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A B S T R A C T   

Background: Immune checkpoint inhibitor (ICI) treatment has enhanced survival outcomes in 
clear cell renal cell carcinoma (ccRCC) patients. Nevertheless, the effectiveness of immuno-
therapy in ccRCC patients is restricted and we intended to develop and characterize an immune 
response prediction signature (IRPS) to forecast the efficacy of immunotherapy. 
Methods: RNA-seq expression profile and clinicopathologic characteristics of 539 kidney cancer 
and 72 patients with normal specimens, were downloaded from the Cancer Genome Atlas (TCGA) 
database, while the Gene Expression Omnibus (GEO) database was used as the validation set, 
which included 24 ccRCC samples. Utilization of the TCGA data and immune genes databases 
(ImmPort and the InnateDB), we explored through Weighted Gene Co-expression Network 
Analysis (WGCNA), along with Least Absolute Shrinkage and Selection Operator method 
(LASSO), and constructed an IRPS for kidney cancer patients. GSEA and CIBERSORT were per-
formed to declare the molecular and immunologic mechanism underlying the predictive value of 
IRPS. The Human Protein Atlas (HPA) was deployed to verify the protein expressions of IRPS 
genes. Tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS) were 
computed to determine the risk of immune escape and value the discrimination of IRPS. A ccRCC 
cohort with anti-PD-1 therapy was obtained as an external validation data set to verify the pre-
dictive value of IRPS. 
Results: We constructed a 10 gene signature related to the prognosis and immune response of 
ccRCC patients. Considering the IRPS risk score, patients were split into high and low risk groups. 
Patients with high risk in the TCGA cohort tended towards advanced tumor stage and grade with 
poor prognosis (p < 0.001), which was validated in GEO database (p = 0.004). High-risk group 
tumors were related with lower PD-L1 expression, higher TMB, higher MSIsensor score, lower IPS, 
higher TIDE score, and enriched Treg cells, which might be the potential mechanism of immune 
dysfunction and exclusion. Patients in the IRPS low risk group had better PFS (HR:0.73; 95% CI: 
0.54–1.0; P = 0.047). 
Conclusion: A novel biomarker of IRPS was constructed to predict the benefit of immunotherapy, 
which might lead to more individualized prognoses and tailored therapy for kidney cancer 
patients.  
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1. Introduction 

Renal cell carcinoma (RCC) is the second commonly diagnosed urologic neoplasm worldwide, with about 79,000 new cases and 
13,920 deaths in 2022 [1]. Among all subtypes of RCC, approximately 70%–85% of cases are categorized as clear cell renal cell 
carcinoma (ccRCC) [2]. Conventional chemotherapy and radiotherapy of ccRCC are invalid, and interleukin 2 (IL-2) and interferon 
alpha (IFN-a) are diffusely applied despite limited effect [3]. Although the targeted therapy has improved immensely, metastatic 
ccRCC has a dismal 12% 5-year survival rate [4]. Fortunately, the development of immune checkpoint inhibitor (ICI) treatment is 
profoundly changing the treatment situation for many cancers. FDA-approved ICIs, including nivolumab and pembrolizumab, have 
become routine treatment for ccRCC, with numerous clinical trials demonstrating their profound benefits in improving patient overall 
survival [5–7]. Nevertheless, due to immune dysfunction and exclusion, not all ccRCC patients demonstrate sensitivity to this 
important treatment modality. Recent studies demonstrate that WDR5, a histone H3 lysine 4 (H3K4) presenter, is upregulated in a 
variety of cancers and has a positive correlation with PD-L1 expression. It plays a vital role in proliferation, self-renewal, and cisplatin 
chemoresistance in bladder cancer [8]. Moreover, WDR5 also plays an important role in lymphatic metastasis of bladder cancer 
through the HSF1-PRMT5-WDR5 axis [9]. Therefore, targeting WDR5 may be a novel therapeutic concept to concurrently inhibit 
proliferation and PD-L1 expression in bladder cancer. In addition to this, HHLA2 expression is much higher than that of PD-L1 in ccRCC 
tissues, and is significantly associated with worse outcome. Moreover, patients with HHLA2/PD-L1 co-expression associated with 
adverse outcomes. HHLA2 could decrease the proliferation and the function of CD8+ and CD4+ TILs and inhibit the production of 
cytokines. In this way, anti-HHLA2 may have potential as a novel immunotherapy [10]. However, despite the discovery of numerous 
new treatments and immune mechanisms, the efficacy of immunotherapy in each individual ccRCC patient is still unknown. Therefore, 
it is essential to determine new predictive factors for ICI efficacy. Currently, various biomarkers are reported to have predictive value 
for ICI efficacy. Specifically, high PD-L1 expression, identified with high tumor mutational burden (TMB), or with microsatellite 
instability (MSI-H) state, or with mismatch repair deficient (dMMR), always forecast benefits from ICI therapy [11–13]. However, 
none of these markers have been sufficiently verified to precisely predict ICI reaction [14]. ccRCC has unique features in terms of the 
immune microenvironment. Previously defined biomarkers have failed to split ccRCC patients into high or low immune response 
groups, while some studies even show that ccRCC patients with high TMB presented to determine a lower reaction rate to immuno-
therapy [15,16]. Consequently, in order to resolve the aforementioned problem, there is an urgent need to develop a reliable 
biomarker in ccRCC patients to predict the survival outcomes and the immune response. 

In the present project, we established a novel ten-gene signature linked with the immune microenvironment to forecast immu-
notherapy effectiveness and survival outcomes of ccRCC patients, using the publicly available RNA-seq expression data from The 
Cancer Genome Atlas (TCGA) and NCBI GEO. Tumor immune dysfunction and exclusion (TIDE) score was employed in our research, in 
order to represent the risk of immune escape and forecast the effectiveness of ICIs treatment in ccRCC. Furthermore, we systematically 
interrogated the potential molecular and immunologic mechanisms underlying IRPS’s prognostic ability. These findings should be 
useful to clinicians in providing more individualized prognoses and tailored therapy. 

