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Abstract

This work presents a new method that combines symbol dynamics methodologies with an Ngram algorithm for the
detection and prediction of epileptic seizures. The presented approach specifically applies Ngram-based pattern
recognition, after data pre-processing, with similarity metrics, including the Hamming distance and Needlman-Wunsch
algorithm, for identifying unique patterns within epochs of time. Pattern counts within each epoch are used as measures to
determine seizure detection and prediction markers. Using 623 hours of intracranial electrocorticogram recordings from 21
patients containing a total of 87 seizures, the sensitivity and false prediction/detection rates of this method are quantified.
Results are quantified using individual seizures within each case for training of thresholds and prediction time windows. The
statistical significance of the predictive power is further investigated. We show that the method presented herein, has
significant predictive power in up to 100% of temporal lobe cases, with sensitivities of up to 70–100% and low false
predictions (dependant on training procedure). The cases of highest false predictions are found in the frontal origin with
0.31–0.61 false predictions per hour and with significance in 18 out of 21 cases. On average, a prediction sensitivity of
93.81% and false prediction rate of approximately 0.06 false predictions per hour are achieved in the best case scenario. This
compares to previous work utilising the same data set that has shown sensitivities of up to 40–50% for a false prediction
rate of less than 0.15/hour.

Citation: Eftekhar A, Juffali W, El-Imad J, Constandinou TG, Toumazou C (2014) Ngram-Derived Pattern Recognition for the Detection and Prediction of Epileptic
Seizures. PLoS ONE 9(6): e96235. doi:10.1371/journal.pone.0096235

Editor: Hans A. Kestler, University of Ulm, Germany

Received July 10, 2013; Accepted April 6, 2014; Published June 2, 2014

Copyright: � 2014 Eftekhar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support received from Engineering and Physical Sciences Research Council grant number EP/K009842/1. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: a.eftekhar@imperial.ac.uk

Introduction

Epilepsy is a neurological disorder that affects approximately

1% of the world’s population. It is characterised by seizures, which

can manifest in several ways, from simple loss of awareness to

more severe motor movements with loss of consciousness. A

multitude of fields have studied the underlying mechanisms behind

seizures, looking at the brain from multiple perspectives including

bottom-up (i.e. local neuronal microcircuits) to global approaches

(i.e. network activity monitored through local field potentials or

EEG).

The goal of this work is in the detection and prediction of the

epileptic seizure. Prediction has seen work ever since the 1950s

applying linear, nonlinear (state-space) or multivariate analysis

techniques to EEG and derivatives of it [1–3]. The ability to

predict a seizure would allow for intervention strategies [4–6] to be

administered for those patients where medication or surgery has

had little or no effect. At present, 70% of people with epilepsy can

have it controlled with the correct anti-epileptic drugs. For those

not helped by medication there are options, including surgery,

which is successful in up to 70% of cases (http://www.epilepsynse.

org.uk/).

Early work on seizure detection has predominantly focused on

neonatal EEG. Seizures in neonates can be indications of Neonatal

Encephalopathy (NE) - the manifestation of abnormal neonatal

brain function - and can affect from 0.5–4 neonates per 1000

[7,8]. However powerful, current methods [9–11] fail to aid in the

detection of small seizures (several seconds) and can miss up to

50% of seizures if unsupervised (without expert monitoring) [12].

A recent study [13] analysed a significant number of time, energy

and frequency domain features for the detection of seizures in

adult data, comparing complexity and accuracy. Although

significant, the results still show relatively low sensitivity and

specificity to previous studies, with no indications of inter-patient

variability.

More recent detection work, looking at wave morphology

changes [14] have shown an improved sensitivity of 81% and false

detection rate (FDR) of 0.18/h on intracranial EEG. The same

work also presented a comprehensive comparison with some

previous results such as the Aarabi system, who originally used

linear correlation features in neonatal EEG [15] but in the most

recent study fuzzy rules, showing a sensitivity of 98.7% and FDR

of 0.27/hand. Previous work typically shows sensitivities greater

than 79% and FDRs of approximately 0.08 to 0.14/h [14].

Similar to detection, there has been a wealth of work aiming to

predict seizures [1], and more recently an influx of methods

showing high sensitivities with statistical validation applied.

Statistical validation being a more recent requirement of

prediction methods motivated by the prediction review of

Mormann [1]. This has established the generally accepted
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statistical framework [16,17] that compares the results to a

random predictor.

One of the first to separate temporal and frontal, and clinical

and subclinical seizures showed sensitivities of 40–50% for a FPR

of 0.15/h [17]. Some more recent to note include Aarabi et al who

used a rule based system utilising nonlinear measures on

intracranial EEG, and subsequently showed sensitivities of 80%

and 90% for a prediction time of 30/50 mins, with FPR of 0.17/

0.11/h respectively [18]. Other studies, have shown sensitivities of

80–88% with some level of significance and FPRs of of approx.

