COVID‐19, severe acute respiratory syndrome
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(SARS), and middle east respiratory syndrome (MERS) are coronaviruses, and the chest X‐ray
and CT images of those infected with these viruses are similar.15‐17 The outbreak is still growing
rapidly. Besides, more and more COVID‐19, SARS‐ and MERS‐related CoVs were identified in
animal reservoirs, raising concerns for their zoonotic transmissions and pandemic potential in
the future.18,19 Due to the increase of suspected cases, it is an urgent, essential and significant
challenge on how to design neural networks to distinguish these viruses from chest X‐ray
images and CT image (slices),20,21 which is shown in Figure 1. However, many works only
focus on whether the model can distinguish COVID‐19 or not.

In general, there are three challenges for COVID‐19 diagnosis:

• The lack of training samples limits the success of deep‐learning‐based methods in this task,
as small data sets typically exist in most medical imaging studies.

• In the meantime, many public data sets contain a few images from COVID‐19 suspected
patients and do not contain the fine‐grained label of these images.

• Considering the explosive growth of suspected cases amid the COVID‐19 pandemic, it is
urgent and important to diagnose not only COVID‐19 cases but also the cases of other types
of pneumonia that are similar to the symptoms of COVID‐19.

In contrast, there are a limited number of COVID‐19 images with its variations for training,
and doctors are very good at recognizing them. Why can they diagnose COVID‐19 images
quickly and accurately with very little direct supervision or none at all? Probably because
physicians can use the experience from themselves to recognize them,22,23 and the network
cannot. Moreover, is not this one of the mechanisms of meta‐learning?24 We may use this
mechanism to address the issue of limited deep‐learning‐based models with the lack of training
samples. So, why don't we use the principle of meta‐learning to build a network?

Furthermore, faced with the threat of the COVID‐19, many medical scientists around
lots of countries and regions have published many documents (i.e., papers or medical
reports),10 which contain a large number of chest images infected by COVID‐19 or other

FIGURE 1 Illustration of the COVID‐19 diagnosis from pneumonia cases. We constructed a data set about
COVID‐19 pneumonia to evaluate model performance. The model needs to distinguish five classes: COVID‐19,
SARS, MERS, influenza (H1N1) pneumonia, and bacterial pneumonia. MERS, middle east respiratory
syndrome; SARS, severe acute respiratory syndrome [Color figure can be viewed at wileyonlinelibrary.com]
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similar pneumonia. Therefore, why does not use the images of these documents to construct a
large data set? On the other hand, considering that different countries and regions have
different standards for identifying COVID‐19 suspected patients25 and describe these
images in the text in corresponding documents, we can regard these text descriptions as
inaccurate labels (a.k.a., noisy labels).26,27 We may use this collection method to solve the
issue of few samples from COVID‐19 suspected patients. In this case, to avoid the problems
of inaccurate labels, let us try to imagine there is such a model that can diagnose COVID‐19
from pneumonia cases without labels or only using the label as a reference in the evaluation
stage. Isn't this one of the research directions of unsupervised learning models? Thus, can
we use unsupervised learning to design our model, with the purpose of avoiding the problems
of inaccurate labels?

To address the issues mentioned above, in this paper, we propose a novel unsupervised
meta‐learning based model for COVID‐19 diagnosis from pneumonia cases. We build a two‐
branch relation network via unsupervised meta‐learning. First, we use the network approach to
do feature extraction of training images. Then, to compare the features, we design a relation
model that determines if they are from matching categories or not. Finally, to enhance the
performance of our model, we design a self‐knowledge distillation mechanism that distills
knowledge within the model itself. The network approach is divided into several parts, and the
knowledge in the deeper parts is squeezed into the shallow ones. Experimental results show
that our model performs better than similar works and has strong robustness for not only
diagnosing COVID‐19 cases but also diagnosing the cases of other types of pneumonia that are
similar to the symptoms of COVID‐19.

Moreover, we propose a new chest X‐ray and CT data set about COVID‐19 and other types
of pneumonia similar to the symptoms of COVID‐19, which contains 12,851 images with the
text‐mined fine‐grained disease labels during the ongoing outbreak of COVID‐19, mined from
the text radiological reports.

In summary, our main contributions are as follows:

* We propose a novel unsupervised meta‐learning framework to achieve differentiate
COVID‐19 from pneumonia. To the best of our knowledge, this is the first attempt to study the
unsupervised meta‐learning for this task. Experimental results show that the proposed
approach has strong robustness and outperforms existing similar methods.

* We design a novel self‐knowledge distillation mechanism that is able to unify knowledge
with different depth models utilizing a single model executable at different depths for
facilitating COVID‐19 diagnosis from pneumonia cases. The qualitative experiment de-
monstrates that this strategy is effective and achieves competitive performance. To the best of
our knowledge, this is the first attempt to study the COVID‐19 diagnosis method based on this
self‐knowledge distillation.

* We present a novel meta‐learning‐based approach to learn the discriminative features on the
data sets. The qualitative discussion demonstrates that this strategy achieves competitive
performance over other meta‐based methods.

* A new data set about chest X‐ray and CT is constructed for the task of COVID‐19 diagnosis
from pneumonia cases. This data set contains 2696 images (347 X‐ray + 2349 CT) about
COVID‐19 pneumonia, 10,155 images (9661 X‐ray + 494 CT) about other type of pneumonia
that are similar to the symptoms of COVID‐19, and the fine‐grained labels of all. To the best
of our knowledge, our proposed data set is the largest data set compared to existing publicly
available COVID‐19 data sets except for normal cases.
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2 | RELATED WORK

We review the related work in three research streams: COVID‐19 cases diagnosis and few‐shot
learning, knowledge distillation, self‐supervised learning with pseudo labeling, and un-
supervised meta‐learning for image classification.

Previous COVID‐19 cases diagnosis: Radiological diagnosis is a conveniently medical
technique for patients who are suspected of COVID‐19 in urgent need of diagnosis in serious
areas. X‐ray and CT scans are widely used to provide compelling evidence for the analysis of
radiologists. To achieve higher accuracy for radiological diagnosis, using either X‐ray or CT
as the acquisition method, many works have been proposed for COVID‐19 diagnosis based
on chest X‐ray images, the classification between COVID‐19 and other non‐COVID‐19
subjects (including other pneumonia subjects and healthy subjects) have been explored.
Zhang et al.28 propose a ResNet based model to classify COVID‐19 and non‐COVID‐19 X‐ray
images for COVID‐19 diagnose. They use X‐ray images from 70 COVID‐19 patients and 1008
non‐COVID‐19 pneumonia patients, and they achieve 96.0% sensitivity and 70.7% specificity
along with an area under the receiver operator curve (AUC) of 0.952. Wang et al.29 present a
deep convolutional neural networks (CNNs) based architecture called COVID‐Net for
COVID‐19 diagnosis from X‐ray images. Utilizing their own self‐built COVID v2.0 data set,
the COVID‐Net achieves the testing accuracy of 83.5%. Also, there have been efforts made
for the classification of COVID‐19 from non‐COVID‐19 based on CT scans. Jin et al.30 build a
chest CT data set consisting of 496 COVID‐19 positive cases and 1385 negative cases. They
propose a two‐dimensional (2D) CNN‐based model for lung segmentation and a COVID‐19
diagnosis model. Experimental results show that the proposed model achieves a sensitivity of
94.1%, a specificity of 95.5%, and an AUC of 0.979. In summary, lots of studies have been
proposed for X‐ray‐based and CT‐based COVID‐19 diagnosis. However, most of the recent
works only consider the difference between COVID‐19 and non‐COVID‐19 with coarse cate-
gories. Still, they consider less about different patterns between pneumonia due to diverse causes
in fine‐grand level.