2. Materials and methods 

2.1. Research project and data acquisition 

The entire candidate generation design is presented as a flow plot in Fig. 1. 
The publicly available TCGA database was applied to obtain the RNA-seq (HTSeq-FPKM) expression profiles (https://portal.gdc. 

cancer.gov/). Ultimately, 539 ccRCC samples were retrieved, while 72 specimens in normal tissue were also enrolled. A GTF file 
from GENCODE (https://www.gencodegenes.org/) was obtained, in order to annotate genes. The corresponding clinicopathological 
information of 542 cancer samples were acquired from the TCGA-KIRC GDC dataset maintained by the UCSC Cancer Genmoe Browser 
(https://xenabrowser.net/). We acquired gene names from the ImmPort (https://www.immport.org/) and InnateDB (https://www. 
innateDBdb.com/) databases, which contained 6196 genes related to immunology. Meanwhile, GSE22541 dataset was obtained as 
the external validation set, consisting of acquirable RNA-seq expression information and patient outcomes for 24 ccRCC tumor 
specimens, from the NCBI Gene Expression Omnibus (NCBI GEO) (https://www.ncbi.nlm.nih.gov/geo/). 

2.2. Exploration of immune-related differentially expressed genes (IRDEGs) 

To screen out the differentially expressed genes (DEGs) between ccRCC samples and regular tissue samples, we utilized the “limma” 
package in R. We regarded the median as the gene expression value if different probes were associated with the same gene. The 
Benjamin-Hochberg correction was adopted to adjust P-value, and a False Discovery Rate (FDR) < 0.05, with |log-fold change (log-FC) 
| >1 was selected as the thresholds for DEG screening. After that, IRDEGs were defined as the intersection of DEGs and the cluster of 
genes in immune-related genes list. 

2.3. Function analysis of IRDEGs 

Gene Ontology (GO) was enrolled to explore the potential function by “ClusterProfiler” R package. Meanwhile, the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses was also performed for the purpose of exploring the functional signaling pathways of 
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IRDEGs. The significant results of GO and KEGG were painted with the “GOplot” R package. 

2.4. Weighted gene co-expression network analysis (WGCNA) 

To acquire hub genes related with immune function, “WGCNA” R package was envolved in this research [17]. First, sample 
clustering analysis was constructed based upon the association coefficient between two genes using Pearson’s test. Second, we set a soft 
threshold to fit the scale-free network law, based on a scale-free R2 of 0.9, for the juxtaposition matrix. Accordingly, a topological 
overlap matrix with topological overlap measure (TOM) was carried out. 1-TOM was utilized to group genes with similar patterns of 
expression, and a dynamic hybrid tree cutting algorithm was further used to identify the modules. The IRDEG expression in tumor 
tissues and normal tissues were considered as clinical traits. The genes of significantly related modules were selected for subsequent 
analysis. 

2.5. Construction of the immune response prediction signature (IRPS) 

We used Univariate Cox proportional hazards regression analysis for further identification of the independent and significantly 
predictive genes according to the overall survival (OS). The “glmnet” R package with the use of applying the Least Absolute Shrinkage 
and Selection Operator method (LASSO) was conducted, for screening of the best matched predictive signatures for constructing a 
multi-gene prognostic signature. Next, the candidates were used in multivariate Cox proportional hazards regression analysis to 
develop IRPS. Subsequently, the risk model was established with a risk score defined as: risk score = expression of gene1 × Coef1 +
expression of gene2 × Coef2 + … … + expression of gene n × Coef n. Next, according to the risk score, patients were divided into high 
risk and low risk subgroups. The optimal cut-off point of IRPS risk score was determined through “survminer” R package. Furthermore, 

Fig. 1. Flow diagram of the whole project design.  
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for verifying the protein expression of IRPS genes, the Human Protein Altas (HPA) database (https://www.proteinatlas.org/) was 
further used. 

2.6. Survival analysis and confirmation of the independent predictive value of IRPS 

To investigate IRPS for predictive ability, Kaplan–Meier survival analysis was propelled to present the survival curves, meanwhile, 
the log-rank tests were deployed to compare the differences in both the TCGA and GEO cohorts. Existing clinicopathological infor-
mation from databases such as age, gender, tumor laterality, tumor grade, tumor stage, T stage, N stage and M stage were all included 
with the risk score, while univariate and multivariate Cox proportional hazards regression analysis was deployed to validate the in-
dependent predictive ability of IRPS. The outcomes were visualized with forest plots. 

2.7. Analysis of the molecular and immunologic mechanism 

Determination of the potential biological signaling pathways between the two IRPS risk groups was conducted by “clusterProfiler” 
and the “org.Hs.eg.db” R package through Gene set enrichment analysis (GSEA). The immunological signature gene set (c2.cp.kegg. 
v7.4.symbols.gmt) and the reference set of GSEA was selected. The different gene mutations among IRPS risk groups were researched 
and painted into waterfall plots through “Maftools” package in R. To identify the differences in immune characteristics between the 
two risk groups, CIBERSORT was applied to evaluate the proportion of 22 subtypes of immune-related cells in the two groups. 
Moreover, single sample GSEA (ssGSEA) was performed with the “GSVA” R package for the purpose of analyzing immune and mo-
lecular function. 

