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ABSTRACT

Extracellular vesicles (EVs) are small membranous
vesicles that contain an abundant cargo of differ-
ent RNA species with specialized functions and clin-
ical implications. Here, we introduce an updated on-
line database (http://www.exoRBase.org), exoRBase
2.0, which is a repository of EV long RNAs (termed
exLRs) derived from RNA-seq data analyses of di-
verse human body fluids. In exoRBase 2.0, the num-
ber of exLRs has increased to 19 643 messenger
RNAs (mRNAs), 15 645 long non-coding RNAs (lncR-
NAs) and 79 084 circular RNAs (circRNAs) obtained
from ∼1000 human blood, urine, cerebrospinal fluid
(CSF) and bile samples. Importantly, exoRBase 2.0
not only integrates and compares exLR expression
profiles but also visualizes the pathway-level func-
tional changes and the heterogeneity of origins of
circulating EVs in the context of different physiolog-
ical and pathological conditions. Our database pro-
vides an attractive platform for the identification of
novel exLR signatures from human biofluids that will
aid in the discovery of new circulating biomarkers to
improve disease diagnosis and therapy.

INTRODUCTION

Extracellular vesicles (EVs) are nano- to micrometer-
sized lipid membrane vesicles (mainly including exosomes
and microvesicles) secreted by virtually all cell types

(1,2). These vesicles are highly abundant in blood-derived
plasma/serum, urine, cerebrospinal fluid (CSF), bile, saliva
and other human biofluids (3,4). EVs are widely involved
in various physiological and pathological processes through
the delivery of different types of bioactive molecules, in-
cluding nucleic acids (especially RNAs), proteins, lipids and
metabolites (5–7). Researchers have devoted substantial ef-
forts to elucidate the biological properties of EV small
RNAs (especially microRNAs) and their roles in diseases.
Notably, emerging studies have shown that EVs in the cir-
culatory system also contain different long RNA species, in-
cluding messenger RNA (mRNA), long non-coding RNA
(lncRNA) and circular RNA (circRNA) (3,8,9). These EV
long RNAs (termed exLRs) are protected from degradation
by the bilayer lipid membrane structure and exist stably in
human biofluids. ExLRs approximately reflect the intracel-
lular status of their host cells, which implies their poten-
tial roles as noninvasive biomarkers for the early detection
and therapeutic evaluation of many complex disorders, es-
pecially cancers (8,10–12).

The application of advanced high-throughput RNA se-
quencing (RNA-seq) techniques has enabled researchers
to comprehensively characterize the whole transcriptomic
profiles of exLRs in large samples. We have developed an
optimal strategy (termed exLR-seq) to extract and sequence
exLRs, revealed abundant exLRs in human plasma and
identified diverse specific markers potentially useful for can-
cer diagnosis (13,14). By combining exLR expression pro-
files with a robust algorithm, an EV deconvolution strat-
egy (named EV-origin) was proposed to separately predict
the relative and absolute fractions of EVs from blood cells
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and tissues (15). This traceability system makes it possi-
ble to decipher the complex heterogeneity of the tissue-
cellular origin of circulating EVs. Furthermore, recent re-
ports of EV transcriptomic characterization have also en-
abled the identification of specific exLRs for glioblastoma
multiforme and defined different exLR panels for diagnos-
ing esophageal squamous cell carcinoma and prostate can-
cer (16–18). Through differential gene expression and path-
way enrichment analyses based on exLR profiles, Shi et al.
monitored tumor-intrinsic and host immune status and
predicted melanoma checkpoint blockade outcome (19).
Progress in the study of EV transcriptome has emphasized
the need for integrating and comparing the exLR profiles
from healthy samples and different cancerous samples.

In 2017, we established exoRBase, a repository of exLRs
in human blood exosomes from 92 normal controls and pa-
tients with five different cancer types (20). ExoRBase pro-
vides users an easy-to-use resource to query the annota-
tion and expression information of exLRs. This database
has received >70 000 universal visitors and has been highly
cited by researchers. To date, several other databases de-
positing EV RNAs have also been published. However,
these databases only focused on well-studied small RNAs
or a small part of exLRs. For example, EVAtlas houses
the expression profiles of seven ncRNA types in EV sam-
ples from 24 human tissues/diseases (21). LncExpDB doc-
uments 1,538 exosomal lncRNAs differentially expressed
across diverse biological conditions (22). ExoceRNA was
built based on our exoRBase and serves as a repository
of competing endogenous RNAs in blood exosomes, which
only represent a subset of exoRBase lncRNAs and mRNAs
(23).