Few‐shot learning: Few‐shot learning, based on meta‐learning, typically uses episodic
training strategies.31,32 In each episode, the model based on meta‐learning is trained on a meta‐
task, which can be viewed as a classification task.33,34 During training, the tasks were randomly
selected from the training data set in the episodes. During the model evaluation, the tasks were
selected from a separate test data set consisting of novel classes not included in the training
data set. In summary, there are three data sets: a training set, a support set, and a testing set.
The support set and testing set share the same label space, but the training set has its own label
space disjointed with the support/testing set. If the support set contains K labeled examples for
each of C unique classes, the target few‐shot problem is called C‐wayK ‐shot. In C‐way‐K ‐shot
few‐shot learning, the model based on meta‐learning is trained on the model based on meta‐
learning is trained on some tasks sampled from the training data set, and each task contains a
support set and a query set. The task containsC unique class labels, and the support set consists
of K labeled data per class. Utilizing the support set, the model learns to predict the labels in
the query set. After training, the model based on meta‐learning is then evaluated on new tasks
sampled from the test set. Like the training tasks, each new task consists of C unique class
labels with K images (in the support set). However, to assess how well the meta‐learner
performs on new tasks, the test data set classes do not overlap with the classes in the training
set. Following the setting of few‐shot learning, we design our model to solve the problem of the
diagnosis of the COVID‐19 cases.
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Knowledge distillation: Knowledge distillation is one of the most popular techniques used in
model compression.35 A large number of approaches have been proposed to reinforce the
efficiency of student models' learning capability. In general, teacher models and student models
work in their ways, respectively, and knowledge transfer flows among different models. In
contrast, student and teacher models in our proposed self‐distillation method come from the same
convolutional neural networks.

Self‐supervised learning with pseudo labeling: Pseudo‐labeling methods, also known as self‐
training, is a simple kind of self‐supervised learning approach36,37 that has been successfully
applied to improve the state‐of‐the‐art of many tasks, such as: image classification,38,39 semantic
segmentation,40 machine translation,41 and speech recognition.42,43 This approach relies on two
roles of networks: a teacher and the other as a student.44 The teacher is trained on pseudo labels
with unlabeled images. The student is then trained on the teacher's results with their corre-
sponding images.45 Thanks to the abundance of pseudo labeled data and the use of regularization
methods such as data augmentation, the student learns to become better than the teacher.39

Unlike conventional pseudo‐labeling, the student and teacher in our proposed method are the
same. Therefore, we focus on our whole network, instead of one student model as usual.

Unsupervised meta‐learning for image classification: The base classes in unsupervised
methods has no labels. Some scholars are able to combine with the few‐shot learning methods
to fulfill few‐shot tasks. UFLST,46 and CACTUs47 use clustering to make pseudo‐labels for
unlabeled examples, then use the pseudo‐labeled data as ordinary labeled data to construct fake
few‐shot tasks to complete meta‐training. UMTRA48 presents that artificial C‐way 1‐shot tasks
are generated by randomly sampling C support examples from the training set and generating
C corresponding queries with augmentation. AAL49 and ULDA50 generalize the UMTRA and
its randomly assumption to generate/enhance randomly augmented images into classes for
classification tasks. In this paper, we also follow the random assumption and this strategy.
Further, we combine the self‐knowledge distillation with unsupervised meta‐learning to im-
prove the performance of meta‐learner.

3 | PROPOSED COVID ‐19 PNEUMONIA DATA SET

In this section, we first describe how we built our proposed COVID‐19 Pneumonia Data set and
introduce the structure of our proposed data set. Then we make a comparison with existing
public available COVID‐19 data sets.

3.1 | Data set creation and structure

In this paper, we propose a COVID‐19 Pneumonia Data set by collecting medical images from
radiology medical reports. Our data set mainly contains two modalities of medical imaging:
X‐ray and CT. In detail, X‐ray images and CT images of COVID‐19 are collected from
radiological reports published by radiology medical centers in China, Italy, and Japan.10 All
X‐ray images are posteroanterior (PA) or anteroposterior (AP) views, and salient axial slices of
different CT volumes are collected for CT images. Following the work of Chest‐X‐ray‐8,51 we
use the technology of text mining and natural language processing (NLP) to get the fine‐grained
labels of all images from these radiology medical reports. Our metadata attributes (fine‐grained
labels) are shown in our supporting information.
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Our proposed data set has 12,851 2D images of different types of pneumonia, including 10,008
X‐ray images and 2843 CT images (slices), consisting of five classes of pneumonia with different
causes, including COVID‐19, SARS, MERS, influenza, and bacterial pneumonia. Besides, the
severity of COVID‐19 is determined according to Diagnosis and Treatment Protocol for COVID‐19
(Trial Version 7) issued by the National Health Commission of the People's Republic of China. To
simplify the research on influenza caused pneumonia, in this paper, we only use pneumonia of
influenza A virus subtype H1N1 (H1N1) infected people as an example to investigate. In other
words, our data sets contain five kinds of labels: COVID‐19, SARS, MERS, influenza (H1N1)
pneumonia, and bacterial pneumonia. In particular, 347 X‐ray images and 2346 CT images of
COVID‐19 have been assembled in our data set. We divide all images into two main categories for
both X‐ray and CT modalities: Bacterial Pneumonia and Viral Pneumonia. Besides, Viral Pneu-
monia contains two fine‐grain classes: Influenza (H1N1) Pneumonia and Coronavirus Pneumonia.
The latter Coronavirus Pneumonia class includes COVID‐19, SARS, MERS. As shown in Figure 2,
our data set contains two kinds of images: X‐ray images and CT images (slices). CT images of
patients with COVID‐19 demonstrate lesions in the multiple, bilateral pulmonary. Most of the
lesions chiefly appear as ground‐glass opacities (GGO) in both lungs.52,53 Some lesions have a
crazy‐paving appearance and consolidation.54,55 CT images of SARS patients demonstrate that the
lesions are mainly distributed in the inferior segments of both lungs.52,56 Most patients' lesions also
appear in the peripheral lung bands.57 CT images of MERS patients show lesions mostly appear in
both lungs' subpleural and basal lungs and appear as multiple GGOs and consolidation.58 CT
images of H1N1 patients demonstrate lesions usually located in the inferior lobes of both lungs.
The lungs appear reticulonodular with GGO. Some patients have focal lung consolidation.59 CT
images of patients with bacterial pneumonia demonstrate that the lesions usually appear as
multiple patches with GGO. Most patients have an air bronchogram.60 The distribution char-
acteristics of the abnormalities on X‐ray images about these five types of pneumonia are similar to
those of CT images (slices).52,61‐73 Although the collected 2D data (e.g., X‐ray images) in our
proposed data set misses lots of information (original intensity level, spacing, etc.) than original
volume data, considering the usage of our proposed 2D‐oriented algorithm, we have tried our best
to keep the original size of the images while avoiding the problem of image distortion. To verify
the usefulness of our proposed data set, experienced radiologists in our team have not only
manually check all images and exclude distorted images but also retain challenging images and
finally form the proposed data set. Besides, experienced radiologists in our team compare the label
of the patient's medical images with the results of the patient's RT‐PCR and eliminate images with
errors. Basic statistics for each class of our proposed data set are shown in Table 1. Different from
these existing public data sets or challenges, we focus on the analysis of different patterns between
types of pneumonia with diverse causes; that is why there are no normal cases in our data set.
Also, we provide other attributes such as patient sex and patient age of each image in our data set.

It is worth noting that the proposed data set is an unbalanced data set, which is exactly
consistent with the long‐tail problem solved by meta‐learning.74‐76 Thus, a meta‐learning
algorithm is chosen in our paper.