0.15/hour [19–21]. A recent study by Williamson et al was able to

show only 15 false predictions in a 440 hour period (less than 0.04

FP/h).

At present, there are still avenues to explore for both prediction

and detection of seizures. Prediction specifically has progressed

significantly since [1] but there are still many unknowns. This has

not prevented the immense amount of research in the area,

applying many variations of algorithms, including some of the

first-in-man studies [22]. However, there is a clear emphasis on the

requirement for statistical validation of results versus a random

predictor. In this paper we explore the application of a new

method for both detection and prediction. This is based on a

modified pattern recognition method adopting the N-gram

algorithm that we have previously described in [23]. Developing

this method into a real-time analysis environment, we explore (and

quantify) its ability to detect and predict seizures. We also compare

this against some of the most recently published results in the area.

Symbolic Analysis of EEG Signals

Pattern recognition algorithms typically involve three stages: (1)

data acquisition, (2) data representation and (3) decision making

[24]. Data acquisition employs an analog front-end, including

amplification, filtering and data conversion (analog to digital).

Once acquired features can be extracted from the signal (either in

the digital or analog domain), for example [25]. Representing data

as features reduces the amount of data/information required and

subsequently reduces the complexity of any further analyses.

Typically this is then followed by a classification method, such as

clustering. An excellent review of all these methods and the future

perspective on this topic refer to [24] and references therein.

N-grams
Traditionally applied to language models, an N-gram model

extracts and counts the subsequences of a particular symbolic

sequence [26], such as words in a body of text, i.e. a word search.

These subsequences or patterns (i.e. phrases/sentences) can be

predicted based on the probabilities of words occurring given the

previous n-1 words [27] (i.e. the Markovian nature of the

sequence).

In an N-gram model -sequences of symbols are found within the

data, setting up an N-gram tree with (nz1) nodes each with a list

of the combination of symbols and their count within the data.

With this we can extract various measures to estimate signal

complexity, transition probabilities and predict future sequences of

symbols [28,29]. So an example sequence fC,A,5,8,A,5g will

have a bigram (N-gram of order 2) as per Fig. 1 where the symbol :

is used as a symbol separator.

For pattern recognition, separation of this symbol sequence into

meaningful patterns is the first step after symbolisation, i.e. it

allows the formation of a pattern search tree. This is typically done

using entropy and information theory methods [29] based on the

probability of symbols following each other (eq. 1). The probability

then of 5 given A, i.e. P(5DA), is 1 as all cases of symbol A are

followed by a 5. This process requires the N-gram tree to first be

built, so can be computationally and memory demanding process

depending upon the data size.

P(si Dsi{1
i{n)~

c(si{1
i{nsi)

c(si{1
i{n)

ð1Þ

Applications to EEG
Symbolic data analysis itself has been applied to time series in

many applications including EEG analysis [30–32]. The process

involves defining a mapping that translates a given data sequence

x (f : x?S) to a symbolic space S with l(S)ƒl(x), where l :ð Þ is

the length of the enclosed vector. This mapping can be achieved in

many different ways including representing x in a multidimen-

sional state-space [28,33–35]. Once symbolized the sequence is

either clustered as patterns (such as words from character

sequences) or a measure is applied to quantify symbolic dynamics,

the latter typically employed using entropy-based measures

[30,36].

A few studies have looked at signal symbolic analyses as a way of

quantifying seizure-related activity. The first, is a series of work by

Hively et al. [34,35,37] that uses quantized time-series. These

series are translated to a d-dimensional space using time-

embedding [37,38] which is then partitioned into bins. Over

pre-defined time-windows the occurrence of the signal in these

bins is counted and compared between a base or normal case and a

test case using the x2 statistic and L1 distance. These are compared

to traditional measures of correlation dimension, mutual informa-

tion and Kolmogorov entropy on model and real EEG data. They

showed that the phase space symbol dynamics offered superior

separation between pre-seizure and seizure state compared to the

other measures.

Schindler et al [31] used the approach of ordinal time series

analysis by windowing EEG data and observing the uniform set of

sub-sequences that occur in that window. They observed cases of

pattern changes prior to seizure but since the set of results

presented were limited (in addition to time being normalized for

all cases) it is difficult to truly assess the significance of the results.

Finally, Eftaxias [36] used a binary representation; a threshold

being a function of the mean, with the signal, when greater than,

resulting in a 1, and less than, 0. This was followed by several

entropy and information quantifiers including the Tsallis entropy

and Symbol Fisher Information Measure (SFIM). Using these and

other measures they are able to show evolutions in evoked rat

seizures several minutes prior to onset and in human data

discrimination between pre-seizure and seizure states.

Figure 1. N-gram pattern sequence example for the sequence
C, A, 5, 8, A, 5. A unigram and bigram are shown for this
sequence, N~1,2 and their associated counts.
doi:10.1371/journal.pone.0096235.g001

Ngram Pattern Recognition for Seizure Prediction
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The results of these studies have shown significant progress in

symbolic analysis’ applicability to EEG-based time series, but have

yet to quantify statistical prediction properties, including signifi-

cance.