Here, we introduce a completely expanded version, exoR-
Base 2.0, which contains 905 exLR-seq data of EVs from
four types of human biofluids, including blood, urine, CSF
and bile. These biofluid samples were collected from healthy
individuals as well as patients with 13 types of cancer or
other disease. All exLR-seq data were analyzed using an
improved bioinformatics pipeline. The annotation informa-
tion and expression profiles of 19 643 mRNAs, 15 645 lncR-
NAs and 79 084 circRNAs in EVs were obtained. We also
covered the enrichment scores of 11 536 MSigDB (Molec-
ular Signatures Database) pathways for each sample gener-
ated by ssGSEA (single sample Gene set Enrichment Anal-
ysis) analyses on exLR expression profiles. In addition, ex-
oRBase 2.0 provides the relative and absolute distribution
of 16 types of tissue cells and 23 types of blood cells pro-
duced by the modified EV-origin approach. All data and
plots in exoRBase 2.0 are freely available for download.

MATERIALS AND METHODS

Integration of available RNA-seq data

We collected a total of 905 RNA-seq data of EVs from
human blood, urine, CSF and bile samples, which were
compiled into the exoRBase 2.0 database (Table 1). These
blood samples were associated with diverse biological con-
ditions, including healthy state, benign disease, breast can-
cer (BRCA), coronary heart disease (CHD), colorectal can-
cer (CRC), esophageal squamous cell carcinoma (ESCC),

Table 1. Expanded data in exoRBase 2.0 compared with exoRBase 1.0

Type Cohort exoRBase 1.0 exoRBase 2.0

Urine Urine 16
CSF CSF 5
Bile Bile 17
Blood Healthy 32 118

Benign 130
BRCA 2 140
CHD 6 12
CRC 12 35
ESCC 6
GBM 13
GC 9
HCC 21 112
KIRC 15
ML 28
MEL 21
OV 30
PAAD 14 164
SCLC 36

Target mRNA 18 333 19 643
lncRNA 15 501 15 645
circRNA 58 330 79 084
Pathway 11 536
Tissue/Cell origin 39

CSF, cerebrospinal fluid; BRCA, breast cancer; CHD, coronary heart
disease; CRC, colorectal cancer; ESCC, esophageal squamous cell carci-
noma; GBM, glioblastoma multiforme; GC, gastric cancer; KIRC, kid-
ney cancer; HCC, hepatocellular carcinoma; ML, malignant lymphoma;
MEL, melanoma; OV, ovarian cancer; PAAD, pancreatic adenocarci-
noma; SCLC, small cell lung cancer.

glioblastoma multiforme (GBM), gastric cancer (GC), kid-
ney cancer (KIRC), hepatocellular carcinoma (HCC), ma-
lignant lymphoma (ML), melanoma (MEL), ovarian can-
cer (OV), pancreatic adenocarcinoma (PAAD) and small
cell lung cancer (SCLC). The source of each dataset was
listed in the website (http://www.exorbase.org/exoRBaseV2/
statistics/index). The latest release (RNA-seq analysis V8)
of gene expression TPM profiles (GENCODE version
26) across 30 tissues in the Genotype-Tissue Expression
(GTEx) project was also downloaded for annotating pos-
sible original tissues of exLRs (24).

Identification, annotation and quantification of exLRs with
an improved pipeline

Referring to the ASJA program (Assembling Splice
Junctions Analysis, https://github.com/HuangLab-Fudan/
ASJA) (25), we employed an improved exLR-seq analysis
pipeline to reanalyze the raw sequencing data of all samples
(Figure 1). Briefly, the overall quality of raw FASTA files
was assessed by FastQC (version 0.11.8) followed by filter-
ing out low-quality reads and removing adapter sequences
with the help of Trimmomatic (version 0.36) (26). The re-
maining reads were aligned to the human reference genome
(GRCh38 from GENCODE) by STAR (version 2.7.1a) in
2-pass mapping mode (27). The reads mapped to regions
of protein coding or long non-coding (mRNAs or lncR-
NAs) genes were counted by featureCounts (version 1.6.3)
with an appropriate setting of strand-specific parameter ‘-s’
(28). The read count of each gene was normalized to the
TPM (transcripts per million) value as follows: T PMi =