3.2 | Data set comparison

Review about other public data sets: For COVID‐19, which is a new type of coronavirus disease
across the world, it is important to collect data for machine learning applications. In recent
months, several works on COVID‐19 public data sets have been proposed.10 Cohen et al.77
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FIGURE 2 Comparable examples among three data sets
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created an image collection containing 329 images from 183 patients, most of which are chest
X‐ray images for COVID‐19. Based on an early version of the COVID‐19 image data set con-
structed by the above work, COVID v2.0 and its enriched version29 added more bacterial
pneumonia chest X‐ray images and normal chest X‐ray images. This study only contains three
kinds of labels: normal, pneumonia, and COVID‐19. Besides X‐ray‐based image data sets,
CT‐based image data sets are also reported recently. Zhao et al.78 presented a publicly available
COVID‐CT data set consisting of COVID‐19 CT axial images collected from preprinted pub-
lications from medRxiv and bioRxiv. They extracted figures and captions then judged whether a
patient is positive for COVID‐19 from the associated captions. Zhao et al.'s work only contain
two kinds of labels: Non‐COVID‐19 and COVID‐19. Existing public data sets only focus on
whether the images belong to a COVID‐19 patient, but this kind of work ignores most of the
suspected infected people who have similar symptoms to the COVID‐19, such as influenza patients
and bacterial pneumonia patients.

Since our proposed data set contains both X‐ray and axial CT images, to show the ad-
vancement of our proposed data set, an X‐ray‐based subset of our proposed data set is compared
to COVID v2.0 data set,29 and CT‐based subset is compared to COVID‐CT data set.78 From
Tables 2 and 3, comparable examples of X‐ray images and CT images which belong to COVID
v2.0 data set, COVID‐CT data set and our proposed data set respectively are shown in Figure 2.
It is evident that our proposed data set is better than others, the advantages of which can be
summarized as follows:

TABLE 1 Basic statistics of our proposed COVID‐19 pneumonia data set

X‐ray CT Total

Viral pneumonia Coronavirus pneumonia

COVID‐19 347 2349 2696

MERS 26 17 43

SARS 48 29 77

Influenza (H1N1) pneumonia 25 45 70

Bacterial pneumonia 9562 403 9965

Total 10,008 2843 12,851

Abbreviations: COVID‐19, coronavirus disease 2019; CT, computed tomography; MERS, middle east respiratory syndrome;
SARS, severe acute respiratory syndrome.

TABLE 2 Comparison of COVID v2.0 data set and X‐ray subset of our proposed data set

COVID v2.029 Normal Pneumonia COVID‐19

8066 8614 190

Proposed Normal
Bacterial
pneumonia

Influenza (H1N1)
pneumonia SARS MERS COVID‐19

Dataset – 9562 25 26 48 347

Abbreviations: COVID‐19, coronavirus disease 2019; CT, computed tomography; MERS, middle east respiratory syndrome;
SARS, severe acute respiratory syndrome.
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• For either X‐ray images or 2D CT images, our proposed data set can be seen as the most
extensive data set compared to existing publicly available COVID‐19 data sets except for
normal cases.

• Our proposed data set not only considers a bacterial infection or viral infection causing
pneumonia but also marks the viral infection derived from influenza virus such as H1N1 or
coronavirus such as COVID‐19, SARS, MERS.

4 | PROPOSED METHOD

4.1 | Problem definition

Following the self‐supervised learning and the unsupervised meta‐learning mentioned in
Section 2, we focus on the problem of COVID‐19 diagnosis from pneumonia cases as un-
supervised meta‐learning based classification in the training process. The model is shown in
Figure 3.

Learning by oneself: Due to the setting of unsupervised training, we only have an
unlabeled data set x= {( )}i i=1 . We sampleN images from  and assume these images are
from different classes. We get the data set D NNx y y= {( , )} , = 1, 2, 3, …,i i i i=1 . We apply the
data augmentation method to this data set, and we define the style of augmentation as
Aug m= { }s s=1

 . Particularly, when there is no data augmentation, we set ms to 0. Then, we
regard the style of augmentation as part of pseudo label. Finally, we can get the new data set

NM Nx y y l m l= {( , )} , = { , }, = 1, 2, 3, …,i i i i z s z=1
× . All in all, through the above strategy, we

obtain a data set that contains pseudo labels. In this paper, we focus on the scenario shown in
Figure 1.

Learning to learn: For the taskT, the whole model contains two phases: meta‐training and
meta‐testing. In meta‐training, our training data Nx y= {( , )}i i imeta‐train =1

train are used for training
a classifier, where N N N( < )train train is the number of training samples. In meta‐testing, a
support set of Nsupport labeled images N

Nx y= {( , )}i i isupport = +1
×
train

  . The goal is to predict the
labels of a query set N

x= {( )}j jquery =1
query , where Nquery is the number of queries. Obviously,

meta‐train and support are from the data set , that is, N N N× = +train support . The query
is sampled from the remaining of unlabeled data set  . This split strategy for training and
support sets is designed to simulate the support and query sets that will be encountered during
test time. For traditional meta‐lerning, if the support set contains K labeled examples for each
of C unique classes, the target few‐shot problem is called C‐way, K‐shot. In this paper, our
proposed method converts the C‐way, K‐shot task to K C‐way one‐shot learning tasks. In short,

TABLE 3 Comparison of COVID‐CT data set and CT subset of our proposed data set

COVID‐CT78 COVID‐19 Non‐COVID‐19

349 397

Proposed COVID‐19 SARS MERS Influenza (H1N1) pneumonia Bacterialpneumonia

Dataset 2349 29 17 45 403

Abbreviations: COVID‐19, coronavirus disease 2019; CT, computed tomography; MERS, middle east respiratory syndrome;
SARS, severe acute respiratory syndrome.
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we aim to learn knowledge via training our model from meta‐train , and transfer this extracted
knowledge in the testing phase to classify the images in query given support .

Due to the increase of new COVID‐19 cases, it is a crucial issue whether the model trained
based on existing data can be applied to these new cases. Therefore, we consider that (1)
nonlinear mapping in artificial neural networks should be generalizable to work with samples
of novel classes, and (2) the mapping should preserve the relationship between classes on the
unseen class samples in query . We propose a novel relational network to address the problem
of COVID‐19 diagnosis from pneumonia cases. First, we meta‐learn a transferable feature
extraction model based on proposed Cos‐Triplet loss defined in Equation (1) from the training
data set. The well‐learned features of the query samples in the support set are then fed into the
nonlinear distance metric to learn the similarity scores. Further, we conduct a few‐shot

FIGURE 3 The framework of our relation network. First, we apply the data augmentation method to the
data set. We use four possible 2D rotations in ∘ ∘ ∘ ∘0 , 90 , 180 , 270 to generate and augment this data set. Then, we
build the meta‐learning based model, which contains two modules: a network‐based representation learning
model (i.e., feature extraction model), and a relation model. The network‐based representation learning model
fnetwork produces feature maps serving a feature extraction function. The relation model ⋅J ( )relation represents the
similarity between sample and query, which are from the training set during the training phase, and from the
support set and query set, during the test phase, respectively. Further, to enhance the performance of our model,
we design a self‐knowledge distillation mechanism that distills knowledge within the model itself. The
network‐based representation learning model is divided into several parts, and the knowledge in the deeper part
is squeezed into the shallow ones. In this way, we add our relation model after each part and name these as:

⋅ ⋅ ⋅∕ ∕ ∕J J J( ), ( ), ( )relation relation relation
1 4 2 4 3 4 and ⋅J ( )relation . The whole model updates itself and produces the final results [Color
figure can be viewed at wileyonlinelibrary.com]
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classification based on these scores. As illustrated in Figure 4, our network representation
learning consists of two branches: a feature extraction model and a relation model during the
training of our network.

Meta‐learning based feature extraction: The training images from meta‐train and support are
randomly selected to form a triplet x x x( ; ; )a p n with an anchor images xa, a positive images xp,
and a negative images xn. The label of the selected images in a triplet should satisfy

≠y y y=a p n. Then, we can get the anchor images set Xa, positive images set Xp and negative
images set Xn by following the above strategy. We aim to pull the feature maps of anchor and
positive images close to each other, as shown in Figure 3, while pushing the feature maps of
anchor and negative images far apart.

