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Montelukast induces beneficial
behavioral outcomes and
reduces inflammation in male
and female rats
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Background: Accumulative data links inflammation and immune dysregulation

to the pathophysiology of mental disorders; little is known regarding

leukotrienes’ (LTs) involvement in this process. Circumstantial evidence

suggests that treatment with leukotriene modifying agents (LTMAs) such as

montelukast (MTK) may induce adverse neuropsychiatric events. Further

methodic evaluation is warranted.

Objective: This study aims to examine behavioral effects, as well as inflammatory

mediator levels of chronic MTK treatment in male and female rats.

Methods: Depression-like phenotypes were induced by exposing male and

female rats to a chronic unpredictable mild stress (CUMS) protocol for four

weeks. Thereafter, rats were treated (intraperitoneally) once daily, for two

weeks, with either vehicle (dimethyl sulfoxide 0.2 ml/rat) or 20 mg/kg MTK.

Following treatment protocols, behavioral tests were conducted and brain

regions were evaluated for inflammatory mediators including tumor necrosis

factor (TNF)-a, interleukin (IL)-6 and prostaglandin (PG) E2.

Results: Overall, MTK did not invoke negative behavioral phenotypes (except

for an aggression-inducing effect in males). Numerous positive behavioral

outcomes were observed, including reduction in aggressive behavior in

females and reduced manic/hyperactive-like behavior and increased sucrose

consumption (suggestive of antidepressant-like effect) in males. Furthermore,

in control males, MTK increased IL-6 levels in the hypothalamus and TNF-a in

the frontal cortex, while in control females it generated a robust anti-

inflammatory effect. In females that were subjected to CUMS, MTK caused a

prominent reduction in TNF-a and IL-6 in brain regions, whereas in CUMS-

subjected males its effects were inconsistent.

Conclusion: Contrary to prior postulations, MTK may be associated with select

beneficial behavioral outcomes. Additionally, MTK differentially affects male vs.
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female rats in respect to brain inflammatory mediators, plausibly explaining the

dissimilar behavioral phenotypes of sexes under MTK treatment.
KEYWORDS

behavior, depression, inflammation, leukotrienes, mania, mental disorders,
montelukast, leukotrienes-modifying agents
Introduction

Mental illness causes staggering burden to millions worldwide

ensuing tremendous healthcare expenditures and hardship to

patients and their families (1). Associated with distress and

impairment of personal functioning, psychiatric disorders

impact mood, cognition, behavior, and can lead to suicidal

attempts and death (2, 3). Though plausibly multifactorial, the

exact etiology of mental disorders and the underlying

pathophysiological mechanisms are poorly understood.

More and more studies have examined immune disturbance,

inflammatory processes and mental illnesses, particularly mood

disorders (4–7). Though the direct intermediating immune-

pathogenic mechanisms are still unofficially established,

interactions between the immune system and the brain have

attracted considerable attention in the field of neuropsychiatric

diseases (8–10), and brain regions including the frontal cortex

(FC), hippocampus (HC) and hypothalamus (HT) have been

repetitively linked to such (11–13). Inflammatory mediators

(such as prostaglandin [PG] E2, interleukin [IL]-6, and tumor

necrosis factor [TNF]- a), which regulate brain function,

proliferation, differentiation, and survival of brain cells, have

also shown interconnection to psychiatric disorders (5, 14). To

this end, pharmacotherapeutic strategies target ing

neuroinflammatory components have been arduously explored

in quest to further effective medicinal approaches to mental

illness (15–26); this pursuit is of particular pertinence given the

untoward side-effects, low adherence rates and limited positive

outcomes associated with most available psychiatric medications

today (2, 27).

Leukotrienes (LTs) are inflammatory mediators eventuating

from the phospholipids-arachidonic acid (AA)-eicosanoids

pathway in mammalian tissues. In this pathway, AA – a

polyunsaturated fatty acid – is metabolized to eicosanoids,

including prostanoids (PGs and thromboxanes) and LTs (see

Figure 1 for illustration). AA is converted by the enzyme

cyclooxygenase to PGH2 – the precursor from which all

prostanoids are produced. Similarly, AA is transformed by the

enzyme 5-lipoxygenase (5LOX) [and the enzyme 5LOX-

activating protein (FLAP)] to LTA4 – the precursor from

which all other LTs are produced. Several anti-inflammatory

and allergy medications work by altering various junctions in the
02
phospholipids-AA-eicosanoids cascade, such as nonsteroidal

anti-inflammatory drugs (NSAIDs), corticosteroids, inhibitors

of 5LOX and FLAP (Figure 1).

