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BACKGROUND Cross sectionally measured, elevated arterial stiffness is associated with unfavorable left ventricular

(LV) remodeling, suggesting its important role in the pathophysiology of heart failure. However, data linking the degree

of arterial stiffness progression with LV remodeling are scarce.

OBJECTIVES The purpose of this study was to investigate the association between longitudinal change in arterial

stiffness and changes in LV remodeling.

METHODS Serial measurements of arterial stiffness by cardio-ankle vascular index (CAVI) were performed in 317 par-

ticipants without cardiovascular disease and with normal arterial stiffness. LV size, mass, and function were assessed by

transthoracic echocardiography and including LV global longitudinal strain (LVGLS) by speckle-tracking and tissue

Doppler velocity (e’) of the mitral annulus (diastolic function).

RESULTS During a median follow-up of 26.8 mo, there was a significant increase in CAVI (P < 0.001). Generalized

estimating equation analyses showed that longitudinal increase in CAVI was associated with impaired LVGLS (estimate

0.46, 95% CI: 0.11-0.82; P ¼ 0.010) after adjustment for demographics and baseline cardiovascular factors, but not with

changes of LV mass index and e’ velocity. When controlling for longitudinal change of covariates, CAVI progression

remained associated with change in LVGLS (estimate 0.50, 95% CI: 0.16-0.85; P ¼ 0.004). In sex stratified analysis,

progression of CAVI was significantly associated with LVGLS deterioration only in women (estimate 0.92, 95% CI: 0.27-

1.58; P ¼ 0.006).

CONCLUSIONS Longitudinal increase in arterial stiffness is associated with deterioration in LVGLS. Vascular-ventricular

coupling plays an important role in theprogressivedecline in ventricular function evenatanearly, subclinical stage. (JACCAdv

2023;2:100409) © 2023 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
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TABLE 1 Clinical and Biochemic

Age, y 6

BMI, kg/m2 23.

Systolic BP, mm Hg

Diastolic BP, mm Hg 7

Heart rate, beats/min 7

Hypertension

Diabetes mellitus

Hyperlipidemia

Current smoking

Antihypertensive medication

Lipid lowering medication

Examination interval, mo

Glucose, mg/dL 9

Total cholesterol, mg/dL

LDL cholesterol, mg/dL

HDL cholesterol, mg/dL 6

eGFR, mL/min/1.73 m2 7

BNP, pg/mL 16.

CAVI 7.70

haPWV, m/s 7.

Values are median (25th-75th percentile

BMI ¼ body mass index; BNP ¼ B-typ
velocity; HDL ¼ high-density lipoprotein

ABBR EV I A T I ON S

AND ACRONYMS

BMI = body mass index

BNP = B-type natriuretic

peptide

CAVI = cardio-ankle vascular

index

EF = ejection fraction

GLS = global longitudinal

strain

HF = heart failure

LV = left ventricle

PWV = pulse wave velocity
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H eart failure (HF) is a global public
health issue, with a prevalence of
more than 23 million cases world-

wide, prompting efforts for the clarification
of HF mechanisms.1 Previous cross-sectional
studies demonstrated that arterial stiffening
is associated with increased left ventricular
(LV) afterload, and LV morphological and
functional abnormalities2-4 suggesting an
important role of vascular-ventricular
coupling in the pathophysiology of HF.5,6

However, the contribution of increased arte-
rial stiffness to incident HF is not fully estab-
lished and the studies on the topic have
provided conflicting results.7-10 The Framingham
Heart Study identified increased arterial stiffness,
assessed by pulse wave velocity (PWV), as a signifi-
cant risk factor for HF.9 In contrast, the Health ABC
(Health, Aging, and Body Composition) study, which
examined 2,290 participants without prevalent HF,
showed that PWV was not an independent predictor
for HF occurrence.7,10 This discrepancy may be
partially explained by a lack of information on longi-
tudinal trajectories of arterial stiffness; namely, the
progression of arterial stiffness substantially varied
among individuals,11-13 which may limit the predic-
tive value of arterial stiffness for incident HF. The
al Characteristics at Baseline and Follow-Up According to Sex