4.2 | Network representation learning

For each update in the network, the traditional triplet loss79 only interacts with a negative
image (or a negative class), and we need to compare the query images in several different
classes for few‐shot classification. Therefore, triplet loss may not be sufficient for feature em-
bedding learning, especially when we need to deal with multiple classes in few‐shot classifi-
cation settings. Inspired by SoftTriple loss,80 we generalize the traditional triplet loss to a novel

FIGURE 4 The architecture of our relation network. First of all, we use the network based on the DensetNet‐
121 basebone to extract the features of the given image. Second, DensetNet‐121 has been divided into four parts
according to its depth. We add our relation model after each part, and name these as: ⋅ ⋅ ⋅∕ ∕ ∕J J J( ), ( ), ( )relation relation relation

1 4 2 4 3 4

and ⋅J ( )relation . Each part is viewed as independent with a different performance. Third, each part is trained under
three kinds of supervision: (1) Supervision from the features, where we use the L2 loss from hints. In this way,
inexplicit/tacit knowledge in the feature maps is brought into the bottleneck layer of each shallow classifier, leading
all classifiers to conform the feature maps in their bottleneck layer to the of the deepest classifier; (2) Supervision
from the pseudo labels, we use the cross‐entropy loss to not only the deepest classifier, but also all the shallow
classifiers. In this way, the knowledge hidden in the data set is introduced directly from pseudo labels to all the
classifiers; (3) Supervision from the distillation, where we use the Kullback–Leibler (KL) divergence to achieve the
self‐supervision. In this way, the deepest network as a teacher can guide each shallow classifier as students. Finally,
we apply the relation model and get the final results [Color figure can be viewed at wileyonlinelibrary.com]
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triplet loss, called Cos‐Triplet Loss. Specifically, for each anchor, the loss aims to pull data of the
same class close to the anchor and to push others away in the embedding space. The loss not
only considers the relations among data but also associates all data with each anchor so that the
gradients concerning a data point are weighted by its relative proximity to the anchor (i.e.,
relative hardness) affected by the other data.

All in all, the key idea is to associate each anchor with the entire data so that the data
interact with each other through the anchor during training. The function fnetwork represents
feature extraction function using the network to produce feature maps f x f x( ), ( )network a network p

and f x( )network n . We design Cos‐Triplet loss during the training procedure of feature extraction:
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where ∣⋅∣ means the number of elements in the set ⋅ ⋅ ⋅,cos( , ) denotes the cosine similarity
between two feature maps, α > 0 is a scaling factor, and β > 0 is a margin.

Meta‐learning based relation model: We further design a nonlinear distance relation model
for learning to compare the image features in a few‐shot classification.

Given image xsupport in support set support and image xi in the train set meta‐train , we
assume the ⋅ ⋅C ( , )network to be concatenation of the corresponding feature maps of the two
images at the same depth. The combined feature map of images from the support set and train
set is used as the relation model ⋅J ( )relation to get a scalar in range of 0 to 1 representing the
similarity between xi and xsupport , which is called relation score. Suppose we have one labeled
sample from the train set, our model can generateNtrain relation scores Judgei for the relation
between one image input xsupport from support set and training image set examples xi:

⋯ N

Judge J f x J C f x f x

i

= ( ( )) = ( ( ( ), ( )))

= 1, 2, ,

i relation network i relation network network
support

network i

train

(2)

Furthermore, we can do the operation of the element‐wise sum over our feature extraction
model outputs of all samples from each training class to form this class's feature map. More-
over, this pooled class‐level feature map is concatenated with the feature map of the test
samples as above.

We use SoftMAX loss81 to train our relation model, regressing the relation score Judgei to
the pseudo label: matched pairs have similarity 1, and the mismatched pair have similarity 0.

4.3 | Data augmentation

In this paper, our data augmentation focuses on four possible 2D rotations in
∘ ∘ ∘ ∘Rot = {0 , 90 , 180 , 270 }, denoted as ∈m {0, 90, 180, 270}s . This rotation method is a common

data augmentation strategy in medical image analysis.82,83 Specifically, given an image xi, we
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first create its four rotated copies Nx y= {( , )}i i
×  . Based on the features f x( )network i extracted

from such a rotated image, the SoftMAX classifier ⋅J ( )relation (i.e., relation model) predict the
rotation class ms. Accordingly, the unsupervised loss of this task is defined as:

∑ J f x= − log ( ( ))self relation network i ⎡⎣ ⎤⎦ (3)

4.4 | Self‐knowledge distillation

We put forward a novel self‐knowledge distillation as shown in Figure 4. First, the network of
feature extraction model can be divided into some shallow parts according to its depth and original
structure. In this paper, DenseNet‐121 can be divided into four parts according to DenseBlocks.
Second, a relation model, playing a role in a classifier which is only utilized in training and can be
removed in testing, is set after each shallow part. In adding each relation model, the convolutional
layers consider the impacts between each shallow part, and add L2 loss from its extracted features.
According to knowledge distillation,84‐87 all parts with corresponding relation model can be re-
garded as student models, and the deepest can be regarded as the teacher model.

Relation models (the proposed self‐knowledge distillation has multiple relation models

within a whole network) in the neural network are denoted as ∕{ }JΘ = relation
r R

r

R

=1
, where R (in

this paper, we set R = 4) denotes the number of relation models. The output of each relation

model ⋅∕J ( )relation
r R is denoted as ∕ŷi

r R, correspondingly. When r R= , we denote ∕ŷi
R4 as ŷi. Similar

to knowledge distillation,84 our model has three kinds of supervisions:

Supervision from the features: This supervision, whose goal is to guide the learning of student
models, is from the features of the deepest model. It works by decreasing the distance between
feature maps in each shallow model and the deepest model. It can be obtained through the
computation of the L2 loss between feature maps. Using the L2 loss, the latent knowledge in
feature maps is introduced to convolutional layers in each shallow part, where all feature maps in
their convolutional layers fit the feature maps of the deepest model. The L2 loss is written as:

∣ ∣ ∣ ∣∕μ= × −feature
r

r R R 2
2   (4)

where μ means the hyper‐parameter, ∕r R and R denote features in the ∕Jrelationr R and features
in the deepest classifier Jrelation, respectively.

Supervision from the distillation: The goal of the supervision is to make a shallow model
approximate the deepest model. We use Kullback–Leibler (KL) divergence loss between the
outputs of students and teachers. The KL loss is written as:

∕( )ν KL y y= × ˆ , ˆdistillation
r

i
r R R (5)

where μ means the hyper‐parameter and ŷR means the output of the deepest model Jrelation.
Supervision from the pseudo labels: Cross entropy loss is from pseudo labels to not only all

shallow models, but also the deepest model (i.e., Equation 3). It is computed with the labels
from the training data set and the outputs of each model. The cross entropy loss is written as:

∕( )ν y y= (1 − ) × ˆ ,label
r

CE i
r R

i  (6)

where CE means a standard cross‐entropy loss.88
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Self‐knowledge distillation loss: To sum up, the loss function of the whole self‐knowledge
distillation consists of the loss function of each supervision, which can be written as:

∑( )= + +SKD

r

R

feature
r

distillation
r

label
r    (7)

where R denotes the number of relation models. By experiments, we set ν and μ to 1

2
and 3,

respectively.
All in all, the full training procedure of self‐knowledge distillation is following as:

1: procedure Self‐Knowledge Distillation
2: Initialize parameters Θ.
3: while Θ has not converged do
4: Sample a batch x y{ , }i i i

N
=1
bacth from the data set meta‐train .