2.8. Predictive role of IRPS for immunotherapy efficacy 

Tumor Immune Dysfunction and Exclusion (TIDE) score (HTTP://tide.dfci.harvard.edu/) was used to identify the prognostic value 
of the IRPS in the effectiveness of immunotherapy. We also validated our model and compared with other immune-related gene 
signatures [18] with the “survivalROC” R package and computed the area under the curve (AUC) of the receiver operator characteristic 
(ROC) curve. In addition, the MSI status, measured by MSIsensor score, was considered in this project as an ICI response biomarker. 
Furthermore, the immunophenoscore (IPS) of ccRCC patients were obtained from the Cancer Immunome Atlas (TCIA) database, as an 
assessment indicator for tumor immunogenicity to predict the response to immunotherapy. To evaluate IRPS-associated outcomes in a 
realistic scenario, we obtained clinical and molecular data from a ccRCC cohort treated with anti-PD-1 therapy [19]. Braun et al.’s 
ccRCC cohort included available RNA-seq expression data and clinical data of 309 patients with ccRCC, who underwent anti-PD-1 
therapy. 

2.9. Statistical analysis 

Comparison of continuous variables between risk subgroups was performed through the independent t-test. Categorical charac-
teristics were examined with the utilization of the chi-square test and Fisher test. Differences in PD-L1 expression as well as TMB and 
TIDE score between risk subgroups were examined by the Wilcoxon test. The survival analyses were proceeded and calculated through 
the Kaplan–Meier method and at the same time, difference between curves were estimated with the log-rank test. We considered a two- 
sided P-value < 0.05 to be remarkable difference. 

3. Results 

3.1. Identification and enrichment analysis of IRDEGs 

To acquire the DEGs, 611 specimens of ccRCC were retrieved in total from the TCGA database, including RNA-seq expression of 539 
samples in ccRCC and 72 samples in normal tissue. Using the filtering criteria of FDR < 0.05 and |log2(FC)| > 1, 9459 DEGs in ccRCC 
were recognized, among these genes, 7191 genes were implied to have up-regulation,while other 2268 down-regulated genes were 
also acquired (Fig. S1A). Additionally, 2660 genes related to immune function were downloaded from the webset of ImmPort and 
InnateDB. After intersecting the DEGs and immune-related genes, 946 immune-related differentially expressed genes (IRDEGs) were 
performed (Fig. S1B). The functional enrichment analysis was performed using GO and KEGG databases to explore the potential 
biological function of IRDEGs (Fig. 2). In the GO analysis chord plot, the top 8 terms related to the IRDEGs were leukocyte mediated 
immunity, adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily 
domains, lymphocyte mediated immunity, positive regulation of cell activation, positive regulation of leukocyte activation, production 
of molecular mediator of immune response, positive regulation of lymphocyte activation, and B cell mediated immunity (Fig. 2A). In 
the KEGG pathway analysis, “Cytokine cytokine receptor interaction” was implied to be the most notable immune-related enriched 
pathway (Fig. 2B). 

3.2. Determination of immune-related hub genes using WGCNA 

We carried out Weighted Gene Correlation Network Analysis (WGCNA) of the 946 IRDEGs to acquire immune-related hub genes. 
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Fig. 2. Functional enrichment of IRDEGs. A. The top 8 terms of GO enrichment analysis of IRDEGs B. The top 30 KEGG enrichment analysis of IRDEGs, “Cytokine cytokine receptor interaction” was the 
most notable immune-related enriched pathway. 
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First, we removed some stray samples, which had a height in the hierarchical clustering tree of greater than 20,000 (Fig. 3A). The 
correlation coefficient was greater than 0.9, and we picked the optimal soft-thresholding power of “3” to fulfill the scale-free network 
rule (Fig. 3B). Genes with similar expression patterns clustered into the same module and retained the module color (Fig. 3C). Six 
modules were identified using the dynamic pruning method, including brown, green, red, black, blue and yellow modules, while the 
gray module included genes lacking any expression relationship with other genes. Among them, the most significant correlation with 
tumor traits was the brown module, which contained 137 immune-related hub genes (Fig. 3D). Therefore, the module with brown 
color was eventually chosen for the further establishment of IRPS. 

3.3. Construction of the immune response prediction signature (IRPS) 

We selected the 137 immune-related hub genes from the brown module, and based on these genes, 57 candidates were obtained by 
Univariate Cox proportional hazards regression analysis as independently prognostic of OS (Table S1). Among them, 19 of these genes 
were OS risk factors, while the remaining 35 genes were protective factors (Fig. 4A). Next, we used LASSO regression analysis to 
exclude overfitting genes and ultimately screened out 21 optimal genes with prognostic value for constructing of a multi-gene 
prognostic signature (Fig. 4B and C). These 21 genes were further incorporated in multivariate Cox proportional hazards regression 
analysis. The Akaike information criterion (AIC) was considered in order to construct the best-fit prognostic model, and finally a 10 
immune-related genes signature was selected as the IRPS (Fig. 4D). The 10 genes were TMSB4Y, NDRG1, SEMA3G, SEMA6D, BMP1, 
TSLP, MCHR1, SHC1, PRKX and TRIM55. Among these genes, the expression of BMP1, TSLP, MCHR1 and SHC1 were associated with 
worse outcomes, while TMSB4Y, NDRG1, SEMA3G, SEMA6D and PRKX were down-regulated and positively associated with patient 
survival (Table S2). 

The protein expression of IRPS genes in regular samples and cancer tissues were explored utilizing the HPA database. We involved 
all normal kidney samples (three normal kidney samples) from the HPA database as the control group, and chose three typical ccRCC 

Fig. 3. Weighted gene co-expression network analysis (WGCNA) of the IRDEGs. A. The samples clustering tree to detect outliers, height greater than 
20,000 has been removed. B. Determination of the optimal soft-thresholding powers. Pick the soft-thresholding power of 3 to satisfy the scale-free 
network law based on a scale-free R2 = 0.9. C. Gene dendrogram and module colors. Each branch in the dendrogram represents genes, and genes 
clustered into the same module will have the same module color. D. The heatmap of the correlation between tumor trait and gene module. 
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IHC samples as the experimental group. ImageJ was used to calculate the proportion of positive staining, and the results were analyzed 
using the Mann-Whitney U test to determine significance. We found the protein expression of SHC1 and NDRG1 in normal kidney 
tissue was lower than that in tumor tissue (P < 0.001) (Fig. 5A and B), while the protein expression of PRKX was not significantly 
different between normal kidney tissue and tumor tissue (P = 0.916) (Fig. 5C). 