LTs strongly affect function of immune cells and play

important roles in allergic, cancerous, respiratory, cardiovascular

and inflammatory diseases (28, 29). Leukotrienes-modifying

agents (LTMAs) are regarded as one of the most important

drug families used clinically for the treatment of inflammation-

and-allergy-related disorders (30). Among this drug class,

montelukast (MTK) is a prime medication commonly

prescribed for maintenance treatment of asthma, exercise

induced bronchospasm, allergic rhinitis, and urticaria (28, 31,

32). MTK works mainly by blocking cysteinyl leukotriene (cys-

LT) receptors in the lungs resulting in decreased inflammation

and relaxation of smooth muscles (33–35). However, MTK

purportedly exerts additional mechanisms of action. It alters

several cellular signaling pathways [such as the cyclic adenosine

monophosphate (cAMP)-extracellular signal-regulated kinase

(ERK)] and possesses various immune-modulating and anti-

inflammatory characteristics, including suppression of leukocyte

proliferation and migration, attenuation of pro-inflammatory

mediators (e.g., IL-6, IL-8, TNF-a and PGE2), inhibition of

nuclear factor-k B function, and more (36–44). As

abovementioned, research shows an iterated correlation between

inflammatory biomarkers and psychiatric disorders. For example,

several studies demonstrated a distorted Th1/Th2 immune

response in patients with major depression (45, 46). Thus, given

the aforementioned secondary immune-modulating and anti-

inflammatory mechanisms of MTK, it is logical that MTK

would impact behavioral outcomes. Nonetheless, it is important

to bear in mind that the alteration of the Th1/Th2 adaptive

immune response by MTK (47, 48) may conceivably give way to

adverse outcomes. Disbalance of the Th1/Th2 immune response

may impair the defensive mechanisms against specific viral,

bacterial and parasitic pathogens, thus, potentially increasing the

incidence of opportunistic infections.

Reports show LT inhibitors ascertaining only modest

therapeutic efficacy (49, 50). Suggested explanations for this

include: individual differences in LT levels, heterogeneity of

disease phenotypes, and, differences in drug pharmacokinetics,

pharmacodynamics and pharmacogenomics (51–55). Another

possible rationalization is sex-related differences in medication
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response, possibly relating to the impact of androgen levels on

LTMA mediation (56), as well as the female sex hormones

relating to allergic manifestations (57). In this context, a major

limitation of many preclinical pharmacological studies is the

exclusive inclusion of only male animals, neglecting half of the

possible consumers of pharmacological treatments (51–54, 58–

63). This underscores the necessity to evaluate effects of LTMAs

(such as MTK) in both male and female subjects.

Almost nothing is known about the involvement of LTs in

the pathogenesis of mental illness. Post-marketing reports and

pharmacovigilance studies suggested that the use of LTMAs,

and MTK, in particular, may be associated with the

development of various adverse neuropsychiatric events

(ANPEs), such as depression, aggression, suicidal ideation,

anxiousness, hallucinations, sleep disturbances, irritability,

tremors, and restlessness (32, 64–74). For example, a recent

large retrospective, propensity score-matched cohort study by

Paljarvi et al. (73) demonstrated that MTK treatment was

associated with increased incidence of ANPEs among patients

with asthma and allergic rhinitis. There was a notably high

odds ratio for anxiety disorders among asthmatic patients

treated with MTK, and a high odds ratio for insomnia in

MTK-treated patients with allergic rhinitis (73). However,

most of the evidence regarding ANPEs and MTK is

circumstantial and not causative, based mainly on

retrospective study models (65, 70, 71). Stratified analyses

suggest that the reported increased incidence in ANPEs may

instead relate to the underlying diseases for which MTK is
Frontiers in Immunology 03
being administered (e.g., asthma and allergic rhinitis), rather

than MTK treatment itself (65, 71).

Though anecdotal andunestablished reports show that LTMAs

(MTK in particular) may induce ANPEs, we hypothesized that

given its immune-modulating and anti-inflammatory effects,MTK

might potentiate beneficial behavioral effects in patients with

psychiatric diseases (31, 32, 75–78). Taking into account the

reports of adverse behavioral effects of MTK (70, 71, 79), we

recognized that using MTK as treatment for psychiatric disorders

may sound problematic. However, given the essence of the adverse

data, and considering anteceding paradigms in medicine where an

absolute contraindicated treatment transitioned to become

mainstream (for example, b-adrenergic receptor antagonists for

chronic heart failure) (80), we discretionarily concluded it was an

advantageous undertaking.

This study aims to examine the behavioral effects of chronic

MTK treatment in male and female rats using different animal

behavioral models, as well as determine the effects of chronic

MTK treatment on brain inflammatory mediator levels using

pharmacological studies in male and female rats.
Materials and methods

Animals

Male and female Sprague-Dawley rats approximately eight

weeks of age, weighing 220-250 gr (males) or 180-200 gr
FIGURE 1

Eicosanoids synthesis cascade. PLA2 produces AA from membrane phospholipids. Thereafter, there are two main pathways for AA metabolism: 1)
COX pathway - the enzymes COX-1 and 2 convert AA to PGH2 which is converted by different isozymes to various prostaglandins and
thromboxanes; and, 2) 5-LOX pathway - the enzyme 5-LOX (together with the enzyme FLAP) converts AA to LTA4, which is then converted to
various leukotrienes. Medications that influence the synthesis/activity of mediators/enzymes are marked in red. Arrow indicates "production/
induction"; solid line indicates inhibition/locking; dashed line indicates indirect inhibition. AA, arachidonic acid; COX, cyclooxygenase; FLAP, five
lipoxygenase activating protein; LOX, lipoxygenase; LT, leukotriene; NSAIDs, non-steroidal anti-inflammatory drugs; PG, prostaglandin; PL,
phospholipase; TX, thromboxane.
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(females) at the beginning of the experiments were used