Entire Group (n ¼ 317) Men (n

Baseline Follow-Up P Value Baseline F

3 (53-70) 65 (56-72) <0.001 59 (52-67) 6

2 (21.3-25.4) 23.3 (21.2-25.5) 0.017 24.1 (22.5-25.9) 24.2

117 � 14 117 � 15 0.933 118 � 14

4 (68-81) 74 (67-81) 0.038 76 (70-82) 7

0 (65-76) 70 (64-77) 0.557 69 (62-76) 6

91 (28.7) 99 (31.2) 0.157 56 (30.6)

20 (6.3) 29 (9.1) 0.013 16 (8.7)

117 (36.9) 130 (41.0) 0.047 54 (29.5) 6

38 (12.0) 31 (9.8) 0.071 29 (15.8)

66 (20.8) 85 (26.8) <0.001 38 (20.8) 5

76 (24.0) 95 (30.0) <0.001 35 (19.1) 4

26.8 � 9.2 - 26.7 � 9.1

4 (88-101) 96 (91-104) <0.001 96 (90-106) 98

204 � 33 203 � 32 0.283 200 � 33 1

124 � 30 120 � 28 0.001 124 � 31 1

4 (53-77) 63 (53-76) 0.124 59 (48-68) 5

1 (63-80) 71 (63-80) 0.294 72 (63-81) 7

1 (8.9-25.5) 13.4 (8.0-24.8) 0.288 12.9 (7.3-21.4) 11.3

(7.15-8.20) 7.80 (7.31-8.42) <0.001 7.70 (7.15-8.35) 7.86

40 � 0.66 7.58 � 0.77 <0.001 7.52 � 0.65 7.

), mean � SD, or n (%). aP < 0.05 vs men.

e natriuretic peptide; BP ¼ blood pressure; CAVI ¼ cardio-ankle vascular inde
; LDL ¼ low-density lipoprotein.
Progression of Early Subclinical Atherosclerosis
(PESA) study found that progression of subclinical
atherosclerosis was observed in nearly 40% of
healthy participants over the relatively short period
of 3 years.14 Given these observations, we hypothe-
sized that the greater progression in arterial stiffness
may adversely affect LV mechanics, possibly leading
to subsequent HF even in the subjects with normal
arterial stiffness at baseline. LV global longitudinal
strain (LVGLS), a novel measure of LV myocardial
deformation, provides the ability to detect early LV
dysfunction in the presence of normal LV ejection
fraction (LVEF) and has an excellent predictive value
for incident HF.15 We, therefore, investigated the de-
gree of arterial stiffness progression over time and its
impact on LV remodeling assessed by 2-dimensional
and speckle-tracking echocardiography in individuals
free of overt cardiovascular disease with normal arte-
rial stiffness at baseline. Additionally, we examined
the possibility of sex disparities in this association.

METHODS

STUDY POPULATION. Consecutive 435 individuals
who voluntarily underwent repeated extensive car-
diovascular health checkup including echocardio-
grams and cardio-ankle vascular index (CAVI)
¼ 183) Women (n ¼ 134)

ollow-Up P Value Baseline Follow-Up P Value

2 (54-69) <0.001 65 (56-71)a 68 (59-73)a <0.001

(22.3-26.3) 0.431 22.0 (19.9-23.7)a 22.0 (19.9-24.2)a 0.007

118 � 14 0.990 116 � 14 116 � 15 0.908

5 (69-82) 0.040 73 (66-79)a 72 (66-80)a 0.380

9 (63-76) 0.731 72 (66-76)a 71 (66-78)a 0.578

61 (33.3) 0.251 35 (26.1) 38 (28.4) 0.405

23 (12.6) 0.035 4 (3.0)a 6 (4.5)a 0.157

4 (35.0) 0.041 63 (47.0)a 66 (49.3)a 0.491

25 (13.7) 0.206 9 (6.7)a 6 (4.5)a 0.180

2 (28.4) <0.001 28 (20.9) 33 (24.6) 0.059

9 (26.8) <0.001 41 (30.6)a 46 (34.3) 0.166

- 26.9 � 9.3 -

(93-106) <0.001 91 (87-96)a 93 (89-100)a <0.001

98 � 31 0.314 211 � 32a 210 � 31a 0.646

19 � 28 0.009 124 � 30 120 � 28 0.057

8 (48-67) 0.220 73 (61-87)a 74 (61-86)a 0.364

2 (63-82) 0.940 71 (64-80) 70 (63-78) 0.139

(6.9-18.9) 0.067 19.1 (12.5-29.5)a 20.0 (10.8-34.5)a 0.670

(7.35-8.50) <0.001 7.68 (7.10-8.15) 7.75 (7.23-8.32) 0.001

69 � 0.79 <0.001 7.24 � 0.64a 7.42 � 0.71a <0.001

x; eGFR ¼ estimated glomerular filtration rate; haPWV ¼ heart-to-ankle pulse wave