Methods

The aforementioned analyses methods are typically based on

symbolic time series literature, while, as we previously mentioned,

in language modelling this type of analyses uses an N-gram

approach. In this section we describe our methodology (illustrated

in Fig. 2).

Signal Conditioning: Filtering
Our data contains 50 Hz mains noise so we apply a 4th order

Butterworth notch filter to each data set prior to analysis. In

addition, a number of the data sets contain artefacts including

electrode/amplifier saturation. A phase quadratic filter [35] was

chosen, analogous to a Savitzky-Golay (SVG) smoothing filter, to

remove these artefacts. This method applies a 3rd order smoothing

function spanning over 101 sample points (50 before and 50 after a

the signal point xi). The SVG smoothing involves constructing a

polynomial around these points with a least square fit and and

using the central point, yi as the new smoothed version of xi. This

is iteratively computed for each data point. The smoothed signal is

removed from the original data set to leave us with a relatively

artefact-free signal.

Data Pre-processing
Once filtered, the signals are separated into time windows and

re-quantized. In data acquisition systems a signal is typically

quantized into 2N levels between two predefined reference points

(2) thus reducing the signal amplitude resolution. This is equivalent

to a symbolic representation in a one dimensional (amplitude)

space (Fig. 3). Rather than define Q(xi) as an integer, we can

represent it as a symbol si~Q(xi), which for case of simplicity is

defined as the hexadecimal representation of the quantized signal’s

binary value.

Q(xi)~sgn(xi) � tDxi D
D

z
1

2
s ð2Þ

xi being a data point, D~(Vz
ref {V{

ref )=(2N{1), where Vz
ref and

V{
ref are the analog-to-digital converted reference positive and

negative voltages, and N the bit level representation.

Although typical hardware quantization employs binary (2N )

levels computationally finer amplitude resolution can be achieved

by having a non-binary divisor. EEG data, depending upon the

application, is already quantized at 8–16 bit which, when stored, is

represented at its lowest level in binary, but in a higher level of

abstraction can be represented in hexadecimal (HEX).

The re-quantized signal is generated by converting the already

quantized signal, x(n), to a lower resolution according to

tx½n�=2Ds. For example, conversion of a 16 bit number to an 8

bit requires D~8, i.e. truncating the least significant bits (LSBs).

The new binary sequence is then subjected to our modified N-

gram methodology. Fig. 3 illustrates an example of our symbolic

representation.

Multiresolution N-gram
The aim of our method is to utilise the principles of an N-gram

model but without the requirements of building an N-gram tree

first. Instead we build the tree as we progress in time through a

fixed window (1 minute), defining the patterns and associated

counts. While building the tree we extract significant pattern

counts. There are four ways we do this, three of which are

illustrated in Fig. 4:

1. Non-overlapping, Single Pattern: This splits each window into a

series of successive non-overlapping patterns of one pre-defined

length (Npat). For the example shown in Fig. 4 and Npat~2,

the generated patterns are: fA0:F7,13:13,00:00g of which

A0:F7 and 00:00 have a count of 2.

2. Overlapping, Single Pattern: As in (1), we have one pattern length,

but now with each pattern overlapping. For the example shown

a n d Npat~2 t h i s w o u l d g e n e r a t e :

fA0:F7,F7:13,13:13,13:00,00:00,00:A0,F7:00g o f w h i c h

again A0:F7 and 00:00 have a count of 2.

3. Non-overlapping, Multiple Patterns Here we use multiple patterns

where, as in method (1), each pattern size does not overlap

with each other, although other pattern sizes can, as in method

(2) (see Fig. 4). For pattern sizes of 2 and 3 this would generate

the patterns found in (1) and fA0:F7:13,13:00:00,A0:F7:00g.
4. Overlapping, Multiple Patterns This combines method (3) with the

use of overlaps as defined in method (2) and results is several

overlapping patterns shown in Table 1.

The above four mentioned methods are the first step in the

process of analysis. For the overlapping cases, as we want to

establish the unique set of patterns in a symbol sequence we need

to establish which overlapping patterns to count and which to

discard (note the results in Table 1 does not show this).

Figure 2. Algorithm system flow where the input data files for each patient are filtered, pre-processed then analysed with our N-
gram method with anomalous activity detected using a pre-defined threshold on the pattern counts.
doi:10.1371/journal.pone.0096235.g002

Ngram Pattern Recognition for Seizure Prediction
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Unique patterns are achieved during the process of extracting

patterns in the time window. During this process we first look for

the largest pattern and if it has occurred previously we skip the

remaining smaller ones; the largest pattern that repeats is

considered dominant over any others which overlap with it.

