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Cellular senescence is a complicated process featured by irreversible cell cycle arrest
and senescence-associated secreted phenotype (SASP), resulting in accumulation
of senescent cells, and low-grade inflammation. Cellular senescence not only
occurs during the natural aging of normal cells, but also can be accelerated by
various pathological factors. Cumulative studies have shown the role of cellular
senescence in the pathogenesis of chronic lung diseases including chronic obstructive
pulmonary diseases (COPD) and idiopathic pulmonary fibrosis (IPF) by promoting airway
inflammation and airway remodeling. Recently, great interest has been raised in the
involvement of cellular senescence in asthma. Limited but valuable data has indicated
accelerating cellular senescence in asthma. This review will compile current findings
regarding the underlying relationship between cellular senescence and asthma, mainly
through discussing the potential mechanisms of cellular senescence in asthma, the
impact of senescent cells on the pathobiology of asthma, and the efficiency and
feasibility of using anti-aging therapies in asthmatic patients.

Keywords: cellular senescence, asthma, telomere shortening, oxidative stress, senescence-associated secreted
phenotype, autophagy, anti-senescence therapies

INTRODUCTION

Asthma is one of the most common non-communicable pulmonary diseases. Bronchodilators
and inhaled/systemic corticosteroids are the most often used drugs for asthma (Fanta, 2009).
According to disease severity and symptom control assessment, patients are managed with stepwise
therapy until asthma symptoms are under control. Although these standardized therapies are highly
effective in most asthmatics, approximately 10% patients are of steroid-refractory (Barnes, 2013).
Even with the highest step of standardized treatment, in which targeted therapies like anti-IgE, anti-
IL5, anti-IL5R, and anti-IL4R antibodies would be applied, uncontrolled asthma symptoms and
exacerbation still frequently exist in some patients (Israel and Reddel, 2017; Chipps et al., 2018).
These patients with difficult-to-treat asthma often have higher mortality and lower lung function
(McGeachie et al., 2016; Coumou et al., 2018). Furthermore, with increasing morbidity, difficult-to-
treat asthma might explain the stalled reduction in global asthma mortality (Ebmeier et al., 2017).
Thus, more interventions and novel strategies are in great demand for asthma patients to achieve
further decrease in mortality rate. Current studies are trying to explore new mechanisms involved
in the pathogenesis of asthma and then identify potential therapeutic targets.
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Asthma is mainly characterized by chronic airway
inflammation, airway hyperresponsiveness and airway
remodeling (Papi et al., 2018). It’s a heterogenetic disease
with various inflammatory phenotypes, including eosinophilic
inflammation, neutrophilic inflammation, mixed inflammation,
and non-inflammatory pattern (Israel and Reddel, 2017).
Neutrophilic inflammation associates with the disease severity
(Ray and Kolls, 2017). Structural changes like airway wall
thickening and extracellular matrix deposition contribute to
airway obstruction, leading to persistent airflow limitation,
and reduced lung function. Thus, the abnormality of airway
inflammation and alteration of airway structure constitute the
basic pathophysiology of asthma.

Cellular senescence is a heterogenetic status in response
to various stimuli. The main features of cellular senescence
contain irreversible limitation of cell proliferation and the
senescence-associated secretory phenotype (SASP), which is
produced by primary senescent cells and induces senescence of
surrounding cells in a paracrine manner (Nelson et al., 2012;
Acosta et al., 2013). Senescent cells could be characterized by
several properties, including reduced proliferative rate, increased
senescence-associated β-Galactosidase (SA-β-Gal), upregulation
of tumor suppressors and cell cycle inhibitors like p21,
p16, p53, senescence-associated heterochromatic foci, enlarged
or flat cell morphology, and secretion of multiple SASP
components (Acosta et al., 2013; Muñoz-Espin and Serrano,
2014). Physiologically, cellular senescence is present during
natural development and aging as a modulating mechanism,
contributing to tumor suppression, wound healing (Demaria
et al., 2014), and embryogenesis (Muñoz-Espín et al., 2013; Storer
et al., 2013). In recent decades, increasing attentions have been
addressed to its contributions to the pathogenesis of diseases
and organ dysfunction. Persistent accumulation of senescent cells
during aging induces low-grade inflammation through SASP
(Acosta et al., 2013), impairs the immune system (Savale et al.,
2009; Albrecht et al., 2014), and increases the vulnerability and
susceptibility of organs to various pathological challenges (López-
Otín et al., 2013). In respiratory system, cellular senescence has
established role in the pathogenesis of aging-related diseases like
chronic obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis (IPF) (Tsuji et al., 2006; Diaz de Leon et al.,
2010; Kuwano et al., 2016; Álvarez et al., 2017; Yanagi et al., 2017;
Rashid et al., 2018; Schuliga et al., 2018; Vij et al., 2018; Araya
et al., 2019; Fang et al., 2019; Parikh et al., 2019b). However,
little is known about the place of cellular senescence in the
development of asthma.

Amassing data has showed that pulmonary cells of COPD
and IPF exhibit a senescent phenotype, which is involved in
promoting airway chronic inflammation, airway remodeling, and
lung function decline (Tsuji et al., 2006; Yao et al., 2012; Álvarez
et al., 2017; Yanagi et al., 2017; Rashid et al., 2018; Schuliga et al.,
2018; Vij et al., 2018; Araya et al., 2019; Fang et al., 2019; Parikh
et al., 2019b). Increased senescence-associated proteins p16 and
p21 in alveolar cells are correlated with airflow limitation of
patients with emphysema (Tsuji et al., 2006). Deficiency of p21
could attenuate airspace enlargement and lung function decline
in cigarette smoke-exposed mice (Yao et al., 2012). Multiple SASP

components including IL-6, IL-8, TGF, and MMPs are closely
associated with persistent airway inflammation and abnormal
extracellular matrix remodeling or pulmonary fibrosis in COPD
and IPF (Barnes et al., 2015; Richeldi et al., 2017; Álvarez
et al., 2017). As asthma resembles COPD and IPF in chronic
inflammation, airway remodeling as well as lung function decline
(McGeachie et al., 2016; Papi et al., 2018), would it be possible that
cellular senescence also promotes the development of asthma?