throughout the studies. Housing comprised of three rats per

cage and environmentally-regulated conditions (ambient

temperature 22 ± 1°C, relative humidity 55–58%, and

photoperiod cycle 12 h light: 12 h dark), fed Purina Lab Chow

and water ad libitum, unless otherwise indicated. The

procedures of the study were in accordance with the guidelines

of the Committee for the Use and Care of Laboratory Animals in

Ben-Gurion University of the Negev, Israel (Authorization # IL-

53-08-2020(E)). At the beginning of experiments, rats were

randomly assigned to the different treatment groups. Changes

were performed only to adjust for significant differences in

average body weight of the groups.
Behavioral tests

Albeit animal models in translational psychiatry research are

limited, this study performed experiments by simulating the

most widely recognized and phenotypically validated behavioral

tests (81–87). Before initiation of behavioral studies, rats were

accustomed to housing conditions for one week and then

subjected to the different behavioral experiments. Depression-

like phenotypes were induced by exposing male and female rats

to a chronic unpredictable mild stress (CUMS) protocol (81–87)

for four weeks. Thereafter, the following tests were conducted, at

different time-points, to examine the effects of MTK on animal

behavior: open field test, sucrose consumption test, elevated

plus-maze test, aggression test and forced swim test. Figure 2

presents the timeline of the behavioral experiments.
Frontiers in Immunology 04
Chronic unpredictable mild stress paradigm
Prior studies have shown that external stressors may induce

depressive-like behavior. Rats were subjected to a CUMS

protocol to induce core symptoms of depressive-like behaviors,

as described previously (81–87), with some modifications. The

CUMS protocol was initiated following a one-week adaptation

period and a three-day evaluation of baseline behavioral tests

(total of one and a half weeks). The protocol extended for six

weeks, the last two of which were concurrent with MTK (or

vehicle) treatment. The CUMS protocol consisted of chronic

exposure to different mild stressors every day for certain periods

of time, including: group housing (six rats instead of three per

cage; 8 h), placement in a tilted cage (30°, 3 h), food deprivation

(11 h), water deprivation (11 h), placement in a soiled cage (5 h),

and exposure to perfume odor (8 h) (81–87). At each time-point

of the CUMS protocol, animals were simultaneously subjected to

a maximum of two stressors, and with a maximum of three

stressors per day (see Table S1 for precise sequence and layout

schedule of the stressors as conducted).

Open field test
The OFT was performed as described previously (85, 87–89).

Rats were placed for 20 minutes in an open field arena. The

arena is made of a black box (60 cm [W] × 80 cm [L] × 60 cm

[H]) which was divided into a 25% central zone and a 75%

peripheral zone. Rats were placed in the corner of the arena.

Sessions were videotaped by a camera placed approximately one

meter above the center of the arena and subsequently assessed

using a video-tracking system (Etho-Vision XT 14; Noldus

Information Technology, Netherland). A 5% ethanol in water
FIGURE 2

Timeline for behavioral experiments. Before initiation of the CUMS protocol, baseline SCT and OFT were performed. Then, rats were subjected
to CUMS or control conditions for six weeks during the last two weeks of which, they were treated with MTK (or vehicle). The various behavioral
tests were performed on different days of the experiment as illustrated in the figure. CUMS, chronic unpredictable mild stress; D, day; EPMT,
elevated plus-maze test; FST, forced swim test; OFT, open field test; SCT, sucrose consumption test; W, week.
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solution was used to clean the arena prior to the introduction of

each animal. The initial 10 minutes of each session were

regarded as adaption time; thus, only the last 10 minutes of

the sessions were analyzed. The parameters that were

determined are: total distance traveled, mean velocity (of

movement) and the percentage of time spent in the peripheral

versus central zone of the arena. Calculation was as follows:

(seconds spent in each zone/600) x 100. The OFT was conducted

under similar conditions at two time points: before starting the

CUMS protocol (baseline), and after two weeks of MTK

treatment (days 44 and 45 of the protocol, see Figure 2).

Sucrose consumption test
This test is used to assess anhedonia – a behavioral feature of

depression. The test was conducted as described previously (85,

87), with slight modifications. Sucrose consumption during a 10-

hour session was calculated as described previously (85, 87). The

SCT was conducted under similar conditions at three time

points as described in Figure 2.

Elevated plus-maze test
This test intends to measure anxiety-like behavior

(associated with depression) and risk-taking behavior

(associated with mania). The test was performed as described

previously (85, 87). The EPMT was conducted under similar

conditions at two time points as indicated in Figure 2.
Aggression test
In this test, a naïve young-adult, stranger rat is brought to

the cage of an adult investigational MTK/vehicle-treated rat. The

rats were videotaped for 20 minutes and subsequently evaluated

by three experienced observers who were blind to the treatment

group of each animal. The number of physical attacks

committed by the investigational rat against the naive rat

was scored.
Forced swim test
The FST is a commonly used model for the assessment of

depressive-like behavior in animals (81, 86, 90). The test

examines immobility/floating time and struggling (climbing/

diving) time. Immobility time represents despair/hopelessness

and passive-like behavior. Struggling time represents active

behavior. The test was conducted exactly as described

previously (86).
Treatment with MTK

After exposure to four weeks of the CUMS (or control)

protocol, rats were treated intraperitoneally (ip), once daily, for

two weeks with vehicle (dimethyl sulfoxide [DMSO] 0.1-0.2 ml/

rat), or MTK (montelukast sodium; Sigma-Aldrich, St. Lewis,
Frontiers in Immunology 05
MO, catalog # PHR1603) 20 mg/kg, similar to several

pharmacological studies that tested the effects of MTK in-vivo

in rats (77, 91–94). MTK was dissolved in 100% DMSO and then

administered at injection volumes that ranged between 0.1-

0.2 ml according to rats’ body weight. Rats’ body temperatures

and body weights were measured every third day before the

administration of MTK/vehicle to verify that the treatment itself

did not affect these vital measures.
Brain sample collection

At the end of the treatment protocol, rats were briefly

anesthetized (with 4% isoflurane in 100% oxygen) and

immediately euthanized by decapitation. Then, brain regions

(FC, HT, and HC) were excised, similar to previous studies

(85–87).
ELISA for measurement of IL-6, TNF-a
and PGE2

Levels of IL-6, TNF-a and PGE2 in brain samples were

detected using specific ELISA kits according to the

manufacturer’s (R&D Systems, Minneapolis, MN, USA)

instructions, exactly as described previously (85–87). The

detection range of the assays was 125-8000 pg/ml for IL-6,

62.5-4000 pg/ml for TNF-a and 39-2500 pg/ml for PGE2.