5: for i = 1 to Nbacthdo
6: Compute the output of each relation model with its parameters Θ:

∕ ∕y J f xˆ = ( ( ))r R
i relation

r R
network i

7: Update parameters Θ by computing the gradients of the proposed loss function
Equation (7)

8: end for
9: end while
10: end procedure

4.5 | Training methods

Since the proposed self‐knowledge distillation distills knowledge from the current training
model, at the beginning of the training process, the model does not contain relevant in-
formation. That is, we cannot extract any knowledge from the training model at the beginning.
Thus, we start training process without knowledge distillation at first and gradually increase
the amount of knowledge distillation as the training iteration goes. Therefore, in the first stage,
our training model starts with the feature extraction function in Equation (1) and data aug-
mentation function in Equation (3), as shown in Figure 3. After training the model for a while,
we perform the second stage: it gradually transits to the loss of self‐knowledge distillation in
Equation (7), as shown in Figure 3. Our network architecture is depicted in Figures 3 and 4.
There are two components to our network:

• Feature Extraction Model: We employ the DenseNet‐121 architecture89 for learning the
feature extraction model. Note that we remove the classification layer of the original
DenseNet. When meta‐learn the transferable feature extraction, we use SGD with a
learning rate of 0.002 and a decay for every 40 epochs. We train 800 epochs at the first
stage for the losses in Equations (1) and (3), and then train 200 epochs at the second stage
for the loss in Equation (7). During these processes, we adopt the semi‐hard mining
strategy when the loss starts to converge. We set α and β to 32 and 10−1, respectively, for
all experiments.

• Relation Model: We use the 8‐layer network architecture. Taking a sample feature map as
input, the output of the 8‐th pooling layer is one‐hot vector. The kernels of network change in

ZHENG ET AL. | 4047



turns: 3 × 256 × 256→128 × 128 × 128 (Convolution, kernel size: 1 × 1) →256 × 64 × 64

(Convolution, kernel size: 3 × 3) →512 × 32 × 32 (Convolution, kernel size: 3 × 3) →
1024 × 16 × 16 (Convolution, kernel size: 3 × 3) →256 × 8 × 8. Then, we apply the fully
connected layer to change into 2048‐dimensional vector. Finally, we use one fully connected
layer and one SoftMAX layer to have 8 and 1 outputs, respectively. Other settings are similar
to our feature extraction model.

5 | EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we experimentally evaluate the performance of the proposed model on two
public benchmark data sets and our data set, and we compare its performance with other
state‐of‐the‐art deep representation learning models. During the evaluation of our model,
we first can get predicted labels of the query set via training and testing our model. Then,
we use the real label of the data set  to get corresponding true labels of the query set.
Finally, we focus on the difference between the true meaning predicted labels and real
labels of the query set.

5.1 | Experimental settings

In this section, we outline the criteria used for evaluation, and then we describe the evaluation
protocol.

Evaluation criteria: We use the accuracy, precision, F1‐score, sensitivity, specificity, and
AUC to assess the performance of all models. More precisely, we use sensitivity and specificity
to denote the proportion of positive samples and negative samples that are correctly identified,
respectively. Besides, we use AUC to measure the overall classification performance, which is
sensitive to the imbalance among multiple classes.

Meta‐learning protocol: The classic pipeline in meta‐learning is first to train a model on
a set of base classes and then to evaluate it on a different set of novel classes (each set of
classes is split into train and validation subsets).90 For our experiments, we use this pro-
tocol. In this paper, we use COVID v2.0 data set,29 COVID‐CT data set78 and our data set. In
this paper, we set C as 5 for the K C‐way one‐shot learning task. Specifically, we randomly
choose the 1600 images from the training images of the COVID v2.0 data set, where the
number of training image is 16590, to construct the training set; we randomly choose 1510
images from the test images of the COVID v2.0 data set, where the number of the testing
image is 1953, to construct the test set. We randomly choose the 6000 chest X‐ray images
from our data set to construct the training set; we randomly choose 2000 other chest X‐ray
images from our data set to construct the test set. Besides, we randomly choose the 2000
chest CT images from our data set to construct the training set; we randomly choose 500
other chest CT images from our data set to construct the test set. Note that we randomly
choose 10 times as per the above strategy and take the average evaluation criteria for
comparison. On the COVID‐CT data set, we follow the data split of this data set. We use 425
(191 COVID‐19 + 234 non‐COVID‐19) images to construct the training set; we use 118 (60
COVID‐19 ++58 non‐COVID‐19) images to construct the support set; we use 203 (98
COVID‐19 +105 non‐COVID‐19) images to construct the query set.
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5.2 | The results of our model

In this section, we show the results on the COVID v2.0 data set, COVID‐CT data set, and our
data set, which are in Figure 5. “Ours w/o S‐KD” means a variant of Ours, which only using
network representation learning and not using self‐knowledge distillation.

On our data set using our chest X‐ray images, the accuracy, precision, sensitivity, spe-
cificity, F1‐score of ours w/o S‐KD is 0.989, 0.986, 0.937, 0.998, 0.961, and 0.978. The accu-
racy, precision, sensitivity, specificity, F1‐score of ours is 0.995, 0.997, 0.967, 0.999, 0.981, and
0.987. Ours is 0.006, 0.011, 0.030, 0.002, and 0.021 higher than ours w/o S‐KD, in terms of
accuracy, precision, sensitivity, specificity, and F1‐score, respectively. On our data set using
our chest CT images, the accuracy, precision, sensitivity, specificity, F1‐score of ours w/o
S‐KD is 0.949, 0.984, 0.923, 0.981, and 0.952. The accuracy, precision, sensitivity, specificity,
F1‐Score of Ours is 0.986, 0.990, 0.987, 0.986, and 0.988. Ours is 0.037, 0.006, 0.064, 0.005, and
0.036 higher than Ours w/o S‐KD, in terms of accuracy, precision, sensitivity, specificity, and
F1‐Score, respectively. This means our method is resultful and effective. Moreover, by ana-
lyzing others shown in Figure 5 on the COVID v2.0 data set and COVID CT data set, we can
get similar conclusions.

5.3 | Comparison with state‐of‐the‐art methods

We compare the state‐of‐the‐art approaches with our model on three data sets, including the
COVID v2.0 data set, COVID‐CT data set, and our data set. “Ours w/o S‐KD” means a variant
of ours, which only using network representation learning and not using self‐knowledge
distillation.

COVID‐19 diagnosis from pneumonia cases on our data set: The COVID‐19 diagnosis from
pneumonia cases here is: given chest X‐ray or CT images, we can not only diagnose COVID‐19
but also identify other types of pneumonia (i.e., SARS, MERS, influenza (H1N1) pneumonia,
bacterial pneumonia) that are similar to the symptoms of COVID‐19.

Baselines on our data set: We compare against various state‐of‐the‐art baselines on our data set,
including DenseNet‐121,91 DenseNet‐161,92 ResNet‐34,93 VGG‐19,94 ResNet‐18,95 EfficientNet‐B0,96

EfficientNet‐B1,96 EfficientNet‐B2,96 EfficientNet‐B3,96 EfficientNet‐B4,96 EfficientNet‐B5,96

Inception‐v3,97 Inception‐ResNet‐v2,98 MobileNet‐v2,99 DenseNet‐201,100 and VGG‐16.94

Effect of proposed self‐knowledge distillation: For evaluating the performance of our ap-
proach, we compare results reported in row‐“Ours w/o S‐KD” and row‐“Ours” from Table 4.
Our approach leverages the same loss functions and features in row‐“Ours w/o S‐KD” for a fair
comparison. From Table 4, we find that our approach improves performance consistently in all
the cases. It is evident that the design of self‐knowledge distillation can enhance the effectiveness of
our approach.