Next, we constructed an IRPS risk score formula with the gene expression and regression coefficient: risk score = (− 0.371 ×
expression of TMSB4Y) + (− 0.208 × expression of NDRG1) + (− 0.313 × expression of SEMA3G) + (− 0.375 × expression of SEMA6D) 
+ (0.397 × expression of BMP1) + (0.690 × expression of TSLP) + (0.079 × expression of MCHR1) + (0.405 × expression of SHC1) +
(− 0.330 × expression of PRKX) + (− 0.131 × expression of TRIM55). After that, utilizing the formula, each ccRCC patient was marked 
with their IRPS risk score. Based upon the optimal cut-off points of IRPS risk score, we distributed patients in the TCGA cohort and 
developed two risk subgroups. Patients with higher IRPS risk score were divided into the high-risk subgroup, while patients with lower 
IRPS risk score were in the low-risk subgroup. 

3.4. Survival analysis and validation of the independent prognostic value of IRPS 

IRPS had prognostic value and the best cut-off point of risk score successfully had the ability to identify two risk subgroups. As 
shown in Fig. 6, the KM survival curve presented that low-risk subgroups owned better survival outcomes than high-risk group (p <
0.001, Fig. 6A) in TCGA cohort. An external validated data of GEO cohort (GSE22541) was involved to validate the predictive ability of 
IRPS (p = 0.004, Fig. 6B) and it also indicated better OS in IRPS low-risk group, consistent with the result in TCGA cohort. 

974 samples of ccRCC with clinicopathologic information were downloaded from UCSC Xena, including 542 primary tumor 

Fig. 4. Construction of an immune response prediction signature (IRPS). (A) Univariate Cox regression analysis for 54 immune-related hub genes 
demonstrates that 19 genes are OS risk factors, while the remaining 35 genes are protective factors. (B, C) the Least Absolute Shrinkage and Se-
lection Operator (LASSO) regression analysis for the 54 immune-related hub genes. (D) Multivariate Cox regression analysis for immune-related hub 
genes performs that 4 genes are OS risk factors, other 6 genes are protective factors. 
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Fig. 5. The protein expression of SHC1, NDRG1 and PRKX in normal kidney tissue and tumor tissue. (A) The protein expression of SHC1 in normal 
kidney tissue was lower than that in tumor tissue (P < 0.001). (B) The protein expression of NDRG1 in normal kidney tissue was lower than that in 
tumor tissue (P < 0.001). (C) The protein expression of PRKX was not significantly different between normal kidney tissue and tumor tissue (P 
= 0.916). 
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samples. We analyzed several clinicopathologic features including age, sex, tumor laterality, tumor grade, tumor stage, T stage, N stage 
and M stage. The clinical characteristics and IRPS subgroups in TCGA cohort are demonstrated in Table 1. 

We detected that IRPS risk score appeared to have relationship with all characteristics except gender. The majority of ccRCCs were 
male (344, 64.9%), and the average age was 60.6 years. Approximately half of patients were diagnosed at an early stage without 
distant metastasis and grade II-III disease. There were a total of 169 IRPS high-risk patients and meanwhile, with other 361 IRPS low- 
risk patients. Patients in the IRPS high-risk group (62.4 ± 12.3 years old) were older on average compared to the low-risk group (59.7 
± 11.9 years old) (P = 0.015). The high-risk group was probably presented to be cooperated with left laterality, grade III-IV, and stage 
III-IV disease. High-risk group patients had greater probability of suffering distant metastasis compared with the low-risk group. The 
distribution of the clinical factors between the IRPS risk-groups is shown in the heat map and table (Fig. 7A and B). 

The IRPS high-risk group tended to present with an advanced stage (stage III-IV, 62.7%) and advanced grade (grade III-IV, 77.5%), 
which was associated with worse survival outcomes. Moreover, IRPS was an isolated biomarker for OS (Table 2). 

Univariate Cox proportional hazards regression analysis performed that age, grade, stage, T, N, M and IRPS risk score seemed to be 
significantly related to OS (P < 0.05, Fig. 8 A). Furthermore, multivariate Cox proportional hazards regression analysis demonstrated 
that age and IRPS risk score were independent factors and had prominent association with OS (P < 0.001, Fig. 8B), which confirmed 
that even after ignoring other interferential factors, IRPS risk score was still an independent signature of prognosis. 

Finally, we constructed a nomogram for visualization, which could be applied as a mensurable tool for forecasting prognosis of 
ccRCC patients (Fig. 9A). The C-index of the nomogram was 0.765. The 1-year, 2-year, and 3-year calibration curves were all close to 
the 45◦ diagonal line, which illustrates that the nomogram has a high accuracy (Fig. 9B). 

3.5. Analysis of the molecular and immunologic mechanism of IRPS 

We further researched the possible molecular mechanism and immunologic theory underlying the predictive and prognostic role of 
IRPS. The immunological signature gene set (c2.cp.kegg.v7.4.symbols.gmt) was proceed to perform GSEA of possible biological 
signaling pathways. As shown in Fig. 10A, the top 5 immune functions of IRPS high-risk subgroup were complement and coagulation 
cascades, cytokine-cytokine receptor interaction, ECM receptor interaction, NOD link receptor signaling pathway and type I diabetes 
mellitus. While propanoate metabolism, renin angiotensin system, tight junction, valine leucine and isoleucine degradation, vibrio 
cholerae infection were enriched in the IRPS low-risk group (Fig. 10B). The identification of gene mutation rates between two sub-
groups was illustrated through a waterfall plot (Fig. 10C). The immunological signature gene set (c7.immunesigdb.v2022.1.Hs. 
symbols.gmt) was downloaded from the GSEA molecular signatures database to perform GSEA analysis. The top 5 gene sets of 
immune-related cells were significantly different within the IRPS risk subgroups. The enrichment of B cells and natural T reg cells were 
observed in the IRPS high-risk group, while CD4 T cells, CD4 follicular helper T cells, NK cells and CD8 T cells were enriched in IRPS 
low-risk group (Fig. 10C and D). 