Limited but undeniable data has showed that cellular
senescence is associated with asthma. Bronchial fibroblasts from
asthmatic patients had lower DNA synthesis with cell passage
and in vitro lifespan than normal controls (Dubé et al., 1998).
Myofibroblasts from asthmatics showed reduced proliferative
activity in response to mitogens in vitro, but higher expression
of SASP factors like GM-CSF and IL-8 when stimulated by
IL-1α than those from non-asthmatics (Ward et al., 2008).
Asthmatic bronchial fibroblasts demonstrated greater proportion
of SA-β-Gal positive staining (Hadj Salem et al., 2015). Expression
of p21, a cyclin-dependent kinase inhibitor, was elevated in
bronchial epithelium of asthmatics, and had a tendency to
be higher in severe asthma than mild asthma (Puddicombe
et al., 2003). p53 is a tumor suppression protein regulating
cell proliferation and also considered as a marker of cellular
senescence. It has been showed that p53 was upregulated in
bronchial smooth muscle cells from asthmatics (Trian et al.,
2016). Based on these evidences, we highly speculate that cellular
senescence might have a similar function in asthma as it does
in COPD and IPF.

In this review, we will summarize the current knowledge
and research focusing on the possible involvement of cellular
senescence in asthma, particularly the potential mechanisms of
cellular senescence, senescent cell types and their impact on the
development of asthma, as well as the effect of current and latent
anti-aging strategies on asthma.

POTENTIAL MECHANISMS OF
CELLULAR SENESCENCE IN ASTHMA

Cellular senescence was initially discovered by Hayflick and
Moorehead (1961) who described a state of cell proliferation
arrest in cultured human cells after several divisions. Up to
date, several stimuli causing cellular senescence have been
reported, including telomere shortening due to replication
exhaustion, DNA damage, mitochondrial dysfunction, oxidative
stress, certain cytokines, and loss of tumor suppressor (Martínez-
Zamudio et al., 2017). These factors and their downstream signal
pathways constitute an intricate network leading to cell cycle
arrest and SASP in target cells. Some of these stressors are
found to be associated with asthma, such as telomere shortening,
oxidative stress, inflammation, and autophagy.

Telomere Shortening
Telomere shortening is one of the common mediators of
cell aging and correlates to several aging-related diseases
(Gansner and Rosas, 2013). Telomere shortening is generally
caused by exhaustive replication and brings about cell cycle
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arrest (Hayflick and Moorhead, 1961). Telomeres locate at
the end of chromosomes in mammalian cells and gradually
shorten after each round of cell division because they remain
unduplicated during DNA synthesis phase. When they reach
the critical length, the ability of cell division will be restricted
(Nikitina and Woodcock, 2004).

Scientists have observed decreased proliferation of bronchial
fibroblasts and myofibroblasts in asthmatic subjects as compared
to non-asthmatics, despite the apparent thickening of airway
smooth muscle layer and high levels of inflammatory factors, and
suggesting a premature status of cellular senescence in asthma
(Dubé et al., 1998; Ward et al., 2008). To explore the underlying
mechanism of cell replicative restriction in asthmatics, Hadj
Salem et al. (2015) measured the telomere length in bronchial
fibroblasts from asthmatic patients and healthy controls. They
observed decrease of telomere length in asthmatic fibroblasts,
correlating with the increase of the cellular senescence marker
β-Galactosidase (Hadj Salem et al., 2015). Similarly, Lee et al.
(2017) also found that relative telomere length in peripheral
blood mononuclear cells (PBMCs) was shorter in asthmatic
children and adolescences than that of non-asthmatics. Likewise,
leukocytes from asthmatic patients seemed to have shorter
telomere length compared to age-matched controls (Kyoh et al.,
2013; Belsky et al., 2014). Shorter telomere length has been
proposed as a biomarker of accelerating aging (López-Otín et al.,
2013; Bernadotte et al., 2016). These evidences implicate the
existence of cellular senescence of bronchial structure cells and
immune cells of asthmatics.

Telomere shortening may not only explain the limited
proliferation ability of cells in asthmatic patients, but also
highly correlated to the clinical features and severity of asthma.
For example, telomere shortening in bronchial fibroblasts
was associated with airway hyperresponsiveness (Hadj Salem
et al., 2015) and lower forced expiratory flow (Henckel et al.,
2018). Furthermore, shorter telomere served as a biomarker
of life-course-persistent asthma and was linked to eosinophilic
inflammation (Belsky et al., 2014). Decrease of telomere length
in bronchial fibroblasts was associated with increased severity
of asthma (Kyoh et al., 2013). Telomere length may also reflect
therapeutic effect for asthma. Asthmatic patients who received
steroid treatment would have less telomere shortening than those
did not (Lee et al., 2019). These results show that telomere
shortening might be a critical biomarker correlating to the
pathophysiology of asthma.

Although studies have described the closely association
between asthma and telomere shortening, the controversy is that
whether shorter telomere accelerates the development of asthma,
or telomere shortening is resulted from asthma? According
to a study, life-course-persistent asthma, along with higher
eosinophilic inflammation, correlated with shorter telomere
length than childhood-onset, adulthood-onset asthma, and no-
asthma controls (Belsky et al., 2014). One possibility is that
higher eosinophilic inflammation promotes telomere shortening.
However, the authors found that there was no rapid change
of telomere length between age 26 and age 38 in patients
with life-course-persistent asthma, indicating that eosinophilic
inflammation has little effect on the telomere shortening

(Belsky et al., 2014). Thus, telomere shortening is more likely to
be a cause of greater inflammation in asthma, rather than a result.

Various factors like environmental pollutants and lifestyle
could influence the telomere length from young age (Mirabello
et al., 2009; Cassidy et al., 2010). Studies have shown that
the rate of telomere shortening accelerated in children exposed
to air pollutants such as polycyclic aromatic hydrocarbons
(PAHs), ozone (O3) and fine particulate matter (PM2.5)
(Lee et al., 2017, 2019). Cigarette smoke exposure also has
an adverse effect on the telomere length in children (Ip
et al., 2017). Air pollutants and cigarette smoke are common
extrinsic inducers to evoke oxidative stress and inflammation
in the airway (Zhang X. et al., 2016; Chandrasekaran et al.,
2017), leading to the vulnerability of telomere (Von Zglinicki,
2002; Venkatachalam et al., 2017). Prenatal stressor like
higher tumor necrosis factor-α/interleukin 10 (TNF-a/IL-
10) ratio could also lead to shorter telomere length in
newborns (Lazarides et al., 2019). Nuclear factor kappa-
B (NF-kB)-driven chronic inflammation could accelerate the
rate of senescence in mice through enhancing the expression
of cyclooxygenase-2 (COX-2) and reactive oxygen species
(ROS), which promote DNA damage and telomere dysfunction
(Jurk et al., 2014).