Samples in which the level of the examined cytokine was

below the lowest detection limit of the assay were classified as

“undetectable” and calculated as zero.
Statistical analyses and presentation
of data

Firstly, Shapiro-Wilk and Kolmogorov-Smirnov tests were

used to verify data normality. Accordingly, statistical significance

was determined by one-way ANOVA (with Benjamini-Hochberg

false discovery rate) followed by Student’s t-test for normally

distributed variables, and the Kruskal-Wallis test (with Benjamini,

Krieger and Yekutieli false discovery rate) for abnormally

distributed variables. Values of P < 0.05 were considered

statistically significant. Results are shown as mean ± SEM

(standard error of mean). We performed two independent

experiments in male rats (n = 12 per group) and three

independent experiments in female rats (n = 12 or 18 per

group). In one of the “female experiments” we included 18 rats

per group, because in the other two experiments we realized that

the intra- and inter-group variability was high in some of the

behavioral tests. Thus, we enlarged the sample size to increase

reliability of the results obtained in the previous experiments. A

typical experiment included the following four groups: 1) Control
frontiersin.org
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(not exposed to CUMS) + DMSO; 2) Control + 20 mg/kg MTK

(dissolved in DMSO); 3) CUMS + DMSO; and, 4) CUMS + 20

mg/kg MTK.
Results

Behavioral tests

Results of the different behavioral tests examining the

efficacy of MTK in male and female rats succeeding a six-week

CUMS protocol are presented below.

MTK treatment reduces manic-like behaviour
in male rats in the open field test

A baseline OFT was conducted before the initiation of the

CUMS protocol revealing non-significant differences between

the groups in terms of total distance traveled and mean velocity

(data not shown). Figure 3 presents the results of the OFT at the

end of the experiment, after two weeks of MTK treatment. As

seen, generally, all treatment conditions (CUMS vs. control, and

MTK vs. vehicle treatment) did not significantly alter the total

distance traveled by neither male nor female rats (Figures 3A,

D). An exception is that MTK significantly decreased the
Frontiers in Immunology 06
distance traveled in female rats (Figure 3D). Moreover, male

rats that were exposed to the CUMS protocol upturned a

significantly increased velocity of movement, which was

significantly reduced by MTK treatment, suggestive of an anti-

manic/hyperactive-like effect (Figure 3B). In female rats, neither

the exposure to CUMS nor the treatment with MTK led to

significant differences in velocity (Figure 3E). Furthermore, there

was a significant decrease in the time spent in the peripheral

zone in males that were subjected to CUMS (Figure 3C),

suggestive of a risk-taking/manic-like behavior. In females, the

exposure to CUMS did not lead to a significant change in this

measure (Figure 3F). Treatment with MTK did not alter this

measure in neither male nor female rats (Figures 3C,

F, respectively).

MTK treatment induces an antidepressant-like
effect in the sucrose consumption test

As seen in Figure 4, after four weeks of CUMS (before

commencement of MTK treatment), male rats had a

significantly decreased sucrose consumption as compared to

control animals (Figure 4A), suggestive of depressive-like

behavior. Treatment with MTK reversed the decrease in

sucrose consumption in stressed males (Figure 4C). In females,

after four weeks of CUMS, there was a non-significant decrease
A B C

D E F

FIGURE 3

Effects of MTK on rats' behavior in the open field test. Male (A-C) and female (D-F) rats were subjected to CUMS or control conditions for six
weeks. During the last two weeks of the protocol, animals were treated (ip) with MTK 20 mg/kg or vehicle. On days 44 and 45, rats were placed
for 20 minutes in an open field arena; only the last 10 minutes of the session were assessed. The parameters that were analyzed are: total
distance traveled (A, D), mean velocity (B, E), and the percentage of time spent in the peripheral zone (C, F). Each column is the mean ± SEM of
12 to 18 rats per group. Using one-way ANOVA (with Benjamini-Hochberg false discovery rate) followed by Student’s t-test for normally
distributed variables, and Kruskal-Wallis test (with Benjamini, Krieger and Yekutieli false discovery rate) for abnormally distributed variables, for
specific group comparisons: *p < 0.05 vs. Control + DMSO; #p < 0.05 vs. CUMS + DMSO.
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in sucrose consumption in one of the tested groups and a

significant decrease in other (Figure 4B). These changes were

not significantly affected by MTK treatment (Figure 4D).

MTK treatment does not alter anxiety-like
behavior in the elevated plus-maze test

Exposure to CUMS for four weeks did not significantly

influence the time spent in the open arms in neither male nor

female rats (Figures 5A, B, respectively), nor did it significantly

alter the number of entries into the open arms in male or female

rats (Figures 5C, D, respectively). Two weeks of MTK treatment

also did not affect the time spent in the open arms in male and

female rats (Figures 5E, F, respectively), nor the number of

entries into the open arms in male and female rats (Figures 5G,

H, respectively).