FIGURE 1 Baseline and Follow-Up CAVI Values Stratified by Sex

CAVI ¼ cardio-ankle vascular Index.
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measurements as a new arterial stiffness index from
2014 to 2018 at the University of Tokyo Hospital were
retrospectively recruited in this study. Our clinic
provides an extensive health check for the promotion
of health and prevention of cardiovascular disease.
Participants were then excluded if they had atrial
fibrillation or atrial flutter at baseline or follow-up
(n ¼ 8), history of coronary artery disease or
abnormal ankle-brachial index (<0.9 or $1.4; n ¼ 14),
LVEF <52% for men and <54% for women,16 and
significant valvular disease or suboptimal image
quality (n ¼ 18). We further excluded 78 participants
with abnormal CAVI ($9) at baseline to evaluate the
impact of deterioration of arterial stiffness on LV
function in participants with normal arterial stiffness.
Thus, the final study population of this study con-
sisted of 317 participants free of cardiovascular dis-
ease and with normal CAVI at baseline. The
investigation conformed to the principles outlined in
the Declaration of Helsinki and the Institutional Re-
view Boards of the University of Tokyo approved the
study. There was no significant difference in the de-
mographics and laboratory and echocardiographic
parameters between subjects with and without serial
examination except for sex (61% vs 54%; P ¼ 0.034).

RISK FACTOR ASSESSMENT AND LABORATORY

MEASUREMENTS. Hypertension was defined as sys-
tolic blood pressure (SBP) $140 mmHg or diastolic BP
(DBP) $90 mmHg, or the use of antihypertensive
medications. Diabetes mellitus was defined by a fast-
ing blood glucose $126 mg/dL or the current use of
insulin or oral hypoglycemic agents. Hyperlipidemia
was defined as total serum cholesterol >240 mg/dL or
the use of lipid-lowering medications. Body mass in-
dex (BMI) was calculated as weight (kg) divided by
height squared (m2). Fasting serum glucose, choles-
terol, creatinine, and BNP (B-type natriuretic peptide)
levels were measured in all participants.

ARTERIAL STIFFNESS MEASUREMENT. CAVI was
measured on the same day as the echocardiographic
examination using a Vasera VS-1500 (Fukuda Denshi).
The electrocardiogram, SBP and DBP of the brachial
and ankle arteries were simultaneously recorded with
subjects in the supine position after 5 min of rest.
CAVI was determined using the validated following
formula17-19: CAVI ¼ a{(2r/DP) � ln(SBP/DBP) �
haPWV2}þb, where DP ¼ SBP � DBP, r ¼ blood den-
sity, haPWV ¼ PWV from the heart to the ankle, and a
and b are constants. The mean of the right and left
CAVI values was used for analysis and abnormal CAVI
was defined as $9 based on the current recommen-
dations.17 Participants with an ankle-brachial
index <0.9 or $1.4 were excluded from our analyses
as mentioned above.18 Change in CAVI was calculated
as follows; follow-up CAVI value – baseline
CAVI value.

ECHOCARDIOGRAPHIC EXAMINATION. Standard
echocard iograph ic measurements . Transthoracic
echocardiography was performed using a commer-
cially available system (Aplio 300, Toshiba Medical
Systems) by experienced and certified cardiac
sonographers blinded to the participant’s clinical



TABLE 2 Echocardiographic Parameters at Baseline and Follow-Up

Entire Group (n ¼ 317) Men (n ¼ 183) Women (n ¼ 134)

Baseline Follow-Up P Value Baseline Follow-Up P Value Baseline Follow-Up P Value

LVEDV, mL 66.1 (55.1-80.8) 65.9 (55.5-80.4) 0.140 76.9 (63.7-89.5) 75.6 (62.9-86.8) 0.108 57.0 (47.7-66.1)a 57.0 (48.4-65.7)a 0.785