Although some of these stressors are involved in the
development or exacerbation of asthma (Guarnieri and Balmes,
2014; Underner et al., 2015), whether telomere shortening
induced by these childhood or prenatal risk factors would lead
to asthma or not is still obscure. Suh et al. (2019) followed up
84 subjects and found that higher prenatal stress and shorter
telomere length did not increase the risk of developing preschool
asthma. Thus, more prospective and large-sample investigations
are required to answer this question.

Oxidative Stress
Oxidative stress is long been considered as an inducer of
premature senescence (Finkel and Holbrook, 2000). Various
oxidants like peroxide hydrogen (H2O2), which is also an
endogenous oxidant, are commonly used to trigger stress-
induced premature senescence in experimental studies (Wang
et al., 2013). Oxidative stress can be manifested into increased
ROS production and decreased antioxidant capacity within the
cells (Thannickal and Fanburg, 2000). ROS overproduction could
result from mitochondrial oxidative metabolism (Chandel, 2010),
respiratory burst, and exposure to environmental pollutants
like O3 and cigarette smoke (Chandrasekaran et al., 2017).
Oxidative stress is aggravated during chronic inflammation,
due to the release of ROS by multiple immune cells including
activated neutrophils, macrophages, monocytes, and dendritic
cells (Sánchez et al., 2015). Thus, allergens, environmental
noxa, and inflammatory factors act on cells, resulting in altered
function of mitochondria, elevated production of ROS, and
then perpetuate inflammation as a positive feedback loop.
The formation of this vicious cycle will finally lead to SASP
by activating nucleotide-binding domain, leucine-rich repeat-
containing family protein (NLRP)-3 inflammasome and releasing
inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-18
(Davalli et al., 2016).
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Evidences have revealed the role of oxidative stress in the
pathogenesis of asthma (Bullone and Lavoie, 2017; Kleniewska
and Pawliczak, 2017). The ROS in asthma could come from
resident cells or immune cells. Mixed allergens could significantly
induce ROS production in airway epithelial cells in vitro with the
absence of immune cells (Chan et al., 2016, 2017; Chen J. et al.,
2017). Pollutants like PM2.5 could also promote ROS production
in human lung alveolar epithelial A549 cells (Deng et al., 2013).
ROS production is closely associated with neutrophilic and
Th17 inflammation, which are involved in the development of
asthma (Chesné et al., 2014; Ray and Kolls, 2017; Carr et al.,
2018), and correlated to exacerbation and asthmatic patients
with obesity (Suzuki et al., 2008; Kim et al., 2014; Ray and
Kolls, 2017; To et al., 2018). Elevated ROS generation from
neutrophils and macrophages in asthmatic subjects is correlated
to increase of NLRP3 inflammation (Simpson et al., 2014),
leading to airway hyperresponsiveness, and lung fibrosis (Kim
et al., 2014; Sun et al., 2015).

The mechanism of cellular senescence induced by oxidative
stress is involved with a complicated process. Chan et al.
(2016, 2017) demonstrated that HDM challenge could enhance
ROS generation and elevate the expression of DNA-damaging
marker γH2AX. At the same time, DNA repair associated
protein was also upregulated (Chan et al., 2016, 2017). The
former response would lead to cell cycle arrest and cell death,
while the latter could result in cell survival. Cellular senescence
might be an intermediated state resulted from the conflict of
oxidative stress-induced DNA damage and DNA repair, because
senescent cells are still alive but with proliferation arrest (Hayflick
and Moorhead, 1961). Probably these affecting cells are not
killed because of insufficient DNA damage, and they stop cell
diving due to inadequate DNA repair. From another perspective,
exogenous and endogenous sources of ROS in asthma could
simultaneously activate multiple signaling pathways, including
NF-κB, p53, phosphoinositide-3-kinase (PI3K)/protein kinase
B (Akt) and p38 mitogen-activated protein kinases (MAPK)
(Finkel and Holbrook, 2000). p53 serves as a checkpoint
protein and its downstream factor p21, a cell cycle dependent
kinase inhibitor, could lead to cell cycle arrest (Surget et al.,
2013). However, PI3K/Akt/mammalian target of rapamycin
(mTOR) pathway could induce chronic inflammation, inhibit
cell death, and promote cell proliferation (Bent et al., 2016).
Their combinational effect finally brings about a senescent
state in cells. This theory has been proved by a previous
investigation, which demonstrated that both cell cycle blockage
and growth stimulation were required for the development of
cellular senescence (Demidenko and Blagosklonny, 2008).

Inflammation
Chronic inflammation serves as the principal hallmark of asthma.
Previous studies had shown that aged people with asthma
would have higher inflammation levels, which contributed
to the therapy unresponsiveness (Busse et al., 2017; Dunn
et al., 2018). Intimate association between senescence and
inflammation has been depicted in various diseases, such
as COPD, inflammatory bowel disease (IBD), cardiovascular
disease, obesity and diabetes, autoimmune diseases, and cancer

(Zhang J. et al., 2016). According to current understanding, the
interrelationship between inflammation and cellular senescence
is mainly mediated by the SASPs (Fougère et al., 2017).

Senescence-associated secreted phenotype was firstly defined
by Coppé et al. (2008) in and now has been considered as a
hallmark of cellular senescence. They found that these secretory
phenotypes formed only after DNA damage in fibroblasts and
epithelial cells (Coppé et al., 2008). SASPs include inflammatory
cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8) and
monocyte chemoattractant protein-1 (MCP-1), growth regulators
such as GRO and insulin-like growth factor binding protein-2
(IGFBP-2), cell survival modulators such as OPG and sTNF RI,
and shed surface proteins such as uPAR and ICAM-1. Although
the SASP in senescent fibroblasts and epithelial cells are not
totally the same (Coppé et al., 2008), they execute similar
functions in lung diseases, such as promoting cellular senescence,
wound repair, and airway remodeling (Parikh et al., 2019b).