MTK treatment invokes aggressive-like behavior
in males but mitigates aggression in females

As seen in Figure 6, exposure to the CUMS protocol did not

cause significant changes in the number of attacks committed by

the investigational rat against the naïve rat both in males and

females. Treatment with MTK increased the number of attacks in
Frontiers in Immunology 07
control male rats (Figure 6A), suggestive of a possible aggression-

inducing effect of the drug. On the other hand, treatment with

MTK significantly decreased the number of attacks in control as

well as CUMS-subjected female rats (Figure 6B), indicative of an

anti-aggressive-like effect of the drug.

MTK treatment does not induce depressive-
like behavior in the forced swim test

Surprisingly, exposure to CUMS for six weeks did not

significantly influence the immobility time or struggling time

in neither male nor female rats (Figure 7). Moreover, two

weeks of MTK treatment did not alter the immobility time and

struggling time in control and CUMS males and females

(Figures 7A–D, respectively). These findings indirectly

suggest that MTK does not seem to induce depressive-

like behavior.
Brain inflammation experiments

As mentioned in Methods, at the end of the MTK treatment

protocol, rats were euthanized and brain regions (FC, HT and
A B

C D

FIGURE 4

Effects of MTK on sucrose consumption. Male (A, C) and female (B, D) rats were exposed to CUMS or control conditions for four weeks
(A, B) and then, while remaining under these conditions, were treated for two weeks with MTK 20 mg/kg or vehicle (C, D). Each column is the
mean ± SEM of 12 to 18 rats per group. Using one-way ANOVA (with Benjamini–Hochberg False Discovery Rate), followed by Student’s t-test
for specific group comparisons: *p < 0.05 vs. Control + DMSO.
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A B

C D

E F

G H

FIGURE 5

Effects of MTK on rats' behavior in the elevated plus-maze test. Male (A, C, E, G) and female (B, D, F, H) rats were exposed to CUMS or control
conditions for four weeks (A-D) and then, while remaining under these conditions, were treated for two weeks with MTK 20 mg/kg or vehicle
(E-H). Time spent in open arms (A, B, E, F) and number of entries into the open arms (C, D, G, H) were evaluated. Each column is the mean ±
SEM of 12 to 18 rats per group. Using one-way ANOVA (with Benjamini–Hochberg False Discovery Rate), followed by Student’s t-test for
specific group comparisons, no significant differences between the groups were observed.
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A B

C D

FIGURE 7

Effects of MTK on immobility and struggling time. Male (A, C) and female (B, D) rats were exposed to CUMS or control conditions for four weeks
and then, while remaining under these conditions, were treated for two weeks with MTK 20 mg/kg or vehicle. Immobility time (A, B) and
struggling (climbing/diving) time (C, D) were evaluated at the end of chronic MTK treatment. Each column is the mean ± SEM of 12 to 18 rats
per group. Using one-way ANOVA (with Benjamini–Hochberg False Discovery Rate), followed by Student’s t-test for specific group
comparisons, no significant differences between the groups were observed.
A B

FIGURE 6

Effects of MTK on aggressive-like behavior. Male (A) and female (B) rats were exposed to CUMS or control conditions for four weeks and then,
while remaining under these conditions, were treated with MTK 20 mg/kg or vehicle. Each column is the mean ± SEM of 12 to 18 rats per
group. Using one-way ANOVA (with Benjamini–Hochberg False Discovery Rate), followed by Student’s t-test for specific group comparisons:
*p < 0.05 vs. Control + DMSO; #p < 0.05 vs. CUMS + DMSO.
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HC) were excised to determine the levels of the inflammatory

mediators IL-6, TNF-a and PGE2.

MTK treatment significantly reduces brain IL-6
levels in female but not male rats

Figure 8 shows that exposure to CUMS for six weeks did not

cause significant changes in IL-6 levels in the FC, HT and HC of

male and female rats. Treatment with MTK was not associated

with prominent effects on IL-6 levels in male rats (Figures 8A–C).

Of note, MTK significantly increased IL-6 levels in the HT of

control male rats (Figure 8B) but did not cause a prominent effect

in the FC and HC (Figures 8A, C, respectively). In female rats,

MTK treatment was mostly associated with a decrease in IL-6

levels (Figures 8D–F). For instance, MTK significantly reduced

IL-6 levels in control (HT) and CUMS-subjected rats (FC & HT).

MTK treatment profoundly decreases TNF-a
levels in female but not male rats

Figure 9 shows that there was a dramatic difference in brain

TNF-a levels between male and female rats. In males, the

exposure to CUMS did not significantly affect TNF-a levels in

the FC, HT and HC (Figures 9A–C, respectively). There was no

consistent trend in the effect of MTK on TNF-a levels in male
Frontiers in Immunology 10
rats: MTK significantly increased TNF-a levels in the FC in

control animals but significantly decreased its levels in the HT of

CUMS-subjected males (Figures 9A, B, respectively).