http://www.exorbase.org/exoRBaseV2/statistics/index
https://github.com/HuangLab-Fudan/ASJA
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Figure 1. A schematic overview of the exoRBase 2.0 core content and framework. ExoRBase 2.0 integrates RNA-seq data of EVs from human blood, urine,
CSF and bile samples. The exLRs, including mRNAs, lncRNAs and circRNAs, were identified, annotated and quantified according to the Assembling
Splice Junctions Analysis (ASJA) and CircRNA Identifier (CIRI2) bioinformatic tools. To interpret EV mRNA expression profiles, pathway enrichment
analysis was performed on MSigDB gene sets using the ssGSEA method. The EV-origin approach was applied to predict the proportions of tissue/blood
cell sources. ExoRBase 2.0 visualizes and compares exLR expression profiles as well as the enrichment levels of functional pathways and the origins of
circulating EVs.

RCi / Li ∗ 106
∑N

j=1 RCj / Lj
, where RCi is the count of reads mapped to

gene i , and Li is the length of gene i . N denotes the number
of all mRNA and lncRNA genes. The circRNAs were iden-
tified, annotated and quantified by the ASJA program (25).
Additionally, the CIRI2 (CircRNA Identifier), an improved
circRNA detection tool, was also used to recognize circR-
NAs for filtering false positives (29). The final circRNA set
was determined as the circRNAs detected by both ASJA
and CIRI2 algorithms. To eliminate the impact of sequenc-
ing depth on circRNA data, we calculated the CPM (counts
per million) value for each circRNA through the number of
reads mapped to a circRNA multiplied by 106 and divided
by the total number of mapped reads of a given sample.

The basic gene information for all exLRs was annotated
with GENCODE version 29. An exLR detected in at least
three blood samples would be annotated as blood exLR,
and an exLR detected in at least 1 urine (or CSF, bile) sam-

ple was annotated as urine (or CSF, bile) exLR. The mini-
mal expression threshold of exLRs was 0.1 and circRNAs
had at least two reads. Based on the GTEx expression at-
las (V8 release), the tissue specificity scores of mRNA and
lncRNA genes were calculated as the difference between the
maximum possible entropy and the Shannon entropy of ex-
pression values for a gene in all tissues (30,31). The circBase
annotation information of circRNAs was obtained as pre-
viously described in exoRBase 1.0.

Pathway enrichment analysis

To investigate pathway-level differences among different
cohorts, we downloaded the gene sets annotated with
pathways from MSigDB (version 7.2, https://www.gsea-
msigdb.org/gsea/msigdb/) (32), including seven major col-
lections: 50 hallmark gene sets (33), 292 BIOCARTA (34),
186 KEGG (35) and 1554 REACTOME (36) gene sets

https://www.gsea-msigdb.org/gsea/msigdb/
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of canonical pathways, 7579 BP (biological process) and
1696 MF (molecular function) gene sets derived from the
Gene Ontology (GO) resource (37), and 189 oncogenic sig-
nature gene sets of cellular pathways. The ssGSEA method
implemented in the R GSVA package was then used to an-
alyze the enrichment scores of these 11 536 MSigDB path-
ways for each sample based on exLR expression profiles
(38,39).

Enumerating tissue-cellular origin of EVs

The estimation analysis of tissue-cellular source contribu-
tions of EVs for each sample was performed using EV-
origin (15). This approach implemented the quantification
of EVs by combining signature genes of tissues and blood
cells with expression profiles of exLRs. The EV-origin R
program was modified and applied to separately predict the
relative and absolute fractions of EVs derived from 16 hu-
man tissues (including adipose tissue, bladder, brain, colon,
esophagus, heart, kidney, liver, lung, muscle, nerve, pan-
creas, pituitary, skin, small intestine and stomach) and 23
types of blood cells (including red blood cells, platelets,
CD8+ naive T cells, central memory CD8+ T cells, ef-
fector memory CD8+ T cells, terminal effector CD8+ T
cells, mucosal-associated invariant T cells, follicular helper
T cells, T regulatory cells, type 1 T-helper cells, type 17 T-
helper cells, type 2 T-helper cells, CD4+ naive T cells, naive
B cells, plasmablasts, natural killer cells, neutrophils, ba-
sophils, terminal effector CD4+ T cells, memory B cells,
dendritic cells, monocytes and �� T cells). Table 2 provides
the detailed description of all 39 types of EV origins in-
cluded in exoRBase 2.0.