Senescence-associated secreted phenotypes reflect an active
but abnormal metabolic state of senescent cells despite of
quiescence in cell proliferation (Zhang J. et al., 2016). Since
1998, researchers had found that even though lung fibroblasts
in asthmatics decreased in proliferation capability, they were
still active in producing extracellular matrix proteins such
as collagen (Dubé et al., 1998; Ward et al., 2008). SASP is
primarily a DNA damage response (DDR) (Rodier et al., 2009).
Its secretion is mediated by intracellular IL-1α/miR-146a/b/IL-
6/C/EBP-β loop and p38/NF-κB and mTOR pathways (Tchkonia
et al., 2013). Senescent cells have a bystander effect on the
nearby healthy cells. Co-culture with senescent fibroblasts could
increase the generation of DNA double-strand breaks (DSBs)
foci in young fibroblasts, indicating that senescent cells could
induce DDR in surrounding proliferating cells (Nelson et al.,
2012). Soluble factors released into the culture medium from
senescent cells hardly promote DNA damage in young cells, but
they can transmit to the attached surrounding cells via cell-
cell junctions. Blocking these gap junctions would attenuate
the increase of DNA damage foci (Nelson et al., 2012). Some
components of SASP could induce cellular senescence in a
receptor-mediated manner. For example, Jin et al. (2016) found
that MCP-1, one of the dominant components of SASP, enhanced
senescence in mesenchymal stromal cells (MSCs) via activating
the cognate receptor chemokine (c-c motif) receptor 2 (CCR2)
and its downstream ROS-p38-MAPK-p53/p21 signaling cascade.
Activated p53 would then elevate secretion of MCP-1 to form a
positive feedback loop (Jin et al., 2016).

By now, it is still hard to exactly distinguish whether intrinsic
inflammation in asthma induces cellular senescence or senescent
cells result in airway chronic inflammation via SASP. On one
hand, some stressors can lead to low-grade inflammation in the
airway before asthma onset. Exposure to HDM extract could
induce the upregulation of several components of SASP, such
as MCP-1, IL-6 and IL-8 in human monocytes (Lee et al.,
2008). Childhood obesity is a risk factor for asthma. Postnatal
hyperalimentation could enhance the expression of inflammatory
cytokines including IL-6, TNF-α, and IL-17A and then induced
airway hyperresponsiveness in mice (Dinger et al., 2016). On
the other hand, preexisting asthmatic inflammation has different
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effect on cellular senescence. TSLP plays an important role in
inducing Th2 inflammation and airway remodeling in asthma
(Soumelis et al., 2002; Chen et al., 2013). Wu et al. (2013a)
found that TSLP could trigger senescence in airway epithelial
cells in vitro, indicated by the upregulation of p21, p16 and SA-
β-Gal. However, Belsky et al. (2014) conducted a prospective
study and demonstrated that higher eosinophilc inflammation
did not accelerate telomere shortening rate in asthma. Thus,
cellular senescence in asthma might be only induced with some
specific inflammatory factors.

Autophagy
Autophagy is an intercellular self-degradation process
responding to various stimuli including inflammation,
pathogenic infection, environmental pollutants, and hypoxia
to maintain cellular homeostasis. The role of autophagy in
cellular senescence is quite debated, because both its activation
and inhibition effects have been reported. Kang and Elledge
(2016) suggested that there are two kinds of autophagy: selective
autophagy and general autophagy. In selective autophagy,
specific components rather than global bulk would be cleaned out
through receptor-mediated phagocytosis into autophagosome
or lysosome. Selective autophagy could suppress cellular
senescence by degrading GATA4, which could initiate NF-κB
pathway and induce SASP. On the contrary, general autophagy
would promote senescence through TOR-autophagy spatial
coupling compartment (TASCC) to facilitate the production of
SASP-associated factors (Kang and Elledge, 2016).

Autophagy has been implicated in asthma pathogenesis, but
whether it serves as a protective or promoting role is also
controversial. Genetic variants of autophagy gene 5 (ATG5)
have been found to correlate with asthma exacerbation (Martin
et al., 2012) and prebronchodilator FEV1 in asthmatic patients
(Poon et al., 2012). In patients with severe asthma, the level
of autophagy in peripheral blood cells and eosinophils is
higher than that in non-severe asthma or healthy controls (Ban
et al., 2016). McAlinden et al. (2019) found that autophagy
is activated in HDM-induced asthma mice with increased
Beclin 1 and ATG5 in airway epithelium and airway smooth
muscle, and autophagy inhibitor chloroquine could significantly
reduce airway inflammation, hyperresponsiveness, and structure
remodeling. Conversely, another study showed that autophagy
stimulator Simvastatin could alleviate Th2 inflammation and
extracellular matrix deposition in asthmatic mouse model (Gu
et al., 2017). Suzuki et al. (2016) also discovered that ATG5-
mediated autophagy could attenuate airway hyperresponsiveness
and neutrophil inflammation, while ATG5 depletion would lead
to development of glucocorticoid resistance, and severe IL17A-
dependent neutrophil inflammation.

The relationship between cellular senescence and autophagy
in asthma is also vague. In respiratory system, it was proposed
that insufficient autophagy or mitophagy would induce cellular
senescence in COPD and IPF (Fujii et al., 2012; Ito et al., 2015;
Kuwano et al., 2016; Tsubouchi et al., 2018; Vij et al., 2018; Araya
et al., 2019). For example, insufficient autophagy of mitochondria
would increase ROS production and therefore lead to oxidative
stress (Gomes and Scorrano, 2013). P62 could combine with

polyubiquitinated substrates and Atg8/LC3 to form an important
component of autophagosome, and regulate the delivery of
ubiquitinated proteins for selective autophagic degradation.
Thus, cumulative p62 and ubiquitinated proteins are thought to
be the indicators of insufficient autophagy (Komatsu et al., 2007).
Transient and insufficient activation of autophagy induced by
cigarette smoke extract (CSE) lead to the accumulation of p62 and
ubiquitinated proteins, resulting in increased cellular senescence
and SASP in human bronchial epithelial cells (HBECs) (Fujii
et al., 2012; Ito et al., 2015). Sufficient autophagy activated by
Torin1 could avoid amassing of p62 and ubiquitinated proteins,
and therefore prevent developing into cellular senescence (Fujii
et al., 2012). In asthma, p62 plays a pivotal role in mediating
Th2 inflammation in allergic airway diseases (Martin et al., 2006).
Although p62 was decreased in airway epithelium and smooth
muscle layer of HDM-induced asthma mice (McAlinden et al.,
2019), it was upregulated in CD11c+ cells to promote higher
neutrophilic airway inflammation and hyperreactivity (Suzuki
et al., 2016). Suzuki et al. (2016) found that impaired autophagy
in CD11c+ cells, but not in epithelial cells, contribute to severe
airway inflammation and steroid resistance. Therefore, the effect
of autophagy on asthma depends on not only the kind of
autophagy, but also the type of target cells.