Contrastingly, in females, the exposure to CUMS led to a

significant decrease in TNF-a levels in the FC, HT and HC

(Figures 9D-F, respectively). Moreover, MTK profoundly

reduced TNF-a levels in control females in all brain regions

but, mostly, did not further decrease its levels in MTK-treated

females (Figures 9D–F).
MTK treatment differently affects PGE2 levels
in the various brain regions

Figure 10 shows that the exposure to CUMS for six weeks

did not lead to significant changes in brain PGE2 levels in male

(except in HT) and female rats. There was no consistent trend in

the effect of MTK on PGE2 levels in male rats: MTK significantly

decreased PGE2 levels in the FC and HT of CUMS-subjected

males (Figures 10A, B, respectively), but significantly increased

its levels in the HC (Figure 10C). Similarly, in females the effects

of the drug on PGE2 levels were different in the various brain

regions (Figures 10D-F). MTK significantly elevated PGE2 levels

in the FC (D) and HC (F) of control females but reduced its
A B C

D E F

FIGURE 8

Effects of MTK on brain IL-6 levels. Male (A-C) and female (D-F) rats were exposed to CUMS or control conditions for four weeks and then,
while remaining under these conditions, were treated for two weeks with MTK 20 mg/kg or vehicle. IL-6 levels in FC (A, D), HT (B, E) and HC
(C, F) were determined by ELISA. Each column is the mean ± SEM of 12 to 18 rats per group. Using one-way ANOVA (with Benjamini–Hochberg
False Discovery Rate), followed by Student’s t-test for specific group comparisons: *p < 0.05 vs. Control + DMSO; #p < 0.05 vs. CUMS + DMSO.
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levels in FC of CUMS-subjected females (D). On the other hand,

MTK did not alter PGE2 levels in the HT of female

rats (Figure 10E).
Discussion

The main objective of the present study was to directly

examine the effects of MTK on the behavioral phenotype of male

and female rats. This is because several studies reported that

MTK may induce ANPEs in treated patients (66–68, 79, 95, 96).

Under the experimental conditions of the present study, we

found that MTK does not cause prominent negative behavioral

effects in rats. Table 1 summarizes the effects of MTK (20 mg/kg)

on the behavior of male and female rats as evaluated in the

utilized behavioral models. It is seen that, generally, MTK did

not adversely influence animal behavior in either control (non-

stressed) or CUMS-subjected rats (Table 1). An exception was

the aggression-inducing effect of MTK in male rats (Figure 6A

and Table 1). However, this negative effect of MTK is “counter-

balanced” by its positive behavioral effects in males and females

in other conditions. Together, within the scope of the particular
Frontiers in Immunology 11
experimental conditions applied, a generally safe behavioral

profile of MTK in male and female rats was observed. This is

consistent with the findings of several recent established studies

that examined the association between MTK treatment and the

occurrence of ANPEs in human subjects (67, 97, 98).

Nonetheless, for the sake of scientific veracity, it has to be

noted that other recent established studies revealed

contradicting findings, i.e., that MTK increases the occurrence

of ANPEs (73, 99, 100).

LTs are inflammatory mediators that strongly affect the

function of mammalian tissues including the brain (28).

Considering the pro-inflammatory effects of LTs and the large

body of data which suggests that inflammation contributes to the

pathophysiology of mental disorders (4, 6, 7, 15, 22), we

hypothesized that treatment with MTK – a potent cys-LTs

receptor antagonist – might exert beneficial behavioral effects

in psychiatric disorders (31, 32, 75). Indeed, MTK incited some

beneficial pre-clinical behavioral outcomes in rats (Table 1): 1)

MTK treatment increased sucrose consumption in stressed male

rats, suggestive of an antidepressant-like effect. 2) MTK reduced

the hyperactive/manic-like phenotype in CUMS-subjected males

(as modeled in the OFT), including a reduction in mean velocity
A B C

D E F

FIGURE 9

Effects of MTK on brain TNF-a levels. Male (A-C) and female (D-F) rats were exposed to CUMS or control conditions for four weeks and then,
while remaining under these conditions, were treated for two weeks with MTK 20 mg/kg or vehicle. TNF-a levels in FC (A, D), HT (B, E) and HC
(C, F) were determined by ELISA. Each column is the mean ± SEM of 12 to 18 rats per group. Using one-way ANOVA (with Benjamini–Hochberg
False Discovery Rate), followed by Student’s t-test for specific group comparisons: *p < 0.05 vs. Control + DMSO; #p < 0.05 vs. CUMS + DMSO.
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TABLE 1 Effect of MTK on behavior.

Effect of MTK in control rats Effect of CUMS (alone) Effect of MTK in CUMS-subjected
rats

Male Female Male Female Male Female

OFT Velocity

Distance traveled

Time in periphery

SCT

EPMT Time in open arms

Number of entries to the open arms

Aggression

FST (immobility)
Frontiers in Immunology
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The table illustrates the effects of the treatment protocol on different behavioral phenotypes. The signs indicate the following trends: - a non-significant effect; - an increase, - a

decrease; pink- a possible harmful effect of MTK; blue - a possible beneficial effect of MTK; orange - a disputable effect of MTK. CUMS, chronic unpredictable mild stress; EPMT, elevated
plus-maze test; FST, forced swim test; MTK, montelukast; OFT, open field test; SCT, sucrose consumption test.
A B C

D E F

FIGURE 10

Effects of MTK on brain PGE2 level. Male (A-C) and female (D-F) rats were exposed to CUMS or control conditions for four weeks and then,
while remaining under these conditions, were treated for two weeks with MTK 20 mg/kg or vehicle. PGE2 levels in FC (A, D), HT (B, E) and HC
(C, F) were determined by ELISA. Each column is the mean ± SEM of 12 to 18 rats per group. Using one-way ANOVA (with Benjamini–Hochberg
False Discovery Rate), followed by Student’s t-test for specific group comparisons: *p < 0.05 vs. Control + DMSO; #p < 0.05 vs. CUMS + DMSO.
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and reversal of the decreased time spent in the peripheral zone of

the arena. In this regard, when placed into an open field, rats and

mice tend to remain in the peripheral zone of the arena or

against the walls (88, 89). To the best of our knowledge, this is

the first study showing a significant anti-hyperactive/anti-

manic-like effect of MTK in animals. 3) MTK mitigated

aggressive-like behavior in female rats. These findings support

our hypothesis that MTK might capacitate beneficial behavioral

effects, similar to other typical anti-inflammatory medications

such NSAIDs and corticosteroids (15–21). Recently, Tel et al.