Statistical analysis and visualization for homogeneity or het-
erogenicity of targets

To evaluate the expression patterns of exLRs in various
biofluids among different biological conditions, we calcu-
lated the expression frequencies (and corresponding sam-
ple numbers) and mean expression values of exLRs in urine,
CSF, and bile samples as well as healthy, benign and tumor
blood samples. The mean expression values of exLRs in dif-
ferent tumor cohorts were also calculated and further visu-
alized using line and heat map charts. The mean enrichment
scores of each pathway and mean absolute proportions of
each EV source in all cohorts were also calculated and visu-
alized. To characterize the differential expression or enrich-
ment targets, the Mann–Whitney U test was used to sepa-
rately perform differential analysis between healthy individ-
uals and each disease/tumor cohort. To avoid the impact
of sample imbalance on differential analysis, we randomly
sampled 35 healthy samples to compare with groups with
relatively fewer samples (CHD, CRC, GC, KIRC, ML, OV
and SCLC). ExLRs with |log2FC (fold change)| > 1 and P-
value <0.05 were considered significantly differential tar-
gets, and the enrichment results from pathway analyses and
EV-origin strategy with p-value < 0.05 were also included
in this study. For groups with larger sample sizes (benign,
BRCA, HCC, PAAD), the q-values (adjusted using the ad-
justed Benjamini–Hochberg method) of differential targets
were <0.05. Box plots were employed to exhibit or compare

the homogeneous or heterogeneous patterns of exLRs as
well as information on pathways and EV origins across all
cohorts. In addition, a cumulative percentage chart and rose
polar diagram were used to indicate the relative fractions of
16 tissue or 23 blood cell types of EV origins in each exLR-
seq sample. All statistical analyses and plots in exoRBase
2.0 were generated using R software (version 4.0.2) and gg-
plot2 (version 3.3.2) and ComplexHeatmap (version 2.4.3)
packages.

Database construction

The exoRBase 2.0 database was developed based on Akka
2.6.5 (web server) and MySQL (database server). All data
were organized and managed by MySQL (version 5.7.31),
an open-source relational database management system.
The interface of the website was designed and implemented
using the Twirl template engine (version 1.5.0). The query
system of this database was configured and handled by Play
Slick (version 4.0.2). ExoRBase 2.0 can be successfully ac-
cessed by different web browsers, including Internet Ex-
plorer, Google Chrome, Firefox and Safari.

UPDATED DATABASE CONTENT AND USER INTER-
FACER

Overall, exoRBase 2.0 focuses on integrating and character-
izing the transcriptome data of EVs from human body flu-
ids. A system-level overview of the workflow and kernel data
for exoRBase 2.0 is presented in Figure 1. By performing
a large-scale integration and bioinformatic analysis of EV
exLR-seq datasets, all expressed exLRs were identified and
annotated. Expression profiles of exLRs as well as enrich-
ment levels of MSigDB pathways and tissue-cellular origins
of EVs are stored in exoRBase 2.0 and can be visualized
with different plots.

Expanded data and new features

This updated database contains high-quality exLR-seq data
of EVs in blood, urine, CSF and bile samples from 905 in-
dividuals. Compared with the previous version, urine (16
samples), CSF (5 samples) and bile (17 samples) represent
novel biofluid types. Moreover, exoRBase 2.0 houses many
more blood samples obtained from fifteen groups, includ-
ing healthy participants (118 samples), patients with be-
nign disease (130 samples), BRCA (140 samples), CHD (12
samples), CRC (35 samples), ESCC (6 samples), GBM (13
samples), GC (9 samples), HCC (112 samples), KIRC (15
samples), ML (28 samples), MEL (21 samples), OV (30
samples), PAAD (164 samples) and SCLC (36 samples).
Through RNA-seq analysis, the annotation information
and expression profiles of 19 643 mRNAs, 15 645 lncRNAs
and 79 084 circRNAs detected in EVs were obtained and
compiled into exoRBase 2.0. In particular, this database has
added the enrichment scores of 11 536 MSigDB pathways
and the relative and absolute enrichment proportions of 39
tissue-cellular components of circulating EVs for each sam-
ple, which are generated based on the exLR expression pro-
files. Table 1 summarizes the increased data and novel con-
tents in exoRBase 2.0.
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Table 2. The detailed description of all traceable tissue/cellular types in exoRBase 2.0