Significant patterns are then defined as those that occurred more

than K times. This is described in Fig. 5 for an example of Ngram

sizes 3 and 4. To facilitate continuous-time analysis the data is

segmented into windowed epochs, each quantized and then

subjected to this pattern extraction methodology (Fig. 2).

As an example, during a seizure onset (annotated in Fig. 6), the

number of unique large patterns reduces (due to periodic features),

while the smaller pattern sizes increase somewhat. We found at

this stage of the algorithm that the increase in smaller patterns is

partially due to variations in patterns symbols that are in fact

subsets of the larger pattern lengths; a member of the smaller

pattern size varies in symbol classification and it is missed as being

a subset of the larger pattern. This can be partially resolved using

similarity metrics.

Similarity is determined by looking at correlation metrics

between found patterns of the same length. Thus patterns can

be clustered together if within a certain similarity threshold. In this

work we consider two similarity metrics.

The first measure is the percentage of similar symbols of two

sequences using the inverse Hamming distance (HD). For patterns

of equal lengths N, with symbols ski and smj, i,j~1,:::,N, the

inverse HD for these two patterns is

sim~1{(n(Ski
=Smj)=N)Di~j where n :ð Þ is the number of

symbols that meet the argument enclosed.

The second similarity index we consider is based on the

Needleman-Wunsch (NW) dynamic programming algorithm [39]

used in bioinformatics (e.g. genetic and amino acid sorting

applications). The advantage of this algorithm over the HD is

that the two patterns need not be the same length. To use the NW

algorithm we first remove all symbols not common to both

patterns. We then apply the NW algorithm to determine a

similarity score using a marking of 2 for equal symbols, 0 otherwise

and a gap penalty of 21 (which occurs if patterns are different

sizes). We then normalize the score by the total length of the two

patterns.

For example, two sequences, s1~fA076B56CCg and

s2~fA006B66CDg will result in a HD and NW index of 0:67.

However, if s2~fA006B66Cg only the NW index generates a

value of 0:647. When constructing the unique pattern list in a data

epoch we use one of these two similarity indices rather than an

exact pattern match to cluster and count similar patterns. Values

of similarity simw(2=3) are clustered together.

Comparing the Hamming distance and NW algorithm to exact

pattern matching we now observe an average increase in the

number of larger patterns and decrease in the number of smaller

ones (Fig. 7). Given the simpler implementation (and computation

time) of the inverse Hamming distance we utilise this metric in our

pattern sorting.

Figure 3. Traditional quantization (6 bit sampled at 256 Hz) on part of the sample EEG signal shown. Also shown are the equivalent
hexadecimal symbol representation of this data.
doi:10.1371/journal.pone.0096235.g003

Figure 4. An example symbol sequence partitioned in three of
the proposed methods: (a) using a single pattern length of 2
(b) using an overlapping pattern length of 2 and (3) multiple
patterns non-overlapping (a = 2, b = 3). The index of each unique
pattern is also labelled.
doi:10.1371/journal.pone.0096235.g004
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Detection/Prediction Threshold
Once processed we have a count of the unique patterns over a

pre-defined window (such as those illustrated in Figs. 6 and 7). The

next step is to determine a threshold to use for prediction and

detection. There are two types of threshold we use, static and

dynamic. The static is a fixed multiple (K ) of the standard

deviation (s) of the signal, K � s(P), where P is the pattern count

over the pre-defined window.

The dynamic threshold is a function of the moving average of

the pattern count, Thi~K �
Pi{1

j~i{n
Pj

n
, where n is the number of

past values to use and K , as in detection, is a constant that is

trained in the optimisation and training process.

To facilitate the application of the threshold on the ictal and

interictal data we normalize the pattern count to the average of a

randomly chosen interictal period, i.e. subtract the mean and

divide by the maximum of an interictal period such that a signal

(interictal or octal) x becomes ½x{m(xw
ii )�=max (xw

ii ), where xii is

an interictal signal and w a predefined time window within it. An

example of the normalised signal and dynamic/static thresholds is

show in Fig. 8.

Optimisation and Training Process
The detection or prediction threshold defined in the previous

section among other parameters is determined in a training phase

(Fig. 9). To determine a statistical spread of the prediction/

detection accuracy we iteratively use each available seizure as the

training seizure in this process. The seizure and an interictal

period (typically one hour) are used to determine a threshold that

minimises false predictions/detections and maximises sensitivity

for that seizure and chooses the optimal data channel (see Data

section). Once a threshold is determined it is applied to all

remaining seizures and interictal periods for quantification of the

prediction and detection results.

Since some of our methods will produce multiple pattern counts

(Table 1), in the process of training an optimal threshold the

number of pattern sizes to be used is determined. Subsequently, a

detection or prediction is only counted when it occurs in a certain

percentage of the selected patterns. The number of detections

(ND) within each pattern must be above a percentage of number

of patterns (NP) selected, given as ND§round(NP=1:5). There-

fore if 7 patterns are chosen then a prediction is required in 5 out

of the 7 patterns to be counted.