(101) showed that MTK exhibited antidepressant-like effects

(assessed by measuring immobility time in the FST) in male and

female mice that were subjected to an ovalbumin-induced

asthma model. MTK significantly decreased immobility time

in the ovalbumin-challenged, but not in control mice (101).

These findings resemble the results that we obtained in the SCT,

where MTK treatment did not alter sucrose consumption in

control animals but reversed the reduction of sucrose

consumption in CUMS-subjected male rats (Figure 4C and

Table 1). Another LTMA, the 5LOX inhibitor zileuton, was

also found to decrease immobility time in a lipopolysaccharide

induced depression-like model in mice (102), supporting the

suggested possible anti-depressive effect of LTMAs.

Furthermore, aggressiveness and self-harm were among the

most commonly reported ANPEs of MTK (66–68, 95). In the

present study, MTK increased aggressive-like behavior in male

rats but decreased it in females (Figure 6 and Table 1), suggestive

of a sex-associated effect of the drug. These results are in line

with those of a previous study which demonstrated that LTMAs

were pharmacologically effective in female mice but not males

(56), and may further reinforce conjectures of sex-related

variance in pharmacotherapeutic responses among psychiatric

patients (103). Of note, it is difficult to explain and categorize the

MTK-induced reduction in distance traveled in control female

rats (Figure 3D and Table 1) as a therapeutic or harmful effect.

This is because, on one hand, in this animal model this outcome

is usually interpreted as an anti-manic/hyperactive-like effect of

a given treatment intervention. However, on the other hand,

since their “basal/normal” behavior was altered (compared to

vehicle-treated control females, which is the “pure” control

group in this setting), it can be argued that it represents an

undesirable effect of MTK.

Furthermore, we tested the behavioral effects of MTK in the

EPMT which models anxiety-like behavior. Rodents are

inherently inclined to seek dark hiding spaces during light

hours (in the present study the test was conducted during light

hours) in attempt to evade being seen by predators. Therefore,

remaining in the closed arms of the maze is considered

characteristic normative behavior, if the time spent in these

arms is proportionally comparable to that of the control animals.

However, when the time rats’ dwell in the open arms

significantly exceeds that of the closed arms, it is generally
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interpreted as non-anxious behavior. Contrastingly, if the time

situated in the open arms markedly surpasses that observed

among control rats, it may denote risk-taking/manic-like

behavior. The results show that exposure to CUMS did not

cause behavioral changes in the EPMT in male and female rats

(Figure 5 and Table 1). Moreover, treatment with MTK, both in

control and CUMS-subjected rats, did not alter animals’

behavior in the EPMT. This clearly indicates that, under these

experimental conditions, MTK did not induce anxious-

like behavior.

Interestingly, we found that there were differences in the

influential intensity of CUMS on the behavioral phenotypes of

male vs. female rats (Table 1). For example, in CUMS-subjected

male rats there was a significant increase in mean velocity and a

decrease in time spent the peripheral zone of the arena (both

suggestive of manic-like behavior), while no such changes were

observed in CUMS-subjected females. Additionally, the

exposure to CUMS led to a significant decrease in sucrose

consumption (indicative of depressive-like behavior) in males,

while in females CUMS was associated with only a nearly

significant decrease in sucrose consumption (Figure 4). This is

consistent with the results of previous studies which showed that

stress protocols induce a reduction in sucrose preference/

consumption only in male rats (104–106). However, other

studies reported opposite results, i.e., that exposure to stress

protocols induces a significant reduction in sucrose preference/

consumption only in females (58, 107), or causes a decrease in

males as well as females (108, 109). Furthermore, several

previous studies reported that various stress protocols led to a

significant increase in immobility time in the FST, suggestive of

depressive-like behavior (81–84). Surprisingly, in the present

study the utilized CUMS protocol did not cause a significant

change in immobility time (Figure 7 and Table 1). Our results

are similar to those of previous studies (105, 110) which also

demonstrated that some stress protocols do not induce

significant changes in immobility time in male and female

rats. It is known that the type, severity and duration of the

stress protocol, and, the strain and sex of used animals all affect

the measured behavioral outcomes (81–84, 106, 110–112).

The current study used subjects of the female sex

heterogeneously spanning across different time points in the

estrous cycle throughout experiments, with normal distribution

applied similarly across all randomized female study cohorts.

While we did not perform direct analytical or descriptive

evaluation contingent upon the females’ hormonal cycles, we

did ensure that sample sizes contained an ample number of

subjects in order to neutralize potential deviations that may have

related to such. Nevertheless, we acknowledge this as a limitation

of our study, as research shows demonstrable correlations

between inflammatory biomarkers, AA metabolites, the corpus

luteum, and expressive ovulatory and implantation mechanisms

(113–117). Pertinent to the behavioral experiments of the
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present study, Zhao et al. (118) investigated sex-specific

depression and the LTA4 hydrolase haplotype gene (an

aminopeptidase dictating the conversion of LTA4 to LTB4).