The waterfall plot presented the significantly different mutated genes within the high risk and low risk IRPS subgroups (Fig. 10 E 
and F). VHL, PBRM1 and TTN gene mutations were the most frequent in all ccRCCs. The mutation of the HMCN1 and SPEN was higher 
in the high-risk subgroup. The Immune characteristics of two IRPS subgroups was assessed by CIBERSORT to visualize the proportion 
of immune cells (Fig. 11A and B). In the IRPS high-risk subgroup, Plasma cells, T cells CD4 memory activated, T cells follicular helper, T 
cells regulatory (Tregs) and Macrophages M0 were more abundant. Meanwhile, T cells CD4 memory resting, Monocytes, Macrophages 
M2, Dendritic cells resting and Mast cells resting were more abundant in IRPS low-risk group. Furthermore, ssGSEA as a method of 
exploring immune and molecular function was applied in this project, and meanwhile, comparison of the score between the risk groups 
was performed (Fig. 11C). The high-risk group contained high scores for aDCs, APC co-stimulation, CCR, CD8+T cells, check point, 

Fig. 6. Prognostic analysis of high risk and low risk cases in TCGA cohort and GEO cohort. (A) Kaplan-Meier survival analysis of the IRPS subgroups 
in the TCGA cohort performs that the low-risk subgroups own better survival outcomes than high-risk group (p < 0.001). (B) Kaplan-Meier survival 
analysis of the IRPS subgroups in the GEO cohort indicates that low-risk subgroups own better survival outcomes than high-risk group (p = 0.004). 
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cytolytic activity, inflammation promoting, Macrophages, Parainflammation, T cell co-inhibition, T cell co-stimulation, T helper cells, 
Tfh, Th1 cells, Th2 cells, TIL and Treg. The low-risk group had high scores for iDCs, Mast cells and type II IFN response. 

3.6. Predictive role of IRPS for immunotherapy efficacy 

The relationship between IRPS and immune response was further explored to identify the predictive role of IRPS for the efficacy of 
immunotherapy. PD-L1 expression as well as Tumor Mutation Burden (TMB) are considered predictive factors for the immune 
response in patients with malignant tumor. We confirmed the relationship between IRPS risk score and the expression of PD-L1 and 
TMB. The IRPS low-risk subgroup had higher PD-L1 expression (P < 0.001, Fig. 12A) and lower TMB (P = 0.0013, Fig. 12C). IRPS risk 
score negatively correlated with PD-L1 expression (R = − 0.2, P < 0.001, Fig. 12B) and positively associated with TMB (R = 0.24, P <
0.001, Fig. 12D), which confirmed that the high-risk group may potentially fail to respond to immunotherapy. 

Table 1 
Clinical characteristics and IRPS subgroups in TCGA cohort.   

TCGA cohort IRPS risk score  

Variables n (%) Low High P value 
Age (mean ± SD) 60.6 ± 12.1 59.7 ± 11.9 62.4 ± 12.3 0.015 
Gender 

Male 344 (64.9) 238 (65.9) 106 (62.7) 0.471 
Female 186 (35.1) 123 (34.1) 63 (37.3)  

Laterality 
Left 249 (47.0) 159 (44.0) 90 (53.3) 0.043 
Right 280 (52.8) 202 (56.0) 78 (46.2)  

Grade 
G1 14 (2.6) 14 (3.9) 0 <0.001 
G2 227 (42.8) 191 (52.9) 36 (21.3)  
G3 206 (38.9) 130 (36.0) 76 (45.0)  
G4 75 (14.2) 20 (5.5) 55 (32.5)  
GX 5 (0.9) 4 (1.1) 1 (0.6)  

unknown 3 (0.6) 2 (0.6) 1 (0.6)  
Stage 

I 265 (50.0) 219 (60.7) 46 (27.2) <0.001 
II 57 (10.8) 41 (11.4) 16 (9.5)  
III 123 (23.2) 60 (16.6) 63 (37.3)  
IV 82 (15.5) 39 (10.8) 43 (25.4)  

Unknown 3 (0.5) 2 (0.5) 1 (0.6)  
T 

T1 271 (51.1) 222 (61.5) 49 (29.0) <0.001 
T2 69 (13.2) 48 (13.3) 21 (12.4)  
T3 179 (33.7) 89 (24.7) 90 (53.3)  
T4 11 (2.0) 2 (0.5) 9 (5.3)  

N 
N0 239 (45.1) 159 (44.1) 80 (47.3) <0.001 
N1 16 (3.0) 4 (1.1) 12 (7.1)  
NX 275 (51.9) 198 (54.8) 77 (45.6)  

M 
M0 420 (79.2) 299 (82.8) 121 (71.6) <0.001 
M1 78 (14.7) 37 (10.2) 41 (24.3)  
MX 30 (5.7) 23 (6.4) 7 (4.1)  

Unknown 2 (0.4) 2 (0.6) 0   

Fig. 7. Heat map and table showing the distribution of the clinical information between the IRPS subgroups. (A) High-risk group patients have 
greater probability of diagnosing stage III-IV. (B) High-risk group patients have greater probability of diagnosing grade III-IV. 
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MSI status as an ICI response biomarker was also considered in our project. Patients with MSI-high status are reported to have better 
prognosis and response to ICI therapy [14,20]. MSIsensor score, a quantitative measure of MSI [21], was calculated within IRPS risk 
subgroups. In our project, patients in the IRPS low-risk group had a higher MSIsensor score (P = 0.012, Fig. 13), which further 
illustrated that the IRPS low risk group might benefit from ICI therapy. 