According to the previous studies, insufficient autophagy and
non-selective autophagy might contribute to cellular senescence
(Fujii et al., 2012; Kang and Elledge, 2016). However, most of
current investigations have neglected the type of autophagy when
studying the correlation of autophagy and asthma. Autophagy is
a complicated biological process so that it’s difficult to figure out
which type it is. In order to identify the function of autophagy
on asthma, probably an easier way is to detect whether the
affected cells are senescent or not. The link of autophagy, cellular
senescence and asthma should be identified. Thus, it is necessary
for future studies to pay attention to the type of autophagy, the
type of target cells and the outcome of the affected cells.

SENESCENT CELLS AND THEIR
INFLUENCES ON THE DEVELOPMENT
OF ASTHMA

Epithelial Cell Senescence
Airway epithelium physiologically functions as the first line of
defense in innate immunity, preventing intrusion of extraneous
particles such as pathogens, allergens, and environmental
pollutants from inhaled air into lung. In asthma, epithelial
cells were damaged and functioned abnormally by promoting
pathologically tissue repair and inducing chronic airway
inflammation through the release of cytokines like TSLP, IL-25
and IL-33 (Lambrecht and Hammad, 2012; Gon and Hashimoto,
2018; Papi et al., 2018). Epithelial senescence plays a pivotal
role in the initiation of chronic airway diseases. In COPD and
IPF, senescence of airway epithelial cells is mainly mediated by
mitochondrial dysfunction and DNA damage (Mora et al., 2017;
Zhang et al., 2017; Fang et al., 2019). In aged people, the barrier
function of airway epithelium was impaired, making them more
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vulnerable to infections, which could initiate the exacerbation
of chronic diseases such as asthma and COPD (Boulet et al.,
2017; Yanagi et al., 2017). Telomere shortening and cellular
senescence in type II alveolar epithelial cells (AECs), rather than
mesenchymal cells such as myofibroblasts, resulted in airway
remodeling and lung fibrosis (Naikawadi et al., 2016). Besides,
increased inflammatory cell infiltration in the bronchoalveolar
lavage fluid (BALF) was accompanied with higher senescent type
II AECs in telomere repeat binding factor 1 (TRF1) -depleted
mice (Naikawadi et al., 2016). Thus, senescence in airway
epithelial cells plays a key role in initiating airway remodeling
and inflammation.

Although there is only a few direct evidence showing
senescent epithelial cells in the lung tissues of asthmatic patients
(Puddicombe et al., 2003), one study has proved that TSLP
could induce cellular senescence in airway epithelial cells in vitro
(Wu et al., 2013a). Low dose exposure of air pollutants PM10
could lead to airway inflammation through inducing oxidative
stress and mitochondrial dysfunction (Chan et al., 2019), which
has been implicated to result in epithelial cell senescence
(Tezze et al., 2017). Epithelium senescence might promote
asthma development through damaging the epithelial integrity
and barrier function. ITGB4 is a critical structural adhesion
molecule maintaining the integrity of airway epithelium. One
study found that ITGB4 expression was downregulated in OVA-
challenged mice accompanied with reduced wound repair ability
and anti-oxidant capacity (Liu et al., 2010a). ITGB4 was also
found to be decreased in asthmatic patients (Liu et al., 2010b).
Deficiency of ITGB4 could result in cellular senescence in airway
epithelial cells through p53 signaling pathway (Yuan et al., 2019).
Besides, ITGB4 deficiency could also result in severe airway
inflammation and airway hyperresponsiveness in asthma (Liu
et al., 2010a). Thus, epithelial cell senescence induced by the
downregulation of ITGB4 or increased TSLP leading to airway
epithelium dysfunction, might be an important mechanism
of asthma pathogenesis. However, more evidences are needed
to further certify that epithelial cell senescence initiates the
development of asthma.

Mesenchymal Cell Senescence
Mesenchymal cells in the airway include lung fibroblasts,
myofibroblasts and airway smooth muscle cells (ASMCs).
Fibroblasts might be the most commonly used model for
studying cellular senescence. Previous studies have detected
premature senescence of bronchial fibroblasts and myofibroblasts
in asthmatic lungs (Dubé et al., 1998; Ward et al., 2008; Hadj
Salem et al., 2015). SASP-related cytokines, chemokines, matrix-
remodeling proteases expressed by senescent lung fibroblasts
could result in low-level inflammation and fibrosis (Schafer
et al., 2017; Álvarez et al., 2017). Clearance of these senescent
fibroblasts by senolytic drugs would render the resolution of
fibrosis (Schafer et al., 2017). The effect of fibroblast senescence
on the pathobiology of asthma is not clear yet, but we could still
find some clues. Some investigators have demonstrated that the
activation of transcription factor signal transducer and activator
of transcription 3 (STAT3) might contribute to lung fibroblast
senescence in patients with IPF (Waters et al., 2018, 2019).

They found that nuclear localization of STAT3 was elevated in
senescent fibroblasts while inhibition of STAT3 activity would
attenuate the accumulation of SA β-Gal and mitochondrial
dysfunction. STAT3 plays a vital role in lung inflammation and
airway remodeling in asthma, and it has been well proved as
the downstream signal of TSLP (Wu et al., 2013b; Gavino et al.,
2016). Therefore, the activation of STAT3 in asthma may induce
chronic inflammation and airway remodeling via promoting
lung fibroblast senescence. Further evidences are still needed to
confirm the role of fibroblast senescence in airway inflammation
and remodeling of asthma.

Airway smooth muscle cells is another integral cell type
constituting the airway structure. One featured symptom of
asthmatic patients is airway hyperresponsiveness, which is mainly
induced by the contraction of ASMCs in response to specific
stimuli. Persistent chronic inflammation and secreted growth
factors could lead to increased airway smooth muscle mass and
then promote irreversible airway obstruction. Some asthma-
related factors have shown to induce senescence in smooth
muscle cells. In vitro study showed that hypoxia induced cellular
senescence in fetal ASMCs, leading to the upregulation of
proinflammatory and profibrotic mediators, as well as increased
contractility, which conduces to inflammation, tissue remodeling
and airway obstruction (Parikh et al., 2019a). IgE and its receptor
play an important role in the pathogenesis of allergic diseases
like asthma. Recent study found that IgE induced senescence of
smooth muscle cells via upregulating lincRNA-p21 and p21 in
OVA-asthma model (Guo et al., 2019).