LVEDV index, mL/m2 41.2 (34.1-47.8) 40.8 (34.3-46.4) 0.136 42.9 (35.9-49.7) 42.7 (35.7-48.7) 0.099 39.3 (32.3-43.8)a 38.7 (33.5-43.4)a 0.763

LVESV, mL 24.0 (18.7-30.5) 23.3 (18.8-29.4) 0.256 27.9 (22.2-34.1) 26.7 (21.9-32.5) 0.120 19.3 (16.0-24.5)a 19.7 (15.8-23.6)a 0.790

LVESV index, mL/m2 14.8 (11.7-18.0) 14.1 (11.6-17.3) 0.267 15.8 (13.0-19.0) 15.1 (12.3-18.3) 0.115 13.1 (10.8-16.0)a 13.4 (10.7-15.5)a 0.780

LVEF, % 63.4 (59.9-68.5) 63.8 (60.7-68.0) 0.392 63.1 (59.2-68.1) 63.7 (60.8-67.1) 0.961 64.2 (60.8-69.5)a 64.2 (60.5-68.8) 0.211

LV mass index, g/m2 68.3 (58.6-78.3) 70.5 (60.5-79.9) <0.001 71.2 (62.5-80.3) 74.2 (65.4-83.0) <0.001 62.5 (55.0-74.8)a 65.4 (57.5-73.1)a 0.008

E-wave, cm/s 69.3 (60.9-78.7) 67.7 (59.2-77.3) 0.195 66.3 (58.9-75.2) 66.3 (57.4-73.1) 0.179 72.9 (63.4-81.8)a 71.9 (63.1-83.6)a 0.689

A-wave, cm/s 64.3 (54.1-76.3) 66.8 (55.1-81.1) <0.001 60.6 (50.5-71.0) 60.9 (51.1-75.2) 0.055 70.4 (59.2-84.1)a 75.6 (63.4-85.4)a <0.001

E/A ratio 1.06 (0.86-1.31) 0.96 (0.83-1.24) <0.001 1.09 (0.86-1.32) 1.00 (0.85-1.27) 0.016 1.01 (0.85-1.29) 0.91 (0.81-1.22)a <0.001

e’, cm/s 8.30 (6.85-9.60) 7.95 (6.70-9.50) 0.014 8.38 (7.05-9.91) 8.15 (6.85-9.55) 0.040 8.10 (6.48-9.40) 7.68 (6.54-9.45) 0.194

E/e’ ratio 8.36 (6.94-10.03) 8.23(6.98-10.16) 0.396 7.79 (6.55-9.66) 7.76 (6.59-9.34) 0.507 9.00 (7.51-10.86)a 9.18 (7.38-11.04)a 0.562

LVGLS, % �21.2
(�23.3 to �20.0)

�20.8
(�22.5 to �19.2)

<0.001 �20.6
(�21.8 to �19.5)

�20.2
(�21.7 to �18.9)

<0.001 �22.4
(�24.8 to �20.7)a

�21.4
(�23.3 to �19.8)a

<0.001

Values are median (25th-75th percentile). aP < 0.05 vs men.

A ¼ late diastolic transmitral flow velocity; E ¼ early diastolic transmitral flow velocity; e’ ¼ early diastolic mitral annular velocity; EDV ¼ end-diastolic volume; EF ¼ ejection fraction; ESV ¼ end-systolic
volume; GLS ¼ global longitudinal strain; LV ¼ left ventricle.

Yoshida et al J A C C : A D V A N C E S , V O L . 2 , N O . 5 , 2 0 2 3

Longitudinal Change of CAVI and LVGLS J U L Y 2 0 2 3 : 1 0 0 4 0 9

4

information. The dimensions of the cardiac chambers
were obtained according to the recommendations of
the American Society of Echocardiography (ASE).16 LV
mass was calculated with a validated formula20 and
then indexed for body surface area (LV mass index).
LV diastolic parameters were assessed according to
the current guideline.21 Pulsed-wave Doppler exami-
nation of mitral inflow was performed to obtain early
(E) and late (A) peak velocity. Tissue Doppler mitral
annular early diastolic velocity (e’) of the septal and
lateral sides were measured and averaged to calculate
the mean early diastolic velocity. The ratio of early
TABLE 3 Univariable Association Between Change in