Additionally, TIDE score was brought into consideration as a representative factor for predicting immune escape and immune 
dysfunction, both of which are factors that determine the efficacy of immunotherapy [22,23]. In our study, the IRPS high-risk group 
was associated with significantly higher TIDE score (P < 0.001, Fig. 14). These findings support the idea that IRPS high-risk patients 
may fail to benefit from immunotherapy. 

To evaluate IRPS-associated outcomes in a realistic scenario, we obtained clinical and molecular data from a ccRCC cohort treated 
with anti-PD-1 therapy [19] as an external validation data set. A total of 309 ccRCC patients with suitable RNA-seq expression and 
clinical data were included. The efficacy of anti-PD-1 therapy within IRPS risk group was explored. We calculated the IRPS risk score 
for each patient in Braun et al.’s cohort, and the progression free survival (PFS) and overall survival (OS) after anti-PD-1 therapy were 
explored. Furthermore, multivariate Cox proportional hazards regression analysis was deployed to test the independent predictive 
ability of IRPS. According to the multivariate Cox proportional hazards regression analysis, The IRPS risk score was an independent 
signature and had prominent association with PFS and OS. Patients in the IRPS low risk group had better PFS (HR:0.73; 95% CI: 
0.54–1.0; P = 0.047, Fig. 15A) and higher IRPS risk score was associated with worse OS (HR:1.5; 95% CI: 1.01–2.3; P = 0.047, 
Fig. 15B). 

Furthermore, subgroup analysis showed that IRPS was a predictor of PFS. Patients with IRPS low risk in the female subgroup 
(HR:0.52; 95% CI:0.30–0.92; P = 0.0245) and the younger subgroup (age≤65 years old, HR:0.67; 95% CI:0.45–0.98; P = 0.037) were 
likely to have a better outcome (Fig. 16). This finding suggests that IRPS risk score may be more predictive in younger or female 
patients. 

To further validate the predictive value of IRPS in ICI treatment, the Cancer Immunome Atlas (TCIA) database was utilized for 
downloading the immunophenoscore (IPS) of ccRCC patients. Several studies [24–27] have reported the role of IPS in predicting the 
immunotherapy response. Patients with high IPS generally respond well to ICI treatment. The relationship between IPS and IRPS risk 
group was analyzed as a surrogate for the likely response to ICI treatment. We found that the IPS was significantly different within IRPS 
risk groups, and patients in IRPS low-risk group presented with higher IPS (P < 0.001, Fig. 17). Accordingly, IRPS is likely to predict 
the efficacy of immune checkpoint inhibitors. 

Table 2 
Univariate and multivariate Cox regression analyses of the TCGA cohort.   

Univariate analysis Multivariate analysis 

Variables HR (95%CI) P value HR (95%CI) P value 
Age 1.02 (1.01–1.04) 0.008 1.04 (1.02–1.06) <0.001 
Gender 1.03 (0.68–1.57) 0.879   
Laterality 0.90 (0.59–1.35) 0.602   
Grade 2.17 (1.64–2.86) <0.001 1.29 (0.92–1.81) 0.143 
T 1.86 (1.51–2.22) <0.001 0.87 (0.55–1.37) 0.551 
N 2.95 (1.53–5.71) 0.001 1.72 (0.85–3.51) 0.132 
M 4.11 (2.67–6.34) <0.001 2.07 (0.95–4.52) 0.066 
Stage 1.83 (1.51–2.22) <0.001 1.39 (0.86–2.24) 0.178 
riskScore 1.22 (1.16–1.28) <0.001 1.18 (1.11–1.26) <0.001  

Fig. 8. Univariate and multivariate Cox regression analysis forest plot of TCGA cohort reveals that the risk score is an independent prognostic factor. 
(A) univariate Cox regression analysis forest plot of TCGA cohort performs that age, grade, stage, T, N, M and IRPS risk score seem to be significantly 
related to OS(P < 0.05). (B) multivariate Cox regression analysis forest plot of TCGA cohort performs that IRPS risk score is an independent 
signature of prognosis (P < 0.001). 

J. Yao et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e15925

12

In order to explore the performance of IRPS in a cohort of metastatic ccRCC, 84 metastatic ccRCC patients with available RNA-seq 
expression and clinical data were obtained from Braun et al.’s ccRCC cohort [19]. As shown, IRPS high-risk was associated with high 
expression of PD-L1 in metastatic ccRCC (Fig. S2). 

Finally, we used ROC curve and AUC to present the prognostic value of the IRPS model. The 1-year survival AUC of the ROC curve 
was 0.814, 2-year survival AUC of the ROC curve was 0.756, and 3-year survival AUC of the ROC curve was 0.773, implying that IRPS 
were highly precise for forecasting survival outcomes (Fig. 18A). Moreover, in order to claim the predictive value of IRPS, we 
compared IRPS with other published gene signatures. An 18 gene signature developed by Li et al. [18] strongly related to clinical 
prognosis. We found that IRPS had better predictive value (Fig. 18B), with the 3-year survival AUC of 0.773. 