Tissue/cell name Full name Main category Sub category

RBC Red blood cells Blood HSC (hematopoietic stem cell)
Platelet Platelet Blood HSC (hematopoietic stem cell)
CD8 naive CD8+ naive T cells Blood Adaptive immunity
CD8 CM Central memory CD8+ T cells Blood Adaptive immunity
CD8 EM Effector memory CD8+ T cells Blood Adaptive immunity
CD8 TE Terminal effector CD8+ T cells Blood Adaptive immunity
MAIT Mucosal-associated invariant T cells Blood Innate immunity
TFH Follicular helper T cells Blood Adaptive immunity
Treg T regulatory cells Blood Adaptive immunity
Th1 Type 1 T-helper cells Blood Adaptive immunity
Th17 Type 17 T-helper cells Blood Adaptive immunity
Th2 Type 2 T-helper cells Blood Adaptive immunity
CD4 naive CD4+ naive T cells Blood Adaptive immunity
B naive Naive B cells Blood Adaptive immunity
Plasmablasts Plasmablasts Blood Adaptive immunity
NK Natural killer cells Blood Innate immunity
Neutrophils Neutrophils Blood Innate immunity
Basophils Basophils Blood Innate immunity
CD4 TE Terminal effector CD4+ T cells Blood Adaptive immunity
B Memory Memory B cells Blood Adaptive immunity
DCs Dendritic cells Blood Innate immunity
Monocytes Monocytes Blood Innate immunity
T gd �� T cells Blood Innate immunity
Adipose Tissue Adipose Tissue Tissue Other tissue
Bladder Bladder Tissue Solid organ
Brain Brain Tissue Solid organ
Colon Colon Tissue Solid organ
Esophagus Esophagus Tissue Solid organ
Heart Heart Tissue Solid organ
Kidney Kidney Tissue Solid organ
Liver Liver Tissue Solid organ
Lung Lung Tissue Solid organ
Muscle Muscle Tissue Other tissue
Nerve Nerve Tissue Other tissue
Pancreas Pancreas Tissue Solid organ
Pituitary Pituitary Tissue Solid organ
Skin Skin Tissue Solid organ
Small Intestine Small Intestine Tissue Solid organ
Stomach Stomach Tissue Solid organ

The enhanced browse, search and detail platform

The web interfaces of exoRBase 2.0 have been redesigned to
make it more accessible and user-friendly. The major user
interfaces are shown in Figure 2.

Browse pages. In the browse section, there are four web
pages for users to browse mRNA, lncRNA, circRNA, Path-
way or Tissue/Cell origin (Figure 2A). The browse pages
for mRNA, lncRNA and circRNA display exLRs recog-
nized in healthy or cancerous biofluids with their basic gene
annotation information, as well as general expression in-
formation. Users can browse exLRs in this database with
different filter criteria. For example, ‘Sample types’ enables
users to browse exLRs expressed in single or multiple hu-
man biofluids. Users can select frequently expressed exLRs
in all samples using the ‘Detection frequency’ input box
or select differentially expressed exLRs in certain cancer
types compared with healthy individuals using the ‘Differ-
ent group’ drop-down box. Furthermore, ‘Gene type’ and
‘Tissue specificity’ offer the selection of tissue-specific ex-
pressed mRNAs and/or lncRNAs. Users can click the gene
symbol to access to the detailed information of a mRNA
or lncRNA and click the related circRNA hyperlink to ob-
tain the circRNAs annotated to the corresponding mRNA

or lncRNA gene. On the circRNA page, the novel or an-
notated circRNAs detected in specific genome regions can
be screened based on ‘Gene symbol’ and ‘Region’ options.
Clicking the circID and circBase ID displays detailed in-
formation on the circRNA contained in exoRBase 2.0 and
circBase.