However, it is unclear whether ASMCs from asthmatics are
senescent or not. Some studies suggested that the proliferation
rate of ASMCs from asthmatic subjects was enhanced (Johnson
et al., 2001; Trian et al., 2016). Although Trian T and coworkers
found that senescent marker p53 was increased in asthmatic
ASMCs, it seems that p53 had lost its anti-proliferative function
in asthma (Trian et al., 2016). On the other hand, some research
failed to detect the increase of nuclei numbers or proliferative
markers like Ki67 in airway muscle bundles of asthma (Benayoun
et al., 2003; Moir et al., 2003). By using bronchial biopsies from 14
subjects with mild to moderate asthma and 15 control subjects,
Woodruff et al. (2004) demonstrated that there was hyperplasia
but not hypertrophy in smooth muscle. Conversely, with a larger
sample (about 50 subjects per group), James et al. (2012) found
that ASMCs hypertrophy was present in both fatal and non-
fatal asthma while hyperplasia only occurred in fatal asthma. In
acute asthmatic murine model, Ki67 was upregulated in ASMCs.
However, in chronic model (with significant airway remodeling),
ASMCs exhibited hypertrophic cell shape instead of increased
proliferation rate (Plant et al., 2012). Thus, persistent course of
asthma or severe asthma might result in ASMC hypertrophy
instead of hyperplasia. Furthermore, increased oxidative stress
burden in asthma is also more likely to induce hypertrophy of
ASMCs. Genome-wide microarray analysis identified increased
expression of NADPH oxidase (NOX) subtype 4 (Nox4) in
primary airway smooth muscle of asthma (Sutcliffe et al., 2012).
TGF-β1 could also promote human ASMC hypertrophy through
inducing Nox4 expression (Sturrock et al., 2007). Interestingly,
Nox4 overexpression could not only induce hypertrophy of
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vascular smooth muscle cells (VSMCs) but also lead to stronger
SA-β-Gal staining (McCrann et al., 2009). Besides, Zhou et al.
(2004) found that increased expression of p21 could result in
hypertrophy and cell cycle arrest in human ASMCs. With respect
to these reports, it’s highly possible that hypertrophic ASMC is
a senescent phenotype as it has enlarged cell morphology and
proliferation suspension, but future studies still need to use more
senescence-associated markers to identify whether hypertrophic
ASMCs are senescent or not.

Immune Cell Senescence
The third cell type that might suffer from cellular senescence
in asthmatics is immune cell. As we’ve mentioned above,
PBMCs and leukocytes from asthmatic patients have experienced
telomere shortening, which is one of the characteristics
of cellular senescence (Kyoh et al., 2013; Belsky et al.,
2014; Lee et al., 2017). In clinical studies, immune cells
isolated from peripheral blood might be the most commonly
used subjects for studying cellular senescence in diseases as
they are easy-obtained. Accelerated aging of leukocytes from
asthmatics patients was associated with longer course of disease
(Belsky et al., 2014). Brandenberger and Mühlfeld (2017)
concluded that immune senescence in aged people impaired
both innate and adaptive immunity, making organisms more
susceptible to infection, and contributing to the development
of chronic lung diseases. Affected immune cells in the elderly
may include macrophages, neutrophils, natural killer (NK)
cells, dendritic cells, B cells and T cells, leading to higher
levels of IL-6, IL-8, and TNF-α. The inflammatory response
was more severe while the ability of pathogen clearance
declined. Furthermore, senescence of T cells would also alter
the T-cell mediated immunity and its regulatory immune
function, facilitating the development of autoimmune diseases
(Lynch et al., 2017).

Most of the studies related to immune senescence were
reported in aged people, while there are still a few studies
that reveal the effect of immune senescence on the disease
development in young people. Balint et al. (2013) presented
a premature immune senescence in multiple sclerosis (MS)
children who had lower numbers of naive T cells as well
as reduced recent thymic emigrants of Treg cells compared
to their healthy counterparts, indicating the impairment of
T cells hemostasis. This finding may provide further support
to the relationship of immune senescence and pathogenesis
of asthma, with which some patients exhibit Th17/Treg bias
(Carr et al., 2018; Papi et al., 2018). Th17/Treg bias is more
common in aged people with asthma. The Th17/Treg ratio
rises up with aging and contributes to a proinflammatory
status (Schmitt et al., 2013). Th17 cells differentiated from
naïve T cells when stimulated by IL-6 and TGF-β, which are
common components of SASP. This might be the reason of
why Th17 cells increase along with aging. Interestingly, IL-17
could also enhance the secretion of SASP cytokines in bronchial
fibroblasts, such as GM-CSF, TNF-α, IL-1β, and IL-6 (Molet
et al., 2001). Though Treg cells also increase with aging, its
function to suppress Th17 cell expansion is deficient (Jagger
et al., 2014). Th17/Treg bias in asthma, probably affected by

immune cell senescence, contributes to neutrophil inflammation,
and difficult-to-treat phenotype (Papi et al., 2018). Recent study
found that it is impaired autophagy of immune cells, but not
epithelial cell, contributed to severe Th17-mediated neutrophil
inflammation, and steroid resistance (Suzuki et al., 2016).
Impaired autophagy is thought to trigger cellular senescence
(Fujii et al., 2012), thus this study indicates that immune cell
senescence might have greater contribution to chronic airway
inflammation in asthma.

THERAPEUTIC ROLE OF ANTI-AGING
STRATEGIES IN ASTHMA

Though the role of cellular senescence in the asthma development
is still under investigation, some of the anti-aging strategies
have been proven to improve the airway inflammation or
airway remodeling in asthma. According to our previous
discussion, senescence-associated triggers like telomere
shortening, oxidative stress, inflammation, and autophagy
are greatly associated with the development of asthma. Thus,
the therapy purpose is to inhibit these potential mediators.
As current therapies for asthma have reached an impasse,
anti-senescence strategies might provide a new perspective for
asthma treatment.

To avoid natural aging, multiple strategies have been
put forward, including healthy lifestyle, caloric restriction
and weight loss in obese, as well as some pharmacological
interventions (de Cabo et al., 2014). Some drug candidates have
been introduced, such as azithromycin, metformin, resveratrol,
rapamycin, and roxithromycin. Although their underlying
mechanisms are undetermined, it’s proposed that they could
block aging progress via direct or indirect activation of autophagy
in target cells (de Cabo et al., 2014). Most of the anti-aging drugs
are repurposing from existing drugs, with the advantage of
being thoroughly screened for safety and clear mechanisms of
action (Snell et al., 2016). Here we will describe the current
anti-senescence therapies that might be effective for improving
asthmatic symptoms and pathobiology.