Cardio-Ankle Vascular Index and Changes in Left

Ventricular Indices

Changes in LV Parameters Estimate (95% CI) P Value

LV EDV, mL �2.13 (�5.04 to 0.77) 0.150

LV EDV index, mL/m2 �1.22 (�2.77 to 0.32) 0.120

LV ESV, mL �0.74 (�2.35 to 0.88) 0.371

LV ESV index, mL/m2 �0.39 (�1.24 to 0.46) 0.370

LV ejection fraction, % 0.09 (�0.79 to 0.97) 0.843

LV mass index, g/m2 2.30 (0.09-4.51) 0.041

E-wave, cm/s �1.64 (�5.24 to 1.95) 0.370

A-wave, cm/s 3.41 (�0.01 to 6.83) 0.051

E/A ratio �0.10 (�0.17 to �0.04) <0.001

e’ velocity, cm/s �0.54 (�0.95 to �0.14) 0.008

E/e’ ratio 0.36 (�0.23 to 0.95) 0.238

LVGLS, % 0.53 (0.14-0.93) 0.008

A ¼ late diastolic transmitral flow velocity; E ¼ early diastolic transmitral flow
velocity; e’ ¼ early diastolic mitral annular velocity; EDV ¼ end-diastolic volume;
ESV ¼ end-systolic volume; GLS ¼ global longitudinal strain; LV ¼ left ventricular.
transmitral velocity to mean value of mitral annular
early diastolic velocity (E/e’) was calculated.
Speckle-t rack ing echocard iography . Quantita-
tion of LV strain was performed offline using vendor-
independent commercially available speckle
tracking-based software (2D Cardiac Performance
Analysis, TomTec Imaging Systems). Semiautomated
border detection was performed using the software
and LV borders were tracked throughout the entire
cardiac cycle. The integrity of tracking was visually
confirmed, and manual correction was performed in
case of inaccurate endocardial detection. LVGLS was
calculated by averaging the negative peak of longi-
tudinal strain from all 3 apical views.22 Intra- and
interobserver reproducibility was evaluated in 30
randomly selected patients by 2 independent and
blinded observers (Y.Y. and K.N.) using an intraclass
correlation coefficient. Good intra- and interobserver
variability was observed: intraclass correlation co-
efficients were 0.90 (95% CI: 0.81-0.95) and 0.83
(95% CI: 0.62-0.92), respectively.

STATISTICAL ANALYSIS. Data are presented as
numbers and proportions for categorical variables
and as mean � SD or median (IQR) for continuous
variables. Distribution was evaluated by the Shapiro-
Wilk test. Categorical variables were compared by the
Chi-square test, and continuous variables were
compared using t-test or Wilcoxon rank sum test, as
appropriate. Change in the variables between the
follow-up and the baseline was compared by the
paired t-test or Wilcoxon signed rank test for
continuous measures and McNemar’s test for cate-
gorical measures. The generalized estimating



TABLE 4 Association Between Change in Cardio-ankle Vascular Index and Changes of Left Ventricular Parameters in Multivariable Model

LV Mass Index, g/m2 E/A Ratio e’ Velocity, cm/s LVGLS, %

Estimate (95% CI) P Value Estimate (95% CI) P Value Estimate (95% CI) P Value Estimate (95% CI) P Value

Model 1 1.29 (�0.88 to 3.47) 0.244 �0.06 (�0.10 to �0.01) 0.012 �0.27 (�0.63 to 0.10) 0.155 0.46 (0.11-0.82) 0.010

Model 2 1.56 (�0.48 to 3.61) 0.134 �0.04 (�0.08 to 0.002) 0.064 �0.12 (�0.46 to 0.23) 0.508 0.50 (0.16-0.85) 0.004

Model 1; adjusted for sex, baseline variables of age, CAVI, BMI, heart rate, systolic BP, antihypertensive medications, diabetes mellitus, hyperlipidemia, current smoking, eGFR,
and BNP. Model 2; adjusted for sex, baseline age and CAVI, and longitudinal variables of BMI, heart rate, systolic BP, anti-hypertensive medications, diabetes mellitus,
hyperlipidemia, current smoking, eGFR, and BNP.