4. Discussion 

Improving low survival rates in advanced and metastatic ccRCC is a continuing focus of clinical research and development [28]. 
Immune checkpoint inhibition (ICI) treatment has improved prognosis and represents the most effective new strategy in ccRCC [29]. 
Nevertheless, not every patient can benefit from immunotherapy due to immune dysfunction and exclusion. In order to provide more 

Fig. 9. Construction and Validation of the prognostic nomogram. (A) The 1-/2-/3-year survival prognostic nomogram including IRPS risk score and 
other clinical factors. (B) The calibration curves of the nomogram prediction of the 1-/2-/3-year OS of ccRCC patients. The blue dotted line rep-
resents the perfect prediction of the nomogram. 
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individualized prognoses and tailored therapy for ccRCC patients, it is crucial to explore reliable signatures for forecasting the 
effectiveness of ICI treatment. Recently, immune-related genes seemed to have prognostic ability in ccRCC [30–32]. However, pre-
vious projects only focused on OS or the potential mechanism in tumor immune microenvironment and failed to explore the rela-
tionship between immune-related biomarkers and the efficacy of immunotherapy. 

In current project, we established a IRPS for ccRCC and split patients into two groups according to risk score by applying an optimal 
cut-off point. Compared with the low-risk group, we found that high risk people presented to be elder (62.4 ± 12.3 years old, P =

Fig. 10. Molecular characteristics and immunologic mechanisms are significantly different within IRPS risk subgroups. (A) GSEA analysis showing 
that complement and coagulation cascades, cytokine-cytokine receptor interaction, ECM receptor interaction, NOD link receptor signaling pathway 
and type I diabetes mellitus are significantly enriched in the IRPS high risk subgroup. (B) GSEA analysis showing that propanoate metabolism, renin 
angiotensin system, tight junction, valine leucine and isoleucine degradation, vibrio cholerae infection are enriched in the IRPS low risk subgroup. 
(C) GSEA analysis showing that B cells and natural T reg cells are enriched in the IRPS high risk subgroup. (D) GSEA analysis showing that CD4 T 
cells, CD4 follicular helper T cells, NK cells and CD8 T cells are enriched in the IRPS low risk subgroup. (E), (F) Waterfall plot of significantly 
different mutated genes within the high risk and low risk IRPS subgroups. 
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Fig. 11. Immune characteristics of different IRPS subgroups. (A) The bar plot of the proportions of the 22 immune cell subtypes in the TCGA cohort. (B) The violin plot of the 22 immune cell subtypes in 
high risk and low risk IRPS subgroup. (C) ssGSEA analysis of Immune functions in different IRPS subgroups. 
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0.015), diagnose with advanced tumor stage (stage III-IV, 62.7%) and advanced grade (grade III-IV, 77.5%), and poorer survival (p <
0.001). Furthermore, multivariate analysis demonstrated that IRPS was an isolated biomarker related to survival in ccRCC. 

The IRPS we identified is characterized by 10 immune-related genes, including TMSB4Y, NDRG1, SEMA3G, SEMA6D, BMP1, TSLP, 
MCHR1, SHC1, PRKX, TRIM55. According to the coefficient of each gene, we determined that patients with low expression of TMSB4Y, 
NDRG1, SEMA3G, SEMA6D, PRKX and TRIM55, as well as high expression of BMP1, TSLP, MCHR1 and SHC1 may have high risk of 
immune dysfunction and exclusion. According to previous research, TMSB4Y has tumor suppressor properties, as a gene encoding the 
actin sequestering protein [33]. Laryngeal cancer patients with low TMSB4Y expression have been proved to have poor outcomes [34]. 
N-Myc Downstream-Regulated Gene 1 (NDRG1) is one of the NDRG family of proteins, and is considered to possess anti-oncogenic and 
anti-metastatic effects in many cancers [35], but has also been suggested to have a pro-tumorigenesis function in kidney [36]. SEMA3G 
is one of the members of the Class-3 semaphorins (SEMA3), and plays a tumor inhibiting role in kidney cancer [37]. High expression of 
SEMA6D in breast cancer has close relationship with better survival outcomes [38]. The human protein kinase X gene (PRKX) induces 
apoptosis and causes Sunitinib resistance in kidney carcinoma [39]. TRIM55 over-expression suppresses tumor migration and invasion 
in lung adenocarcinoma [40]. BMP1 over-expression leads to tumor progression and reflects poor survival outcomes in ccRCC [41]. 
TSLP and SHC1 are reported to have a considerable role in induction and progression of cancer [42,43]. All these reports are consistent 
with our IRPS biomarker signature. 

CIBERSORT results comparing IRPS risk subgroups, suggested that the high-risk group contained significantly more T cells reg-
ulatory (Tregs) than the low-risk group. Treg cells, a specific subpopulation of T cells, perform the function of inhibiting the immune 
response. Tregs maintain the crucial balance of immune microenvironment by inhibiting the proliferation of T cells. However, some 

Fig. 12. Correlation between IRPS and PD-L1 expression and TMB. (A) The IRPS low-risk ccRCCs have higher PD-L1 expression (P < 0.001). (B) 
IRPS risk score negatively correlates with PD-L1 expression (R = − 0.2, P < 0.001). (C) The IRPS low-risk ccRCCs have lower TMB (P = 0.0013). (D) 
IRPS risk score positively associates with TMB (R = 0.24, P < 0.001. 
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studies suggests that excessive enrichment of Tregs can accelerate tumor progression and induce immune dysfunction and exclusion 
[44,45]. Therefore, we speculate that as the result of the abundance of Tregs, patients in IRPS high-risk group have poor outcomes and 
failed to response for the immunotherapy. 

For instance, PD-L1 expression may fail to predict benefit from ICI treatment due to the following reasons: 1) heterogeneity of PD- 
L1 expression; 2) Various factors in the internal environment simultaneously influencing PD-L1 expression; 3) driver mutations 
affecting PD-L1 expression [12,14,46]. Similarly, patients with high TMB are expected to benefit from ICI therapy, but the literature 
demonstrates this is not always the case [47]. Importantly, the selection of tissue specimens affects the detection of TMB and single-site 
biopsy might overestimate the level of clonal mutation [14]. However, although there are multiple challenges with using PD-L1 
expression or TMB as biomarkers, they are still the best predictors of ICI treatment effect currently. Therefore, we used these 
important, but imperfect measures as a tool to give us some notion of the likely ICI responsiveness of IRPS low-risk and high-risk 
tumors. 