In the newly added two browse pages for Pathway and
Tissue/Cell origin, the basic annotation and statistical in-
formation of pathways and origins are listed. The ‘Dif-
ferent group’ can be specified to choose significantly dif-
ferential pathways or EV origins. We also provide the se-
lective browsing of pathways that are recorded as specific
‘MSigDB source’. The 39 EV origins can also be selectively
browsed according to the ‘Main category’ or ‘Tissue/Cell
type’ annotation information. Clicking the pathway ID or
tissue/cell name reveals the detail page for Pathway or
Tissue/Cell origin. Users can click the pathway name to
view the detailed information in the MSigDB database. We
also offer a plot icon for every target to directly connect to
the profile graph.

In the browse section, entries can be sorted by each col-
umn of the table in ascending or descending order. Users
can manually set the number of entries displayed per page
(default 10) and directly locate entries of interest by a fast,



Nucleic Acids Research, 2022, Vol. 50, Database issue D123

Figure 2. The enhanced user interface of exoRBase 2.0. (A) The browse pages for mRNA, lncRNA, circRNA, pathway and tissue/cell origin. (B) The
search section with four search pages. (C) The search result page with line and heat map charts and a result table. ‘Tumor mean’, ‘Benign mean’ and
‘Healthy mean’ represent the average expression/enrichment values of blood samples from tumor, benign and healthy cohorts, respectively. ‘Urine mean’,
‘CSF mean’ and ‘Bile mean’ indicate average values for urine, CSF and bile samples, respectively. The ‘Different group’ shows significantly divergent groups
compared with healthy individuals. (D) The detail section of each target containing ‘Summary’, ‘Profile’ and ‘Comparison’ pages.
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easy search with key words. The whole or filtered browse
tables can be downloaded freely.

Search and results. By clicking the ‘Search’ tab on the
top navigation menu, users will jump to the search section
from any pages (Figure 2B). Users can search their mRNAs,
lncRNAs, circRNAs, pathways or tissue/cell origins of in-
terest by entering a comma-separated list of gene symbols,
circRNA IDs, pathway IDs/names, or tissue/cell names on
the corresponding search page. A simple search box on the
right side of the top navigator on every page can be used to
query mRNA or lncRNA genes quickly (Figure 2A). For
circRNAs, users can also search for circRNAs annotated
to specific genes by inputting gene symbols. The ‘Advanced
filter’ denotes querying the circRNAs located in specific re-
gions of one chromosome. After clicking the ‘Search’ but-
ton, a search result page that includes two charts and a table
will be displayed (Figure 2C). The columns of the search re-
sult table are the same as those in the browsing table. The
heat map chart and line chart demonstrate the mean TPM
values (or CPM values, ssGSEA scores, absolute propor-
tions) of each mRNA/lncRNA gene (or circRNA, Pathway,
Tissue/Cell origin) across urine, CSF, bile and 15 groups of
blood samples. Both the charts and data can be downloaded
with different formats.

Detail pages. Clicking the gene symbol, circID, pathway
ID or tissue/cell name in both browse and search result ta-
bles will link to the corresponding detail section that cur-
rently includes ‘Summary’, ‘Profile’ and ‘Comparison’ three
pages (Figure 2D). For exLRs, users can view more compre-
hensive and detailed annotation information as well as the
expression frequencies (sample numbers) and mean expres-
sion values in tumor, benign, healthy, urine, CSF and bile
samples from the ‘Summary’ page. On the ‘Profile’ page, the
expression profile of an exLR or the enrichment profile of a
pathway across all biofluid sample groups will be visualized
with a box plot. For an EV origin, both the absolute and
relative enrichment proportion profiles are plotted. Users
can manually select fewer groups of interest to be displayed.
For exLRs, we provide the choice of log2 normalization with
‘Log2(TPM + 1)’ and ‘Log2(CPM + 1)’ boxes. On the ‘Com-
parison’ page, users can explore the difference between two
groups with the Student’s t-test (for groups with few sam-
ples) or Wilcoxon test (for groups with many samples). Sim-
ilarly, the plots and data are also available for download.