Other parameters to be optimised include the intervention time

(IT) and seizure occurrence period (SOP), both of which are

defined in the next section.

Statistical Analysis
For detection and prediction we use the standard metrics of

sensitivity and false detection/prediction rate (FDR/FPR) to

quantify accuracy. In addition, we use the prediction statistical

framework described in [40] where a SOP and IT (or seizure

prediction horizon) is defined before quantification of results. The

Table 1. Patterns and counts for method (d) using 2 pattern sizes (n~2,3).

Pattern (n = 3) Count

A0:F7:13 1 A0:F7 2

F7:13:13 1 F7:13 1

13:13:00 1 13:13 1

13:00:00 1 13:00 1

00:00:A0 1 00:00 2

00:A0:F7 1 00:A0 1

A0:F7:00 1 F7:00 1

F7:00:00 1

doi:10.1371/journal.pone.0096235.t001

Figure 5. A simplified example of the process for generating
unique patterns for Ngram sizes of 3 and 4. The pattern is initially
compared against a table containing the largest patterns (i.e. length 4).
If found, the pattern count is incremented, otherwise the pattern is
compared to the next largest pattern (i.e. length 3). If no match is found
here both are added to the tables.
doi:10.1371/journal.pone.0096235.g005

Ngram Pattern Recognition for Seizure Prediction
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SOP is defined as the period of time in which a seizure can occur,

and the IT is the period of time before the SOP window.

To validate the results of our prediction we apply the statistical

framework described in [41] and recently used in [16,17].

Specifically this is the use of a binomial probability distribution

defined by the maximum FPR and SOP and number of features (r)

and electrodes used (n) to define the probability of predicting k of

N seizures.

Pbinom(k; N; P)~1{(
X
jvk

N

j

� �
Pj(1{P)N{j)d ð3Þ

where d is the independent features given as dmax,r(n)~
n

r

� �
and

P~SOP � FPR [40,41]. Note this assumes that seizures are

independent events. Given the length of interictal periods we are

assuming this to be the case. The upper and lower sensitivity of a

Figure 6. The result of applying the unique N-gram pattern search for pattern lengths 12 and 4 (method (3)) using a binary size of 4
bit over 5 second windows for a sample EEG signal.
doi:10.1371/journal.pone.0096235.g006

Figure 7. Comparison of methods for assessing sequence similarity in the multiresolution N-gram process, with pattern sizes of 12
(top) and 4 (bottom) over 5 second windows (method (3)).
doi:10.1371/journal.pone.0096235.g007

Ngram Pattern Recognition for Seizure Prediction
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random predictor are determined by d~1 and d~dmax,r(n)
respectively with S~ maxk (Pbinom,d (k; N; P)wa) � 100% where a
is a significance level of 0.05. More details can be found in [41].

This method allows us to quantify the significance of our

prediction results.

Data
Seizure data were obtained from the University Hospital of

Freiburg Epilepsy Centre, Germany (see acknowledgements). The

data (described in [40]) is pre-sampled at 256 Hz and quantized

using a 128 channel 16-bit data acquisition. Each patient had

neocortical (grid and strip electrodes) or depth electrodes and

exhibited simple partial, complex partial and general tonic clonic

seizures located mainly in the frontal and temporal lobe and

recorded from 3 focal electrodes. This work is based on analysis of

all 21 patients from this data set, encompassing a total of 87

seizures and 623 hours, a breakdown of which is shown in Table 2.

The files for these data sets are separated into approximately hour

segments. As not all data has contiguous segments we extract all

(depending upon what is available) of the available preseizure data.

Implementation
The implementation of all methods described was carried out in

Matlab v.7.14. An online analysis tool (www.winam.net) based on

this code has recently been implemented (GUI shown in Fig. 10).

The structure is such that the data sourcing can be through an

Figure 8. An example of Patient-159s pattern change (bottom) and corresponding normalized EEG (top) with seizure occurring at
time, t~0s. Also shown is a zoomed in view of the seizure on the EEG (top) and the optimal dynamic and static prediction thresholds.
doi:10.1371/journal.pone.0096235.g008

Figure 9. The optimisation process whereby for a single patient one seizure and one randomly selected interictal period are used
for training the threshold (parameter K), the patterns to use (in a multi-pattern method), channel and Intervention Time
(prediction only). This is iterated for each seizure of the patient.
doi:10.1371/journal.pone.0096235.g009

Ngram Pattern Recognition for Seizure Prediction
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Table 2. Summary of patient data used in this study, including number of seizures, seizure origin, electrode type and interictal
hours used.