Caloric Restriction and Weight Loss
Previous reports showed that intermittent fasting or calorie
restriction might improve immune function and ameliorate
inflammation in some conditions (Buono and Longo, 2019;
Collins et al., 2019). These two studies demonstrated that
cycled fasting would help inhibit inflammation response to
various stimuli and elevate the anti-infection effect of immune
system. For example, normal mice needed to spend 1 week
to totally clear off the invasive pathogens, while fasting mice
just consumed 2 days. Furthermore, inflammation level was
reduced in adults after fasting for 19 h. This is of importance
because inflammation is a double-edged sword. Persistent or
excessive inflammation would facilitate the development of
various chronic diseases or cancer, as well as induce cellular
senescence and organ aging. Thus, caloric restriction and
weight loss have been proposed to be one of the efficient
interventions to delay aging process (de Cabo et al., 2014).
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Although the mechanism involved is not fully understood,
caloric restriction may prevent cellular senescence through
eliminating inflammation- and oxidative-induced damage and
activates selective autophagy to remove the present damage
components (Fontana et al., 2018). Besides, calorie restriction can
also ameliorate the circulating insulin growth factor 1 (IGF-1)
level and mTOR activation, which could lead to premature
senescence in cells (Fontana et al., 2018). Asthma coexistence
with obesity tends to become more severe and difficult-to-
treat (Kim et al., 2014; To et al., 2018). To et al. (2018)
demonstrated that obesity-derived oxidative stress was to blame
for the asthma outcomes. Obesity is more associated with
Th17 and neutrophilic inflammatory phenotypes, leading to
NLRP3 inflammasome activation (Kim et al., 2014), which
would induce cellular senescence and SASP (Davalli et al.,
2016). Johnson et al. (2007) found that after alternate days
of calorie restriction, serum levels of oxidative substances and
inflammation were reduced and the levels of antioxidant uric
acid were increased in obese people with asthma. A systematic
analysis also concluded that caloric restriction and weight loss
were beneficial for disease control, lung function and life quality
in asthmatic patients (Forte et al., 2018). However, whether
caloric restriction exerts similar effect in asthmatic patients with
normal weight is unknown.

Senolytic Drugs
Majority of senolytic agents are selected from FDA-approved
drugs and repurposed through in vitro or in vivo senescent
models. Although senolytic drugs are still in their infancy in
clinical trials, some drugs with potential anti-aging effect have
been proved to be medicative in asthma. Azithromycin (AZM),
a 15-membered macrolide originated from erythromycin, is
not only with bactericidal effect, but also deemed to be anti-
inflammatory and capable of regulating inflammatory response
(Kanoh and Rubin, 2010). Clinical benefits in asthma contain
improvements of peak expiratory flow, symptoms and life
quality (Reiter et al., 2013; Gibson et al., 2017). AZM has been
shown previously to strengthen the airway epithelial barrier
and therefore decrease the invasion of inhaled allergens and
pathogens (Slater et al., 2016). Recently, Ozsvari et al. (2018)
identified AZM as a novel senolytic drug to clean about 97%
of senescent human lung fibroblasts in vitro, indicating that
AZM might help remove senescent fibroblasts and reduce SASP-
related factors in asthmatic lungs, and then attenuate airway
inflammation and airway remodeling. According to this study,
the senolytic activity of AZM might be through inducing
selective autophagy to preferentially target senescent cells and
accelerate their death. Metformin, a widely used hypoglycemic
drug, has been demonstrated to improve the clinical outcomes
of patients with coincidence of asthma and diabetes when
compared with placebo controls (Li and Li, 2016; Wu et al.,
2019). However, such results did not happen in the patients
using insulin (Chen C. Z. et al., 2017), indicating that metformin
may achieve this effect through other mechanism instead of
just lowering blood glucose level. Metformin is also known as
senolytic drug candidate, suggested to activate AMP-activated
protein kinase (AMPK), the upstream regulator of autophagy,

to protect cells against apoptosis and senescence (Chen et al.,
2016; Garg et al., 2017). Activation of AMPK by metformin
could attenuate CSE-induced inflammation in airway epithelial
cells and elastase-induced airspace enlargement. This effect is
probably through metformin’s senolytic activity as it could reduce
the expression of senescence-related genes such as p21 and p16,
as well as SASP components like IL-6, IL-8, and MCP-1 in
CSE-treated epithelial cells and elastase-stimulated mice (Cheng
et al., 2017). SASP not only contributes to chronic inflammation,
but also is involved in airway remodeling via expression
of profibrotic factors and extracellular matrix (Parikh et al.,
2019b). Park et al. (2012) found that metformin could reduce
eosinophilic inflammation and peribronchial fibrosis, smooth
muscle layer thickening, and mucin secretion though activating
AMPK and decreasing oxidative stress in murine model of
chronic asthma. However, further investigations need to ascertain
if metformin is through inhibiting SASP and eliminating
senescent cells in asthma to attenuate airway inflammation, ECM
deposition and airway wall thickening. Other senolytic drugs
including resveratrol, rapamycin and roxithromycin also have
been demonstrated to protect asthmatic patients from persistent
airway inflammation and airway remodeling, such as attenuating
airway fibrosis and reducing bronchial smooth muscle mass
(Shimizu et al., 1994; Black et al., 2001; Chen et al., 2015;
Hua et al., 2015; Wu et al., 2015). These data give us a new
insight into therapeutic role of senolytic drugs in treatment of
asthma. Besides, their medicative effect on asthma also provides
additional evidences to suggest the role of cellular senescence in
the pathogenesis of asthma.