BMI ¼ body mass index; BNP ¼ B-type natriuretic peptide; BP ¼ blood pressure; CAVI ¼ cardio-ankle vascular index; eGFR ¼ estimated glomerular filtration rate.
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equation approach includes baseline CAVI and the
change in CAVI during follow-up as covariates with
identity link and working independence correlation
structure. Parameters known to be associated with
adverse LV remodeling (age, sex, BMI, heart rate,
SBP, antihypertensive medication use, diabetes mel-
litus, hyperlipidemia, current smoking status, esti-
mated glomerular filtration rate, and BNP level) were
entered as covariates in multivariable model (model
1). In a separate model, we adjusted for changes in
these covariables (model 2). Analyses were performed
in the entire group as well as sex subgroups. A P value
of <0.05 was considered statistically significant. All
statistical analyses were performed with JMP 14 sta-
tistical software (SAS Institute).

RESULTS

CHARACTERISTICS OF THE STUDY POPULATION.

The characteristics of the study population are pre-
sented in Table 1. The median age was 63 (IQR: 53-70)
years and 183 (58%) of the study participants were
men. Men had significantly larger BMI and higher
prevalence of diabetes and current smoker, whereas
women were older and had higher prevalence of
hyperlipidemia (all P < 0.05). Baseline CAVI value did
not differ between men and women (7.70 [IQR: 7.15-
8.35] vs 7.68 [IQR: 7.10-8.15]; P ¼ 0.307; Figure 1).
Echocardiographic data are shown in Table 2. In the
entire population, LV mass index significantly
increased and LVGLS decreased (both P < 0.001). On
the other hand, there was no change in LVEF. In
terms of LV diastolic parameters, E/A ratio and e’
velocity decreased (both P < 0.05), but E/e’ ratio did
not change during follow-up. Men had larger LV size,
LV mass index and worse LVGLS compared with
women, while significantly higher E/e’ ratio was
observed in women (all P < 0.05).

ASSOCIATION BETWEEN ARTERIAL STIFFNESS

PROGRESSION AND LV FUNCTIONAL ALTERATION.

Univariable association between change in CAVI and
changes in LV indices is presented in Table 3.
Generalized estimating equation analyses showed
that change in CAVI was associated with LV mass
index, E/A ratio, and e’ velocity, and LVGLS (all
P < 0.05), but not with LVEF and E/e’ ratio. In
multivariable model after adjustment for de-
mographics and baseline cardiovascular risk factors,
CAVI progression was independently associated with
impaired LVGLS (estimate 0.46, 95% CI: 0.11-0.82;
P ¼ 0.010) (Table 4, model 1) and lower E/A ratio
(estimate �0.06, 95% CI: �0.10 to �0.01; P ¼ 0.012)
(Table 4, model 1) When controlling for longitudinal
change in covariates, CAVI progression remained
significantly associated with LVGLS (estimate 0.50,
95% CI: 0.16-0.85; P ¼ 0.004) (Table 4, model 2). Sex-
subgroup analyses demonstrated that progression of
CAVI was significantly associated with LVGLS dete-
rioration in women independent of cardiovascular
risk factors (estimate 0.92, 95% CI: 0.27-1.58;
P ¼ 0.006) (Table 5, model 1), but not in men (Central
Illustration). On the other hand, change in CAVI was
related to lower E/A ratio (estimate �0.06,
95% CI: �0.11 to �0.02; P ¼ 0.010) in men. Similar
results were obtained in multivariable model adjust-
ing for change in cardiovascular risk factors (Table 5,
model 2).

DISCUSSION

The present study reports on the association between
longitudinal change in arterial stiffness and changes
in LV morphology and function in a community-
based cohort without prevalent cardiovascular dis-
ease. The greater progression in arterial stiffness was
significantly associated with adverse LV remodeling
even at an early, subclinical stage before LVEF de-
creases. In addition, sex-specific differences existed
in the relationship. Our findings highlight the
important role of vascular-ventricular coupling in the
progressive decline in ventricular function.