Effect of our approach: From Table 4, it is evident that our approach is better than others.
Specifically, ours is 0.069, 0.181, 0.146, 0.168, 0.137, 0.194, 0.296, 0.233, 0.257, 0.233, 0.179, 0.096,
0.128, 0.131, 0.235, and 0.265 higher than DenseNet‐121, DenseNet‐161, ResNet‐34, VGG‐19,
ResNet‐18, EfficientNet‐B0, EfficientNet‐B1, EfficientNet‐B2, EfficientNet‐B3, EfficientNet‐B4,
EfficientNet‐B5, Inception‐v3, Inception‐ResNet‐v2, MobileNet‐v2, DenseNet‐201, VGG‐16, in
term of accuracy, respectively. In terms of precision, sensitivity, specificity, F1‐Score, AUC, there
are similar scenarios as the above. From above, our approach is more effective and robust than the
state‐of‐the‐art approaches on our data set using chest CT images. Besides, on our data set using chest
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FIGURE 5 Confusion matrix of our model (a) Confusion matrix of ours w/o S‐KD on our chest X‐ray
images; (b) confusion matrix of ours on our chest X‐ray images; (c) Confusion matrix of ours w/o S‐KD on our
chest CT images; (d) Confusion matrix of ours on our chest CT images; (e) Confusion matrix of ours w/o S‐KD
on COVID v2.0 data set; (f) Confusion matrix of ours on COVID v2.0 data set; (g) Confusion matrix of ours w/o
S‐KD on COVID‐CT data set; (h) Confusion matrix of ours on COVID‐CT data set [Color figure can be viewed at
wileyonlinelibrary.com]
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X‐ray images, there are similar scenarios as the above and shown in Table 5. These mean our
approach can diagnose COVID‐19 from pneumonia cases effectively and robustly.

COVID‐19 cases diagnosis on COVID v2.0 data set: The COVID‐19 cases diagnosis: given
chest X‐ray or CT images, we can only diagnose COVID‐19 and do not have to diagnose other
type of pneumonia.

Baselines on COVID v2.0 data set: We compare against various state‐of‐the‐art baselines on the
COVID v2.0 data set, including COVID‐CAPS1,101 COVID‐ResNet2,102 AI4COVID‐193,103

DenseNet‐121,91 DenseNet‐161,92 ResNet‐34,93 VGG‐19,94 ResNet‐18,95 EfficientNet‐B0,96

EfficientNet‐B1,96 EfficientNet‐B2,96 EfficientNet‐B3,96 EfficientNet‐B4,96 EfficientNet‐B5,96

Inception‐v3,97 Inception‐ResNet‐v2,98 MobileNet‐v2,99 DenseNet‐201,100 and VGG‐16.94

Effect of proposed self‐knowledge distillation: “Ours” is 0.001, 0.033, 0.200, 0.000, 0.109, 0.092
higher than “Ours w/o S‐KD,” in term of accuracy, precision, sensitivity, specificity, F1‐score,
AUC. These improvements once again show that learning by self‐knowledge distillation for the
better performance of COVID‐19 case diagnosis.

Effect of our approach: From Table 6, it is visible that our approach is better than others.
Specifically, ours is 0.042, 0.045, 0.110, 0.074, 0.193, 0.164, 0.181, 0.150, 0.200, 0.303, 0.240, 0.263,
0.240, 0.185, 0.101, 0.134, 0.138, 0.249, and 0.282 higher than COVID‐CAPS, COVID‐ResNet,
AI4COVID‐19, DenseNet‐121, DenseNet‐161, ResNet‐34, VGG‐19, ResNet‐18, EfficientNet‐B0,
EfficientNet‐B1, EfficientNet‐B2, EfficientNet‐B3, EfficientNet‐B4, EfficientNet‐B5, Inception‐v3,

TABLE 4 Classification results of each model on our data set using chest CT images

Methods Accuracy Precision Sensitivity Specificity F1‐Score AUC

Ours Unsupervised 0.986 0.990 0.987 0.986 0.988 0.991

Ours w/o S‐KD Unsupervised 0.949 0.984 0.923 0.981 0.952 0.934

DenseNet‐12191 Supervised 0.918 0.877 0.897 0.917 0.912 0.931

DenseNet‐16192 Supervised 0.805 0.886 0.863 0.848 0.875 0.833

ResNet‐3493 Supervised 0.840 0.848 0.865 0.851 0.856 0.829

VGG‐1994 Supervised 0.818 0.857 0.830 0.813 0.843 0.809

ResNet‐1895 Supervised 0.849 0.865 0.824 0.789 0.844 0.791

EfficientNet‐B096 Supervised 0.793 0.801 0.822 0.769 0.784 0.943

EfficientNet‐B196 Supervised 0.691 0.681 0.687 0.650 0.696 0.739

EfficientNet‐B296 Supervised 0.754 0.714 0.710 0.677 0.721 0.809

EfficientNet‐B396 Supervised 0.730 0.753 0.760 0.706 0.704 0.828

EfficientNet‐B496 Supervised 0.754 0.765 0.761 0.775 0.747 0.901

EfficientNet‐B596 Supervised 0.807 0.765 0.761 0.790 0.812 0.825

Inception‐v397 Supervised 0.890 0.838 0.850 0.875 0.890 0.922

Inception‐ResNet‐v298 Supervised 0.858 0.877 0.817 0.813 0.891 0.910

MobileNet‐v299 Supervised 0.855 0.884 0.945 0.754 0.858 0.911

DenseNet‐201100 Supervised 0.752 0.796 0.765 0.706 0.780 0.731

VGG‐1694 Supervised 0.721 0.723 0.757 0.701 0.740 0.700
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Inception‐ResNet‐v2, MobileNet‐v2, DenseNet‐201, and VGG‐16, in term of accuracy, respec-
tively. From above, our approach is more effective and robust than the state‐of‐the‐arts on the
COVID v2.0 data set. By analyzing the results shown in Table 7 on COVID CT data set, we can get
similar conclusions. These mean our approach can diagnose COVID‐19 cases diagnosis effectively
and robustly.

5.4 | Compared to different self‐knowledge distillation

To better verify the effective performance of our self‐knowledge distillation, we compare our
model with other state‐of‐the‐art self‐knowledge distillations, including CS‐KD,35 BYOT,104 and
DDGSD.105 “Ours (CS‐KD)” means a variant of Ours, which using CS‐KD and not using our
self‐knowledge distillation. “Ours (BYOT)” means a variant of Ours, which using BYOT and
not using our self‐knowledge distillation. “Ours (DDGSD)” means a variant of Ours, which
using DDGSD and not using our self‐knowledge distillation. We evaluate these methods on our
data set using chest CT images. Table 8 shows the results of performance comparison with
self‐knowledge distillations.

From Table 8, it is apparent that our approach is better than others. Specifically, ours is
0.036, 0.058, and 0.122 higher than Ours (CS‐KD), Ours (BYOT), and Ours (DDGSD), in

TABLE 5 Classification results of each model on our data set using chest X‐ray images

Methods Accuracy Precision Sensitivity Specificity F1‐Score AUC

Ours Unsupervised 0.995 0.997 0.967 0.999 0.981 0.987

Ours w/o S‐KD Unsupervised 0.989 0.986 0.937 0.998 0.961 0.978

DenseNet‐12191 Supervised 0.918 0.877 0.897 0.917 0.911 0.891

DenseNet‐16192 Supervised 0.805 0.885 0.861 0.842 0.873 0.833

ResNet‐3493 Supervised 0.838 0.845 0.861 0.852 0.853 0.833

VGG‐1994 Supervised 0.819 0.852 0.837 0.818 0.844 0.816

ResNet‐1895 Supervised 0.855 0.866 0.823 0.787 0.844 0.792

EfficientNet‐B096 Supervised 0.792 0.801 0.822 0.769 0.783 0.842

EfficientNet‐B196 Supervised 0.691 0.681 0.688 0.649 0.695 0.766

EfficientNet‐B296 Supervised 0.753 0.715 0.710 0.677 0.721 0.789

EfficientNet‐B396 Supervised 0.729 0.753 0.760 0.706 0.703 0.787

EfficientNet‐B496 Supervised 0.753 0.765 0.761 0.775 0.746 0.877

EfficientNet‐B596 Supervised 0.807 0.765 0.761 0.790 0.812 0.838

Inception‐v397 Supervised 0.890 0.838 0.851 0.875 0.889 0.934

Inception‐ResNet‐v298 Supervised 0.858 0.877 0.817 0.813 0.889 0.930

MobileNet‐v299 Supervised 0.855 0.884 0.946 0.754 0.858 0.943

DenseNet‐201100 Supervised 0.755 0.794 0.762 0.706 0.778 0.724

VGG‐1694 Supervised 0.718 0.721 0.754 0.704 0.738 0.699
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terms of accuracy, respectively. In terms of precision, sensitivity, specificity, F1‐Score, AUC,
there are similar scenarios as the above. Thus, our approach is more effective than other state‐
of‐the‐art self‐knowledge distillation methods for COVID‐19 diagnosis from pneumonia cases.