Patient Seizures Precital/hrs Origin1 Electrode2 Interictal/hrs

1 4 4.65 F g,s 23.00

2 3 3.62 T d 24.00

3 5 6.65 F g,s 24.00

4 5 5.51 T d,g,s 24.00

5 5 6.03 F g,s 24.00

6 3 3.31 T/O d,g,s 24.00

7 3 4.08 T d 24.61

8 2 2.68 F g,s 23.16

9 5 6.10 T/O g,s 23.93

10 5 7.05 T d 24.46

11 4 4.65 P g,s 24.05

12 4 5.91 T d,g,s 24.81

13 2 2.38 T/O d,s 24.00

14 4 5.41 F/T d,s 23.86

15 4 6.13 T d,s 24.00

16 5 6.53 T d,s 24.00

17 5 8.80 T s 24.07

18 5 8.20 F s 22.87

19 4 4.60 F s 24.38

20 5 8.42 T/P d,g,s 25.62

21 5 7.66 T g,s 23.94

1Origin = {F: Frontal, T: Temporal, O: Occipital, P: Parietal}.
2Electrode = {g: grid, s: strip, d: depth}.
doi:10.1371/journal.pone.0096235.t002

Figure 10. The freely accessible graphical interface designed to analyse further data sets - from www.winam.net.
doi:10.1371/journal.pone.0096235.g010
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RSS feed, or offline data sources. In both implementations the

processing (N-gram) is implemented through a separate processing

cluster allowing multiple parallel processing efficiently. The system

is designed to vary all parameters efficiently including relevant

thresholds, pattern lengths, time intervals, quantization weights

etc. This is in combination with a database to allow users to input

metadata.

In summary, the method we employ involves thresholding of

extracted pattern counts within the data. For prediction, once a

pre-seizure marker is detected, the pre-defined IT and SOP allow

us to evaluate if the marker was indeed accurate in predicting the

seizure. Detection does not use these pre-defined windows and as

such it is simply a yes/no decision as to whether the threshold

crossing is at the time of a seizure. Detection and prediction were

tested as two separate studies, where optimisations were to

maximise detection and prediction accuracy independently.

Future work will look to combine the two methods such as to

obtain an optimal threshold for both.

Results

The results are based on pattern sizes of f16,14,12,10,8,6,4g
and analysis of independent channels and combinations of them

with a window size of 60 seconds. This was found to be optimal to

capture the seizures of which the average duration was 1.8 min-

utes (range 0.5 to 2 minutes). We also note that in many of the

plots we indicate the results for the first seizure used in the

training/optimisation process and the training seizure that

produced the best results.

Quantisation
Prior to our selection of parameters we performed empirical

studies that varied the re-quantization parameter and looked at the

pattern counts generated with a variety of pattern sizes (Fig. 11).

As can be seen, as we increase the resolution of our signal, we do

not generate any meaningful patterns. While as low as 4 bits we

see changes in many pattern counts that reflect the seizure change.

Even at higher resolution (e.g. 16 bits) the patterns generated do

not appear meaningful in relation to seizure onset.

There are many considerations we can explore with regards to

the use of quantization as a symbolic representation. As discussed

in [32], in biological data, noise is considered to be a consequence

of many sources and then hence highly dimensional, as opposed to

seizures that can be considered as a result of localized sources. It is

this assumption amongst a few others that allows us to use methods

such as phase-space reconstruction and embedding.

In the detection of activity related to seizure onset, in part this

assumption holds true; the seizure is a result of various levels of

synchronous activity. In prediction, as we do not know the source

of activity, whether it is embedded within the noise or is a true low-

dimensionality source it is difficult for us to explicitly state the

implications of quantization.

Our interpretation of the results is that for synchronous spiking

activity the effect of re-quantization is to capture the periodicity

and shape of these spikes. The addition of the hamming distance

(or NW algorithm) also improves on this activity capture. Other

types of activity (e.g. high frequency, low amplitude) seen during

seizures also reflect this paradigm of thought. It is our belief, of

why this method generally works for detection. For prediction, it is

difficult to say as we do not know all the mechanisms that lead to

seizure onset. As 8 bits (i.e. D~8) yielded the most variation in

meaningful patterns we chose this for the following results.

Method Comparison
We described four methods of pattern extraction for detection

and prediction. We first determine which method is generally the

best performer so we can then analyse the results in more details.

The data consists of 21 patients, each with 2–5 seizures. Of the 6

intracortical electrodes we only analysed the 3 focal channels (in

the vicinity of seizure onset). We assess the detection and

prediction sensitivity and FDR/FPR averaged for each patient

over all channels and over all combination of training and test

seizure.

The detection and prediction results show that the methods

using multiple patterns ((3) and (4)) perform best in sensitivity and

FPR/FDR (Figs. 12 and 13). The others still achieve some

relatively high sensitivities but with poor FDR and FPR. As in

general method (4) outperforms the others the remainder of the

results will be focused on this. Similarly a dynamic threshold is

found to outperform a static one in detection, and although not

shown, in prediction.

Detection
Both the first seizure used for training and the best performing

training seizure for the optimal channel are shown in Fig. 14.