ARTERIAL STIFFNESS AND INCIDENT HF. Arterial
stiffening plays a pivotal role in the pathogenesis of
cardiovascular diseases6; however, the association



TABLE 5 Association Between Change in Cardio-Ankle Vascular Index and Changes of Left Ventricular Parameters in Multivariable Model in Sex Subgroups

LV Mass Index, g/m2 E/A Ratio e’ Velocity, cm/s LVGLS, %

Estimate (95% CI) P Value Estimate (95% CI) P Value Estimate (95% CI) P Value Estimate (95% CI) P Value

Women

Model 1 1.92 (�1.74 to 5.58) 0.304 �0.05 (�0.14 to 0.03) 0.196 �0.28 (�0.72 to 0.15) 0.205 0.92 (0.27 to 1.58) 0.006

Model 2 2.08 (�1.58 to 5.74) 0.265 �0.04 (�0.11 to 0.04) 0.338 �0.09 (�0.54 to 0.36) 0.698 0.86 (0.26 to 1.46) 0.005

Men

Model 1 1.28 (�1.34 to 3.90) 0.337 �0.06 (�0.11 to �0.02) 0.010 �0.26 (�0.74 to 0.23) 0.304 0.24 (�0.14 to 0.63) 0.217

Model 2 1.20 (�1.23 to 3.63) 0.333 �0.05 (�0.10 to �0.004) 0.035 �0.14 (�0.61 to 0.33) 0.563 0.21 (�0.17 to 0.58) 0.280

Model 1; adjusted for baseline variables of age, CAVI, BMI, heart rate, systolic BP, anti-hypertensive medications, diabetes mellitus, hyperlipidemia, current smoking, eGFR, BNP. Model 2; adjusted for baseline
age and CAVI and longitudinal variables of BMI, heart rate, systolic BP, anti-hypertensive medications, diabetes mellitus, hyperlipidemia, current smoking, eGFR, BNP.

BMI ¼ body mass index; BNP ¼ B-type natriuretic peptide; BP ¼ blood pressure; CAVI ¼ cardio-ankle vascular index; eGFR ¼ estimated glomerular filtration rate.
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between arterial stiffness and incident HF still re-
mains an area of controversy.7-10 The Framingham
Heart study reported that increased arterial stiffness
conferred a 29% greater risk of incident HF during a
follow-up of 10 years.9 Chirinos et al8 also identified
arterial stiffness as a predictor for HF in 2,602 chronic
kidney disease patients. In contrast, Health ABC
study including 2,290 participants without overt HF
showed that PWV was not an independent predictor
for HF occurrence during mid- (5 years) and long-term
(11 years) follow-ups.7,10 Most of these prior studies
examined PWV at one point in time and did not ac-
count for longitudinal trajectories of arterial stiffness,
which may explain at least in part the lack predictive
ability. Indeed, the progression of arterial stiffness
differs substantially between individuals depending
on the population risk profiles.11-14 CAVI is derived
from the concept of stiffness parameter b index and is
less dependent on BP changes than PWV, and shows
an excellent correlation with atherosclerotic burden
and has an independent prognostic value.6

TRAJECTORIES OF ARTERIAL STIFFNESS AND LV

FUNCTIONAL REMODELING. Cross-sectional data
showed that increased arterial stiffness was associ-
ated with LV hypertrophy,4 LV systolic3 and diastolic2

impairment, and was considered as a mediator of HF
development. However, data examining the impact of
longitudinal trajectories of arterial stiffness on ven-
tricular morphological and functional changes are
scarce. Cauwenberghs et al23 reported that higher
baseline PWV was associated with a longitudinal in-
crease in LV wall thickness, but changes in PWV did
not predict LV structural alteration during a follow-
up of 4 years. In the current study, we demon-
strated that the progression of arterial stiffness was
independently associated with LVGLS and E/A ratio,
but not with LV size or LV mass index. The different
results might be mainly explained by the fact that the
present study only included individuals with normal
arterial stiffness at baseline. Coronary microvascular
dysfunction may be one mechanism by which arterial
stiffening leads to worsening LVGLS. When the arte-
rial tree stiffens, reflected waves arrive at the heart in
mid-to-late systole instead of diastole, leading to the
impairment of coronary flow reserve, and this ulti-
mately may decrease LV performance.6 Our longitu-
dinal study confirms previous cross-sectional studies
and further strengthens that the progression of arte-
rial stiffening is an important mediator of LV
remodeling. Consistent with our hypothesis, Lam
et al24 showed that longitudinal increases in aortic
root diameter, a robust marker of arterial remodeling,
were associated with the incident HF independent of
baseline aortic properties.