Stem Cells Transplantation
Remarkable experimental and clinical trials have demonstrated
the therapeutic effect of mesenchymal stem cells (MSCs)
in the diseases of various organs or systems with the
capabilities of regeneration and immunomodulation (Uccelli
et al., 2008). In recent years, with consideration of their merits
of cell replacement and improving airway microenvironment,
increasing clinical studies of intravenous injection of MSCs
to patients with aging-related diseases including aging frailty,
cardiovascular diseases, IPF and COPD have been conducted
(Weiss et al., 2013; Golpanian et al., 2016; Bartolucci et al.,
2017; Glassberg et al., 2017; Tompkins et al., 2017). MSCs
transplantation was shown to improve the physical performance,
immune function, FEV1 and quality of life in patients with
aging frailty, which was featured by exhaustion of stem cells
or precursor cells, and chronic inflammation (Golpanian et al.,
2016; Tompkins et al., 2017). In patients with aging-related
respiratory diseases such as COPD and IPF, MSCs infusion
would alleviate inflammation and lung fibrosis (Royce et al.,
2014). In murine asthma models, intravenous injection of MSCs
would suppress inflammatory cells infiltration and cytokines
secretion, and ameliorate histopathological changes (Bonfield
et al., 2010; Firinci et al., 2011). MSC exosomes could promote
proliferation of Treg cells to restore Th17/Treg homeostasis
in aged people and some difficult-to-treat asthmatics through
its immunosuppression effect (Du et al., 2018). MSCs infusion
could also downregulate the expression of SASP-associated
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cytokines (TNF-α, IL-1β, MCP-1, and IL-6) and proteases
(MMP9 and MMP12) in lung with cigarette smoke exposure
(Guan et al., 2013), indicating that MSCs play an important
role in ameliorating SASP. However, whether stem cell therapy
could selectively clean out the senescent cells is not yet
demonstrated. Thus, Further studies need to detect the change
of senescence-associated markers in asthmatic patients after
MSCs administration.

SPECIFIC ROLE OF CELLULAR
SENESCENCE IN ASTHMA DIFFERENT
FROM COPD AND IPF

The contribution of cellular senescence in the pathogenesis of
COPD and IPF is quite well established. Similar to COPD and IPF,
asthma is also initiated from airway epithelium injury, sharing
the analogical pathobiology features including chronic airway

FIGURE 1 | Possible role of cellular senescence in asthma. Telomere damage, oxidative stress, inflammation and insufficient/non-selective autophagy induced by
various stimuli might mediate the senescence of airway epithelial cells, mesenchymal cells, and immune cells in asthmatics. The senescent cells could also augment
surrounding cell senescence through SASP and form a vicious cycle. The senescence in these target cells would contribute to the pathobiology of asthma, including
airway inflammation, airway remodeling as well as lung function decline. By the way of suspending the mediators of cellular senescence, anti-senescence strategies
such as caloric restriction, senolytic drugs, and stem cells transplantation might serve as novel therapies for patients with asthma.
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inflammation and airway remodeling. Thus, based on the facts
that cellular senescence could promote chronic inflammation and
airway fibrosis in COPD and IPF, and cellular senescence could
be detected in asthmatic subjects (Dubé et al., 1998; Puddicombe
et al., 2003; Ward et al., 2008; Hadj Salem et al., 2015), we highly
propose that cellular senescence is a potential mechanism for
asthma development.

However, some characteristics of asthma are different from
COPD and IPF, suggesting that cellular senescence might be
triggered or effect differently in this disease. First of all, asthma
can be child-onset, while COPD and IPF are often diagnosed at
adulthood and old age. This indicates that there is premature
senescence triggered at young age in asthma. In this regard,
studies have demonstrated that hypoxia in infants, air pollutants
exposure, and allergen challenge in childhood/adolescence could
induce underlying senescence process (Deng et al., 2013; Chan
et al., 2016, 2017; Lee et al., 2017, 2019; Parikh et al.,
2019a). Such stressors might induce cellular senescence in
airway epithelial cells, mesenchymal cells or immune cells,
leading to their dysfunction and facilitating the initiation of
asthma. Second, asthma is a heterogenetic disease with various
inflammation phenotypes such as eosinophilic, neutrophilic,
mixed inflammation, and non-inflammatory patterns. IgE could
induce senescence of smooth muscle cells in asthmatic model
(Guo et al., 2019). TSLP could lead to bronchial epithelial
cell senescence (Wu et al., 2013a). Neutrophil and Th17
inflammation is more likely correlated to steroid-resistant asthma
(Israel and Reddel, 2017). IL-17 could enhance the secretion of
SASP cytokines in bronchial fibroblasts, such as GM-CSF, TNF-α,
IL-1β, and IL-6 (Molet et al., 2001). Vice versa, SASP associated
factors (IL-1β, IL-6, IL-8, and GM-CSF) is closely associated
with increase of both neutrophil and eosinophil inflammation
(Busse et al., 2017). Third, although epithelial senescence-
induced barrier dysfunction is also important in the pathogenesis
of COPD and IPF, the mediator of epithelial cell senescence might
be different in asthma. In IPF, we could find out a lot of gene
mutations correlating to the premature aging of epithelial cells
(Richeldi et al., 2017), while those gene mutations haven’t been
reported in asthma. Instead, according to current studies, ITGB4
might be a pivotal gene to link epithelial cell senescence and the
development of asthma (Liu et al., 2010a,b; Yuan et al., 2019),
while it has not been demonstrated in COPD and IPF.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we summarized the current evidences illustrating
the possible correlation of cellular senescence and the

pathophysiology of asthma. We assume that asthma-related
risk factors like invasive allergens, environmental pollutants or
cigarette smoke could induce telomere shortening, oxidative
stress, inflammation and insufficient/unselective autophagy,
leading to the cellular senescence in epithelial cells, mesenchymal
cells, and immune cells. Aging of these cells will then break the
epithelial barrier, induce airway remodeling and sustain airway
inflammation through SASP, which could augment cellular
senescence in surrounding proliferating cells. Such a feedback
loop promotes the pathogenesis of asthma. Thus, breaking this
vicious cycle by anti-senescence strategies may help restrain the
development of asthma (Figure 1).

Current understanding on the involvement of cellular
senescence in asthma is hampered for several reasons. First, most
of studies have neglected the detection of cellular senescence
markers when investigating the role of telomere shortening,
oxidative stress, inflammation and autophagy in the pathogenesis
of asthma. Second, prospective data is limited so that it is
difficult to figure out whether cellular senescence is a cause
or a result of asthma. Third, few investigations have focused
on the mechanisms of anti-senescence therapies for asthma.
Thus, future studies need to put additional emphasis on
ascertaining the place of cellular senescence in asthma by
using and the mechanisms of anti-senescence therapies for
patients with asthma. Sufficient methods for detecting premature
senescence are necessary for future studies, including SA-β-Gal
staining, proliferation assay, cell morphology, formation of
senescence-associated heterochromatin foci, and secretion of
SASP components.
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