These results show us that: (1) Assuming we only use the first

seizure, we would have a sensitivity of 71.8% with FDR of 0.8.

This is primarily distorted by case 18, that without sensitivity

becomes 70.33% and FDR of 0.212. Assuming we have multiple

seizures to fine tune the process we can achieve a sensitivity of

88.17% with FDR of 0.15.

We note that any combination of FDR and sensitivity can be

implemented. For example, case 18, a better result uses the second

Figure 11. The pattern counts generated for Ngrams of 2 to 16 for various re-quantizations from the original 16 bit to 4, 8 and 12.
This is done over an example seizure period to identify the most effective quantization resolution.
doi:10.1371/journal.pone.0096235.g011
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seizure for optimization, giving a sensitivity of 20% and an FDR of

0. In addition, as we do not have information about the specific

seizure types, or whether they are clinical or subclinical thus

cannot illustrate in more detail why some seizures are detected and

others not. The lack of accurate databasing with well annotated

data sets has prompted initiatives to create them, including the

Epilepsiae project [42,43].

Figure 12. Comparison of detection sensitivity versus FDR for several variations on pattern methods (Section 0), including (a)
multiple patterns (16, 14, 12, 10, 8 and 6, method (3)), (b) multiple patterns with overlaps (method (4)), (c) overlapping patterns of
size 12 (method (2), and two non-overlapping patterns (method (1)), (4) 12 and (5) 6. Results for the static and dynamic (moving average)
threshold are also shown.
doi:10.1371/journal.pone.0096235.g012

Figure 13. Comparison of prediction sensitivity versus FPR for the same variations on pattern methods depicted in Fig. 12.
doi:10.1371/journal.pone.0096235.g013

Ngram Pattern Recognition for Seizure Prediction

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e96235



Prediction
For prediction, the same parameters were used and, given the

limited preseizure time available (due to the non contiguousness of

the data samples), we analysed intervention times (IT) of 30, 20

and 10 minutes and with an SOP of 10 minutes. An example of

the results for the 20 minute (SOP = 10 minutes) period is shown

in Fig. 15, and for patient 15, the pattern change for a pattern size

of 6 is shown in Fig. 8.

Tables 3 and 4 summarise the sensitivitities using the best and

1st seizure training case for each of the ITs and combining them to

Figure 14. For each channel, the (a) sensitivity and (b) FDR are shown for the minimum FDR result for the best case and 1st seizure.
doi:10.1371/journal.pone.0096235.g014

Figure 15. The (a) sensitivity and (b) False prediction rate for the optimal channel with the best and 1st seizure used for training,
optimised across all ITs.
doi:10.1371/journal.pone.0096235.g015
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minimise FPR and maximise sensitivity. As expected, maximising

sensitivity increases FPR and interestingly shorter ITs result in

higher sensitivity results.

To differentiate these results from a random predictor we use

the binomial probability statistic with an FPR of 0.15 and SOP of

10 minutes to define our critical sensitivity boundaries (Section

Statistical Analysis). We break down the results similar to that

presented in [17] where the results are separated by the seizure

focal region. This shows us that the highest FPR are contributed

by the frontal region patients and a large proportion (greater than

80%) show significance (Table 5). Interestingly, this is for the 1st

case seizure, but for the best case the results show that, for an SOP

of 20 mins and maximising sensitivity, we can achieve 100%,

76.4% and 95.8% sensitivities and FPRs of 0.05, 0.05 and 0.10 for

temporal, frontal and the remaining (others) respectively, all

exceeding a random predictor.

Comparison to Previous Studies
A select few studies have utilised the same data sets for the same

goal, seizure detection and prediction. This section reviews the

results of these to offer a reliable comparison with our own results.

Recently Zhou et al [44] showed a sensitivity of 96.25% and a

FDR 0.13/h when using linear discriminant analysis and

lacunarity for seizure detection, one of the highest results from

those mentioned earlier.

The data set has mainly been used, for seizure prediction, by

groups at Freiburg. The first two, from 2003, analysed the

dynamic similarity index (DSI) [40] and phase synchronisation [2].

The dynamic similarity index, was able to achieve, for a maximum

FPR of 0.15 and SOP of 30 minutes, sensitivities of around 40%.

The maximum sensitivity for this FPR was around 50% at an SOP

of 36 minutes. The second [2], used phase synchronisation to

achieve prediction sensitivities of 8.3–38.3% with an FPR of 0.1/

h. As expected larger FPRs result in larger sensitivities; FPR of

0.6/hour and 90% sensitivity. An interesting result of this work

was that, firstly, smaller prediction windows performed worst and

that hippocampal showed much greater sensitivity that cortical;

hippocampal average at around 95% sensitivity at an FPR of 1/

hour, while neocortical was slightly above 80% for the same FPR.