Their findings show gene expression to confer with a significant

protective effect in women in regard to depression, rationalizing

further examination of cys-LTs and sex differences in mental

illness. Importantly, MTK treatment has been reported to affect

endometrial conditions (119) as well as other female hormonal

aspects (57, 120, 121). For example, MTK was found to exert

better control of asthmatic symptoms in women than men (57).

Furthermore, Fujiwara et al. (121) found in a randomized,

double-blind, placebo-controlled trial that MTK was effective

in reducing dysmenorrheal pain in women. Numerous studies

reported on the bidirectional association between LT function

and the estrous cycle and reproductive system (116, 122–124).

Therefore, it is feasible that the blatant sex-associated differences

in our study are affiliated with the relating female hormonal

processes involved, and stratified analyzation of this parameter

may have yielded interesting outcomes.

As mentioned, a large body of data suggested that

inflammation contributes to the pathophysiology of mental

disorders (15, 22, 125–132). For example, several research

papers reported increased IL-6 levels in patients with major

depression (129, 130, 133), bipolar disorder (129, 131) and

schizophrenia (129, 130). Moreover, multiple studies showed

that IL-6 levels were prominently increased in the blood of

subjects after suicidal attempts and in post-mortem brains of

people after suicidal death (134–136). Similarly, many studies

found that TNF-a levels are higher in patients with major

depression (129, 133), bipolar disorder (129, 131, 137) and

schizophrenia (129, 137) than in matched-controlled subjects.
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PGs (PGE2 in particular) have been recurrently observed as

connected to the pathophysiology of psychiatric disorders (138,

139). These outcomes are highly relevant to the behavioral

findings of the present work, because numerous studies have

demonstrated that MTK decreases the levels of several pro-

inflammatory mediators including IL-6, TNF-a and PGE2

under various experimental conditions (34, 37, 40, 42, 140,

141). Thus, we hypothesized that the behavioral effects of

MTK may be influenced by and related to its effects on brain

inflammation. In the present study we assessed brain

inflammation by measuring inflammatory mediator levels in

the FC, HT and HC (11–13). Table 2 summarizes the effects of

MTK treatment and the exposure to CUMS on levels of IL-6,

TNF-a and PGE2 in these brain regions. As seen, in control

males, MTK increased IL-6 levels in the HT, and TNF-a levels it

the FC, suggestive of a pro-inflammatory effect of the drug. In

contrast, in control females, MTK treatment was associated with

a robust anti-inflammatory effect; it significantly decreased IL-6

and TNF-a levels almost in all brain regions. On the other hand,

MTK increased PGE2 levels in the FC and HC. These results are

similar to those of previous studies which revealed that under

certain conditions MTK may increase the production of PGE2

(44, 142). We speculate that the oppositional impact of MTK on

IL-6 and TNF-a levels in male vs. female rats may contribute, at

least in part, to its distinctive effect on aggressive-like behavior

(Table 1). MTK induced aggressive-like behavior in males, while

it decreased this behavior in females. Numerous studies

demonstrated that aggressive behavior in humans and rodents

is affected by the function and structure of the FC, HT and HC

(143–145). Importantly, MTK also attenuated aggressive-like

behavior in CUMS-subjected females (Table 1), and here too,
TABLE 2 Effect of MTK on brain inflammatory mediators’ levels.

Effect of MTK in control rats Effect of CUMS (alone) Effect of MTK in CUMS-subjected rats

Male Female Male Female Male Female

FC IL-6

TNF-a

PGE2

HT IL-6

TNF-a

PGE2

HC IL-6

TNF-a

PGE2
The table illustrates the effect of the treatment conditions on the various inflammatory mediators in the three examined brain regions: FC, HT and HC. The signs indicate the following trends:

- a non-significant effect; - an increase, - a decrease; pink - a pro-inflammatory effect of MTK; blue - an anti-inflammatory effect of MTK. CUMS, chronic unpredictable mild

stress; FC, frontal cortex; HC, hippocampus; HT, hypothalamus; IL-6, interleukin-6; MTK, montelukast; PGE2, prostaglandin E2; TNF-a, tumor necrosis factor-a.
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there was a prominent reduction in TNF-a levels in the three

brain regions and in IL-6 levels in the FC and HT (Table 2). In

CUMS-subjected male rats the effect of MTK on inflammatory

mediator levels was inconsistent and difficult to interpret. As for

the effect of CUMS (alone) on inflammatory mediator levels, we

found that the stress protocol did not alter brain levels of either

IL-6, TNF-a or PGE2 (except in the HT) in male rats. In

contrast, in females, the exposure to CUMS was associated

with a profound reduction in TNF-a levels in all brain regions

but particularly in the HC (Figure 9). A prominent reduction in

TNF-a levels is usually considered an anti-inflammatory effect

of a given intervention. However, again, since in this case it is a

deviation from the basal/control condition, this interpretation

may be disputable.

To the best of our knowledge, this is the first study that

directly and thoroughly tested the behavioral effects of MTK in

rats. Overall, the results indicate that MTK treatment does not

induce prominent adverse behavioral effects and may instead be

associated with select beneficial behavioral outcomes. Moreover,

the results support our hypothesis that treatment with MTK

differentially affects levels of brain inflammatory mediators in

male vs. female rats, which plausibly explains the dissimilar

behavioral phenotypes of the sexes. Randomized, double-blind

clinical trials in human subjects are necessary to directly

determine the behavioral effectual capacity of MTK.
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