According to our study, patients in the IRPS high-risk group were have low PD-L1 expression and high TMB. As previously reported 
[12], patients with high TMB often respond adequately to ICI therapy. On the contrary, patients in IRPS high-risk group who we predict 

Fig. 13. The relationship between MSIsensor score and IRPS subgroups. Comparison of the MSIsensor score between patients in different IRPS risk 
groups reveal that the IRPS high-risk group has a higher average MSIsensor score (P = 0.012). 

Fig. 14. Tumor immune dysfunction and exclusion (TIDE) score in different IRPS subgroups. Comparison of the TIDE score between patients in 
different IRPS risk groups reveal that the IRPS high-risk group has a higher average TIDE score (P < 0.001). 

J. Yao et al.                                                                                                                                                                                                             



Heliyon9(2023)e15925

17

Fig. 15. Multivariate Cox regression analysis reveal the IRPS risk score is an independent prognostic factor in a cohort of ICI-treated ccRCC patients. (A) Multivariate Cox regression analysis dem-
onstrates that patients in the IRPS low risk group have better PFS (HR:0.73; 95%CI: 0.54–1.0; P = 0.047). (B) Multivariate Cox regression analysis demonstrates that higher IRPS risk score is associated 
with worse OS (HR:1.5; 95%CI: 1.01–2.3; P = 0.047). 
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may fail to benefit from immunotherapy, may have high TMB. Though seemingly paradoxical, our findings could be explained by the 
following facts: 1) TMB varies in different cancer types. Compared with other cancer types, the TMB of ccRCC patients is not significant 
[48]. Therefore, TMB might not be a perfect marker to predict the prognosis in ccRCC patients [49]. 2) The predictive value of TMB for 
ICI therapy in ccRCC is still controversial. Although several clinical trials demonstrate a correlation between high TMB and immu-
notherapy efficacy [50,51], some studies suggest that ccRCC has unique features in terms of the immune microenvironment and ccRCC 
patients with high TMB have a lower reaction rate to immunotherapy [15,16,52,53]. In this way, ccRCC patients in the IRPS high-risk 
group with high TMB may potentially fail to respond to immunotherapy. 3) Due to the lack of large clinical samples to further verify the 

Fig. 16. Subgroup analysis of the ICI treatment cohort demonstrating that IRPS is a predictor of PFS. In the female subgroup (HR:0.52; 95% 
CI:0.30–0.92; P = 0.0245) and the younger subgroup (age≤65 years old, HR:0.67; 95% CI:0.45–0.98; P = 0.037), patients with IRPS low risk are 
likely to have a better outcome. 

Fig. 17. Comparison of Immunophenoscore in IRPS Risk Groups. Comparison of IPS between the IRPS risk groups revealing that IRPS high-risk 
ccRCCs have a reduced average immunophenoscore (P < 0.001). 
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prognostic effect of TMB, our study still has some limitations. Relevant big sample clinical trials are needed in the future. Therefore, it 
is plausible that ccRCC patients in the IRPS high-risk group with high TMB may potentially fail to respond to immunotherapy, and the 
combination of these two biomarkers and others may allow for improved personalized treatment. 

Tumor Immune Dysfunction and Exclusion (TIDE) is a signature to quantify the dysfunction of T cells and immune exclusion in 
order to predict the immune reaction [54]. TIDE includes the effect of the cellular immune reaction in tumor infiltrating cytotoxic T 
lymphocytes (CTL) dysfunction and immune exclusion of CTL by immunosuppressive factors. Several studies hint that patients who 
were diagnosed with high TIDE score might perform more immune escape and immune dysfunction, indicating lower reaction to 
immunotherapy [55]. TIDE score had spectacular success in predicting immune reaction of patient treated with immunotherapy in 
many cancers [56,57]. Consequently, we used TIDE in our study to assess the predictive value of IRPS for immune dysfunction and 
exclusion. The high-risk IRPS group had high TIDE score, which implied patients in the high-risk group might experience immune 
escape and no response to immunotherapy. Nevertheless, TIDE focused only on predicting the response to immunotherapy in patients 
with ccRCC, rather than OS. We found that IRPS presented to be a better biomarker to both predict the efficacy of ICIs and OS in ccRCC 
patients. 

A nomogram was builded to visualize the prediction model for 1-year, 2-year and 3-year probabilities of mortality in patients with 
ccRCC. The 1-/2-/3-year survival AUC of our model was greater than 0.7, implying that IRPS significant predictive value for OS. 
Comparison among TIDE score and another gene signature [18] performed that IRPS was a better predictor of OS. 

The findings of our research could be useful to clinicians in providing a novel immune response prediction signature for the efficacy 
of immunotherapy in ccRCC patients. However, there are still some limitations in our study. First of all, this novel prognostic model 
was established based on the public RNA-seq expression data from TCGA database, and validated by one external data set from GEO 
data base, thereby leading to potential selection bias. Therefore, further researches are needed to enlarge the sample volume. Next, 
although the predictive ability of IRPS was compared with other gene signatures using TCGA and successfully performed as to be an 
independent factor of OS and the efficacy of immunotherapy, this 10-gene signature will need to be further analyzed in real world 
study. Finally, further laboratory experiments and study on mechanism are imminently needed to reveal the function of IRPS genes in 
ccRCC. 

5. Conclusion 

In general, this research established and validated a 10 -gene immune-related signature which was predictive of the efficacy of 
immunotherapy and overall survival in ccRCC. These results may provide a novel independent biomarker to identify potential ccRCC 
patients with good immune response. Furthermore they may be helpful to individualize treatment. 
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