5.5 | Compared to different loss functions in feature extraction

To better verify the effective performance of our loss function in feature extraction, we compare
our model with other state‐of‐the‐art loss functions, including Proxy‐NCA,106 SoftTriple,80

Triplet,79 N‐pair,107 and Lifted Structure.108 “Ours (Proxy‐NCA)” means a variant of Ours,
which only using Proxy‐NCA and not using our feature extraction loss funtion (i.e., Cos‐Triplet ).
“Ours (SoftTriple)” means a variant of Ours, which only using SoftTriple and not using our
feature extraction loss funtion. “Ours (Triplet)” means a variant of Ours, which only using
Triplet and not using our feature extraction loss funtion. “Ours(N‐pair)” means a variant of
Ours, which only using N‐pair and not using our feature extraction loss funtion. “Ours (Lifted
Structure)” means a variant of Ours, which only using Lifted Structure and not using our

TABLE 6 Classification results of each model on COVID v2.0 data set

Methods Accuracy Precision Sensitivity Specificity F1‐score AUC

Ours Unsupervised 0.999 0.893 1.000 0.999 0.909 0.987

Ours w/o S‐KD Unsupervised 0.997 0.800 0.800 0.999 0.800 0.895

COVID‐CAPS101 Supervised 0.957 0.823 0.900 0.958 0.860 0.970

COVID‐ResNet102 Supervised 0.954 0.708 0.973 0.935 0.820 0.923

AI4COVID‐19103 Supervised 0.889 0.875 0.833 0.933 0.903 0.887

DenseNet‐12191 Supervised 0.925 0.882 0.900 0.921 0.906 0.898

DenseNet‐16192 Supervised 0.805 0.828 0.860 0.841 0.843 0.832

ResNet‐3493 Supervised 0.835 0.840 0.860 0.849 0.851 0.825

VGG‐1994 Supervised 0.818 0.850 0.830 0.813 0.845 0.808

ResNet‐1895 Supervised 0.848 0.860 0.820 0.783 0.839 0.786

EfficientNet‐B096 Supervised 0.799 0.806 0.825 0.772 0.788 0.848

EfficientNet‐B196 Supervised 0.696 0.686 0.690 0.651 0.698 0.772

EfficientNet‐B296 Supervised 0.759 0.719 0.712 0.680 0.725 0.794

EfficientNet‐B396 Supervised 0.735 0.757 0.762 0.709 0.706 0.793

EfficientNet‐B496 Supervised 0.759 0.770 0.764 0.778 0.750 0.883

EfficientNet‐B596 Supervised 0.813 0.769 0.763 0.793 0.816 0.845

Inception‐v397 Supervised 0.897 0.843 0.854 0.878 0.894 0.941

Inception‐ResNet‐v298 Supervised 0.864 0.882 0.821 0.816 0.894 0.936

MobileNet‐v299 Supervised 0.861 0.890 0.949 0.757 0.863 0.949

DenseNet‐201100 Supervised 0.749 0.790 0.760 0.704 0.783 0.724

VGG‐1694 Supervised 0.717 0.720 0.750 0.699 0.734 0.697
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feature extraction loss funtion. We evaluate these methods on our data set using chest CT
images. Table 9 shows the results of performance comparison with loss functions.

From Table 9, it is apparent that our approach is better than others. Specifically, ours is
0.139, 0.109, 0.080, 0.081, and 0.135 higher than Ours (Proxy‐NCA), Ours (SoftTriple), Ours
(Triplet), Ours (N‐pair), and Ours (Lifted Structure), in term of accuracy, respectively. In terms
of precision, sensitivity, specificity, F1‐Score, AUC, there are similar scenarios as the above.
Thus, our approach is more effective than other state‐of‐the‐art losses for COVID‐19 diagnosis
from pneumonia cases.

TABLE 7 Classification results of each model on COVID CT data set

Methods Accuracy Precision Sensitivity Specificity F1‐score AUC

Ours Unsupervised 0.980 0.990 0.969 0.990 0.979 0.989

Ours w/o S‐KD Unsupervised 0.951 0.949 0.949 0.952 0.949 0.967

DenseNet‐12191 Supervised 0.935 0.920 0.939 0.935 0.936 0.937

DenseNet‐16192 Supervised 0.810 0.887 0.867 0.844 0.877 0.836

ResNet‐3493 Supervised 0.842 0.847 0.865 0.851 0.856 0.827

VGG‐1994 Supervised 0.825 0.853 0.830 0.813 0.842 0.812

ResNet‐1895 Supervised 0.852 0.865 0.826 0.791 0.845 0.794

EfficientNet‐B096 Supervised 0.820 0.847 0.829 0.842 0.815 0.907

EfficientNet‐B196 Supervised 0.710 0.727 0.723 0.690 0.712 0.809

EfficientNet‐B296 Supervised 0.770 0.768 0.760 0.748 0.768 0.859

EfficientNet‐B396 Supervised 0.760 0.769 0.762 0.721 0.763 0.851

EfficientNet‐B496 Supervised 0.790 0.791 0.784 0.778 0.788 0.877

EfficientNet‐B596 Supervised 0.820 0.817 0.801 0.805 0.817 0.886

Inception‐v397 Supervised 0.913 0.885 0.903 0.924 0.945 0.970

Inception‐ResNet‐v298 Supervised 0.864 0.902 0.882 0.843 0.923 0.950

MobileNet‐v299 Supervised 0.873 0.922 0.958 0.776 0.915 0.950

DenseNet‐201100 Supervised 0.749 0.792 0.765 0.710 0.778 0.725

VGG‐1694 Supervised 0.720 0.720 0.751 0.705 0.735 0.702

TABLE 8 Comparison results of each self‐knowledge distillation on our data set using chest CT images

Accuracy Precision Sensitivity Specificity F1‐Score AUC

Ours 0.986 0.990 0.987 0.986 0.988 0.991

Ours (CS‐KD35) 0.950 0.925 0.874 0.955 0.899 0.929

Ours (BYOT104) 0.928 0.949 0.863 0.967 0.904 0.872

Ours (DDGSD105) 0.864 0.952 0.854 0.980 0.900 0.947
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5.6 | Compared to different networks in feature extraction

To better verify the effective performance of our network in feature extraction, we compare our
model with other state‐of‐the‐art network, including EfficientNet‐B4,96 Inception‐v3,97

Inception‐ResNet‐v2,98 MobileNet‐v2,99 ResNet‐50,109 and VGG‐16.110 “Ours (EfficientNet‐B4)”
means a variant of Ours, which using EfficientNet‐B4 and not using our network. “Ours
(Inception‐v3)” means a variant of Ours, which using Inception‐v3 and not using our network.
“Ours (Inception‐ResNet‐v2)” means a variant of Ours, which using Inception‐ResNet‐v2 and
not using our network. “Ours (MobileNet‐v2)” means a variant of Ours, which using
MobileNet‐v2 and not using our network. “Ours (ResNet‐50)” means a variant of Ours, which
using ResNet‐50 and not using our network. “Ours (VGG‐16)” means a variant of Ours, which
using VGG‐16 and not using our network. We evaluate these methods on our data set using
chest CT images. Table 10 shows the results of performance comparison with self‐knowledge
distillations.