In 2004, a comparison was performed between the DSI,

correlation dimension and accumulated energy [45]. They showed

that the DSI was the best of all methods, showing an FPR of 1–

3.6/day (0.04–0.15/hour) and sensitivity of 21–42%. All results

were considered significant against a random predictor.

More recently, in 2006, two studies considered further analysis

of this data set using the DSI [41] and mean phase coherence [46].

The former, focused on the first 4 patients’ data and showed

sensitivities as a function of IT, SOP and FPRmax. For an SOP of

30 minutes and IT of 10 minutes, they achieve a sensitivity of

40%, with a FPR of 3/day (0.125/hour). They show that a

sensitivity of 100% can be achieved for an FPR of 1/hour,

although only slightly greater than the upper critical sensitivity of a

random predictor. It is interesting to not the large patient

variability (sensitivities of 40–80%). Finally, the phase coherence

and DSI were tested and showed high sensitivities (around 80%)

for an FPRmax of 0.5/hour. Interestingly they showed that most

false predictions occurred at night. DSI was found to perform the

best and an SOP of 30 minutes and IT of 2 minutes.

These results, comparable to our own, do show some interesting

outcomes, especially those related to variation in results depending

on brain region and time of day, as well as inter-patient variability

and the optimisation of FPR, SOP, IT and sensitivity.
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Discussion

The method we have applied here extracts and counts the

number of repeating patterns in a fixed time window. Hence a

pseudo-periodic feature, linear or nonlinear, could be counted.

The nonstationary nature of EEG make the alignment and

extraction of these patterns much more difficult, but is alleviated

by the utilisation of similarity quantifiers (Hamming distance and

NW algorithm). Using intracranial EEG allowed for an overall

better signal-to-noise ratio than that of scalp recordings and

although the data did still contain artefacts these were eliminated

by Savitsky-Golay filtering.

Several improvements can be made to the method to alleviate

some potential drawbacks. These include: (1) between windows no

attempt has been made to assess whether particular patterns are

consistent between them and how specific patterns may be more

important detective/predictive markers over others, (2) using

overlapping windows needs to be investigated to see whether this

avoids any discontinuities in the pattern counts, (3) finally, to

analyse larger, annotated data sets such that we can correlate

patterns to different types of seizures. We also aim to use these

data sets for training across patient sets, i.e. using patient seizure

data to predict/detect other patients and seizures. It is interesting

to note that false detections and predictions are higher in frontal

cases (patients 18 and 19). This could be due to increased artefacts

and general activity typically found in this area of the brain. Better

classification of artefacts will be required to better quantify the

results as well as considerations from previous studies, on time of

day and cortical versus hippocampal seizures.

Although this is a computational method, the actual processing

is fixed point and therefore lends itself to implementation in

traditional Von-Neumann architectures and parallel processing,

making it extremely efficient for reconfigurable (e.g. FPGA) and

custom (e.g. ASIC) hardware implementations. Accuracy vs.

complexity of the algorithm needs to be explored, including

utilisation of the electrographic to clinical onset time for more

accurate quantification of detection. Given also that better

thresholds can be defined based on the use of multiple seizures,

our methodology would be suitable for self-learning systems that

optimise based on previous events and activity.

Further to this, the results show that the seizure that produce the

highest sensitivity and FPR is not typically the first. This implies

that our method is best suited to longer training phases using

multiple seizures to train parameters. Hence our desire to use

more extensive (and continuous) data sets with multiple seizures

and training phases. Although training was employed the

parameters, including the threshold, can be better defined. It

may be better suited to define a threshold based on the several

hours of interictal data and then apply this to ictal periods, i.e.

defining what is normal so you can identify abnormalities.

Conclusions

We have presented a new approach that utilises elements of N-

grams and symbolic signal representation schemes combined with

sequence similarity metrics to track dynamical changes in the

various ictal states. Using intracranial EEG recordings we were

able to quantify the detection and predictive power of this method

using simple thresholding schemes. We assessed our method using

standard statistical measures of sensitivity and false prediction rate

using a single seizure and one hour interictal period to train this

threshold and the optimal pattern lengths to use for a specific

patient. The non-contingent nature of the data led us to use the

binomial probability critical sensitivity tests [16,17] over surrogate

data analysis as the method for quantifying statistical significance

of our results.

This work has successfully demonstrated an N-gram based

algorithm with significant predictive power. With an average

sensitivity of 67% for temporal lobe seizures and FPR of 0.04 for

an SOP of 20 minutes and combined ITs of 30, 20 and

10 minutes. Frontal seizures brought the increased the average

FPR, showing 72% sensitivity and FPR of 0.61 when maximizing

sensitivity. This led to an overall maximum average of 75.16% and

0.21 FPR. Using different seizures for training yielded much

higher results, warranting the use of multiple training seizures for

future work. For temporal cases this means a sensitivity of 100% is

achievable and on average low false predictions (0.06, with almost

all cases exceeding the upper critical sensitivity). This showing that

this method of prediction has significant predictive power that

warrants further study.
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