We further investigated the sex-specific associa-
tion between arterial stiffening and LV functional
alteration, and found that CAVI progression was
independently associated LVGLS deterioration in
women, but not in men. The effect of sex on the as-
sociation between increased arterial stiffness and LV
remodeling has been investigated in previous cross-
sectional studies. The Multi-Ethnic Study of Athero-
sclerosis (MESA) study reported that PWV was inde-
pendently associated with LV systolic and diastolic
dysfunction in both men and women.4 The LIFE
(Losartan Intervention For Endpoint reduction in
hypertension) study also showed that arterial stiff-
ness by the pulse pressure/stroke index ratio was
associated with diastolic function independent of
sex.25 On the contrary, Countinho et al26 reported that
arterial compliance was linked to LV dysfunction only
in women. The enhanced association between CAVI
progression and LVGLS deterioration in women in our
population might be partially explained by the coro-
nary microvascular dysfunction. Lower arterial
compliance is an independent determinant of



CENTRAL ILLUSTRATION Association Between CAVI Progression and Deterioration of LVGLS

Yoshida Y, et al. JACC Adv. 2023;2(5):100409.
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reduced myocardial flow reserve only in women.27

Although both e’ velocity and E/e’ ratio are estab-
lished parameters as LV diastolic function and are
known to be well correlated with an elevated LV
filling pressure, increase in arterial stiffness in our
cohort was neither associated with change in e’ ve-
locity nor E/e’ ratio in adjusted model. The lack of
independent association may be due to the limitation
of these markers for the detection of subtle LV dia-
stolic dysfunction in the general population with
relatively preserved diastolic capacity.28,29

CLINICAL IMPLICATION. Progression of arterial
stiffness was independently associated with deteri-
oration in LVGLS in individuals with normal CAVI at
baseline and normal LVEF. Vascular-ventricular
coupling may play a key role in the progression of
LV remodeling from an early, subclinical stage.
Future research is required to evaluate whether
early interventions to prevent arterial stiffening
may reverse or slow the progression of the LV
remodeling and possibly prevent subsequent HF.
Recent studies exploring the effect of newly devel-
oped pharmacological approaches for vascular
impairment such as inorganic nitrite may offer
promise in enhancing therapeutic options.30

Furthermore, although this study showed that sex
difference may exist in vascular-ventricular uncou-
pling, we should acknowledge that a sex-specific
difference in LV geometry and function may affect
our observation. Kerkhof31 and Handly et al32

clearly mentioned that smaller LV size in women
has serious implications for several metrics such
as LVEF.

STRENGTH AND LIMITATIONS. The strengths of the
present study include the repeated measurements of
CAVI as well as LV mechanics by using speckle-
tracking echocardiography. Several limitations
should be noted. Because of the relatively short-term
follow-up, we could not study clinical HF as an
endpoint. However, we showed an independent as-
sociation between trajectories of arterial stiffness and
deterioration in LVGLS, with the latter being a strong
prognostic marker for incident HF.15 Although CAVI is
less BP dependent than PWV and exhibits an excel-
lent correlation with atherosclerotic burden, it has a
potential disadvantage relative to carotid-femoral



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In a

community-based cohort study free of overt cardio-

vascular disease, longitudinal increase in cardio-ankle

vascular index was independently associated with

worsening global longitudinal strain, and this associ-

ation was observed only in women. Our findings

highlight the important role of vascular-ventricular

coupling in the progression of LV remodeling.

TRANSLATIONAL OUTLOOK: Future research is

warranted to investigate whether early therapeutic

intervention for cardiovascular risk factors may

reverse decreased LV global longitudinal strain and

possibly prevent subsequent HF occurrence through

improvement of vascular function. Furthermore, the

pathophysiological mechanisms behind the observed

sex differences in vascular-ventricular uncoupling

should be addressed.
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PWV because it includes a long muscular arterial
segment, which may confound large artery stiffness
measurements. Finally, this study enrolled relatively
healthy participants, which may not directly apply to
individuals with different demographic composition
and risk profiles, but longitudinal data of a low-risk
population, which may be of help for the primary
prevention are frequently underrepresented in clin-
ical studies.

CONCLUSIONS

Increase in arterial stiffness is independently associ-
ated with worsening LVGLS in individuals free of
cardiovascular disease. Our findings highlight the
important role of vascular-ventricular coupling in the
progressive decline in ventricular function. Strategies
to prevent increases in arterial stiffness may help
prevent deterioration in LV function and, perhaps,
clinical HF.
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