From Table 10, it is apparent that our approach is better than others. Specifically, ours is
0.231, 0.095, 0.127, 0.131, 0.143, and 0.076 higher than Ours (EfficientNet‐B4), Ours (Inception‐
v3), Ours (Inception‐ResNet‐v2), Ours (MobileNet‐v2), Ours (ResNet‐50), Ours (VGG‐16), in
term of accuracy, respectively. In term of precision, sensitivity, specificity, F1‐Score, AUC, there
are similar scenarios as the above. Thus, our approach is more effective than other state‐of‐the‐art
networks for COVID‐19 diagnosis from pneumonia cases.

TABLE 9 Comparison results of each loss function in feature extraction on our data set using chest CT
images

Methods Accuracy Precision Sensitivity Specificity F1‐Score AUC

Ours 0.986 0.990 0.987 0.986 0.988 0.991

Ours (Proxy‐NCA106) 0.847 0.970 0.867 0.887 0.916 0.920

Ours (SoftTriple80) 0.877 0.856 0.940 0.943 0.896 0.838

Ours (Triplet79) 0.906 0.878 0.917 0.857 0.897 0.887

Ours (N‐pair107) 0.905 0.958 0.868 0.857 0.911 0.805

Ours (Lifted Structure108) 0.851 0.889 0.837 0.747 0.862 0.802

TABLE 10 Comparison results of each network in feature extraction on our data set using chest CT images

Methods Accuracy Precision Sensitivity Specificity F1‐Score AUC

Ours 0.986 0.990 0.987 0.986 0.988 0.991

Ours (EfficientNet‐B496) 0.755 0.765 0.763 0.775 0.748 0.903

Ours (Inception‐v397) 0.891 0.838 0.850 0.876 0.891 0.924

Ours (Inception‐ResNet‐v298) 0.859 0.877 0.818 0.814 0.892 0.911

Ours (MobileNet‐v299) 0.855 0.886 0.946 0.755 0.860 0.912

Ours (ResNet‐50109) 0.843 0.949 0.923 0.848 0.936 0.949

Ours (VGG‐16110) 0.911 0.939 0.939 0.882 0.939 0.949
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5.7 | Compared to different relation models

To better verify the effective performance of our relation model, we compare our model with
other state‐of‐the‐art relation models, including the relation models from Zheng‐MICCAI,111

and Zheng‐ICME.112 “Ours (Zheng‐MICCAI)” means a variant of Ours, which using relation
models from Zheng‐MICCAI111 and not using our relation model. “Ours (Zheng‐ICME)”
means a variant of Ours, which using relation models from Zheng‐ICME112 and not using our
relation model. We evaluate these methods on our data set using chest CT images. Table 11
shows the results of performance comparison with self‐knowledge distillations.

From Table 11, it is apparent that our approach is better than others. Specifically, ours is
0.111 and 0.077 higher than Ours (Zheng‐MICCAI) and Ours (Zheng‐ICME), in terms of
accuracy, respectively. In terms of precision, sensitivity, specificity, F1‐Score, AUC, there are
similar scenarios as the above. Thus, our approach is more effective than other state‐of‐the‐art
networks for COVID‐19 diagnosis from pneumonia cases.

5.8 | Discussion about different meta‐learning

In this section, we compare with state‐of‐the‐art meta‐learning approaches to verify the ef-
fectiveness of ours. We evaluate these methods on our data set using chest CT images. Table 12
shows the results of performance comparison with different meta‐learnings.

We can divide meta‐learning methods into three categories22:

(1) Metric learning methods (i.e., MatchingNets,121 ProtoNets,122 RelationNets,123 Graph
neural network (GraphNN),124 Ridge regression,125 TransductiveProp126), FEAT127 learn a
similarity space in which learning is particularly efficient for few‐shot examples.

(2) Memory network methods (i.e., Meta Networks,113 TADAM114) learn to store “experience”
when learning seen tasks and then generalize it to unseen tasks.

(3) Gradient descent based meta‐learning methods (i.e., CACTUs,47 UMTRA,48 MAML,115

Meta‐LSTM,116 MetaGAN,117 LEO,118 LGM‐Net,119 CTM,120 and WarpGrad90) intend for
adjusting the optimization algorithm so that the model can converge within a small
number of optimization steps (with a few examples).

From above and Table 12, we can get the following three points:
First, metric‐based methods propose that samples of the same class are close to each other,

and samples of the different classes are far away from each other by simulating the metric
distribution among samples. Generally speaking, the neural network is used to construct the
embedding space (feature space) of samples, and some measure is used to calculate the simi-
larity between samples. There are inaccurate (or noisy) labels of these images that can

TABLE 11 Comparison results of each relation model on our data set using chest CT images

Methods Accuracy Precision Sensitivity Specificity F1‐Score AUC

Ours 0.986 0.990 0.987 0.986 0.988 0.991

Ours (Zheng‐MICCAI111) 0.875 0.918 0.885 0.856 0.901 0.899

Ours (Zheng‐ICME112) 0.909 0.919 0.893 0.897 0.906 0.838
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influence the recognition of three kinds of data sets. The existing metric‐based methods do not
consider these kinds of features in this scenario. Therefore, in the feature space of chest CT
images, most of the features are unserviceable, and similarities among these images cannot be
performed effectively.

Second, gradient descent‐based methods mostly directly optimize an initial feature re-
presentation. Based on this feature representation, the model can be efficiently adjusted using
gradient updating based on a few images. However, in the task of COVID‐19 diagnosis from
pneumonia cases in this paper, even though the gradient descent based method may initially
learn the resultful features of some images, most chest CT images with a large number of
inaccurate (or noisy) labels can cause this kind of method to fail to adjust gradient in sub-
sequent training. As a result, the accuracy and the generalization ability of this kind of method
decrease.

Third, the memory network methods have an architecture that enhances memory capacity,
which provides the ability to encode and retrieve new information quickly. In other words, this
kind of method focuses on what is in memory capacity (memory network). Due to a large
number of inaccurate (or noisy) labels in chest CT images, most of the memory capacity is
useless features. As a result, the accuracy and generalization ability of this kind of method is
reduced in the COVID‐19 diagnosis from pneumonia cases task.

All in all, from Table 12, ours is better than others. From the above discussion, it is clear that
our approach is more effective than state‐of‐the‐art meta‐learning approaches.

6 | CONCLUSIONS

COVID‐19 pandemic is a significant contributor to the overall global burden of diseases now.
The state‐of‐the‐art COVID‐19 diagnosis approaches employ deep‐learning‐based networks to
obtain a robust model. However, these models, which only focus on distinguishing COVID‐19
or not, suffer from the problem of robustness resulting from a few public data about COVID‐19
pneumonia and ignore the importance of employing a model's knowledge distillation to im-
prove the task of performance.

In this paper, we propose a new model for COVID‐19 diagnosis from pneumonia cases,
which can use the style of meta‐learning without labels and fully distill the knowledge of the
model itself to improve the performance. By being its own teacher, our approach not only
obtains the accurate feature embeddings of medical information but also directly refines the
medical knowledge from itself. With the learned feature embeddings and meta‐learning‐based
networks, our approach can learn to discriminate the images and learn to judge whether
images belongs to COVID‐19 cases. Experimental results on three real‐world data sets validate
the effectiveness and robustness of the proposed approach. Besides, a new data set is con-
structed by utilizing text mining from medical reports. Compared with previous data sets, our
data set not only contains more chest images from COVID‐19 patients but also collect chest
images from diagnosed patients with other types of pneumonia that are similar to the symp-
toms of COVID‐19 and the fine‐grained labels of all. We hope this study will inspire others to
build artificial intelligence‐based tools to accelerate the anti‐epidemic of COVID‐19.
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