Extended contents and database utility

Application of mining exLR markers. Users can browse
and search all exLRs in exoRBase 2.0 and can also mine
candidate exLR biomarkers of specific biofluid types or
cancer types. For example, the frequently overexpressed
liver-specific mRNA genes in HCC blood samples can be
screened out with the specified options (Sample types with
‘Blood’, Gene type with ‘protein coding gene’, Tissue speci-
ficity with ‘Liver’, Detection frequency with ‘0.5–1’, Differ-
ent group with ‘HCC(up)’) on the browse page (Figure 2A).
The greatly narrowed exLR set might exhibit potential as
biomarkers for discriminating HCC patients from healthy
individuals and can be evaluated and analyzed subsequently

in other ways. More detailed information on each exLR can
be obtained by clicking each gene symbol. In addition, users
can directly query desired single or multiple exLRs on the
search page. For example, the FGB, FGG and GPC3 genes
have been reported as HCC EV-derived mRNA markers for
noninvasive early detection of HCC (40). As a demonstra-
tion, we entered ‘FGB, FGG, GPC3’ into the box on the
search page of mRNA and lncRNA or the simple search
box on any page (Figure 2A, B). The search results include
two charts and one table. The heat map chart provides a
holistic view of the average expression level of the three
exLRs across all cohorts (Figure 2C). By clicking the gene
symbol ‘FGB’, detailed information on FGB can be ob-
tained. From the ‘Summary’ page, we further find that FGB
is frequently expressed in tumor, benign and healthy cohorts
and is detected in most bile samples but in only a few urine
and CSF samples (Figure 3A). The expression profile of
FGB in urine, CSF, bile and 12 groups of blood samples is
presented in Figure 3B. Moreover, the comparison between
HCC and healthy as well as benign samples was performed
using the Wilcox test in the ‘Comparison’ page. The results
show that FGB is significantly upregulated in HCC patients
(Figure 3C, D), which is consistent with previously reported
results (40).

Applications to explore pathways and EV origins. Based
on the exLR expression profiles, we further performed
MSigDB pathway enrichment analysis and estimated the
proportions of potential EV sources using EV-origin ap-
proach. These are two important modules of exoRBase
2.0. This improved database now enables users to study
the homogeneity and heterogenicity of pathways and EV
origins across different groups of biofluid samples. Users
can explore desired pathways or EV origins on the browse
and search pages in a manner similar to that described for
exLRs.

ExoRBase 2.0 supports the intuitive visualization not
only of the absolute proportions of tissue/cell origins for
comparison between different cohorts but also of the rel-
ative proportions of tissue/cell origins for comparison be-
tween different tissue/cell origins in each sample. By click-
ing the ‘Origin’ on the navigation bar or the ‘Tissue/Cell
origin’ on the home page, the ‘Relative tissue/cell origin
proportions’ page is displayed (Figure 4A and B). By se-
lecting a dataset of interest (e.g., Healthy) and clicking the
‘Run’ icon, the relative abundances of 16 tissue origins and
23 blood cell origins for the top 20 healthy samples are sep-
arately shown in two cumulative percentage charts. Taking
the chart of blood cell origins as an example (Figure 4C), the
relative proportions of EVs originating from the 23 blood
cells in each healthy sample are presented in different col-
ors, and the lengths of bars represent the levels of blood
cell origins. In the chart, we observe that most heathy sam-
ples have a high percentage of EVs released by platelets. In
addition, all healthy samples are listed in a table under the
charts on this page. Clicking the ‘Tissue cells’ icon or ‘Blood
cells’ icon of a given sample (e.g. Healthy001), a hover page
will appear to display the relative proportions of this sam-
ple with a rose polar chart. Figure 4D suggests that higher
levels of EVs are released by CD4 TE, CD8 naive, mono-
cytes and platelets in the Healthy001 sample.
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Figure 3. Detailed information and expression profile of FGB. (A) The ‘Summary’ information of FGB gene in the ‘Detail’ section. (B) The expression
landscape of FGB across different groups incorporated into exoRBase 2.0 on the ‘Profile’ page. (C, D) Differential expression analysis of FGB between
HCC and healthy/benign cohorts on the ‘Comparison’ page. Abbreviations: CSF, cerebrospinal fluid; BRCA, breast cancer; CHD, coronary heart disease;
CRC, colorectal cancer; GC, gastric cancer; KIRC, kidney cancer; HCC, hepatocellular carcinoma; ML, malignant lymphoma; OV, ovarian cancer; PAAD,
pancreatic adenocarcinoma; SCLC, small cell lung cancer.
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Figure 4. The relative proportions of EV origins. (A) The ‘Origin’ tab at the top of each page and the ‘Tissue/Cell origin’ tab on the home page for accessing
to the relative information obtained from EV-origin method. (B) The ‘Relative tissue/cell origin proportions’ page with selection of the ‘Healthy’ dataset.
(C) The relative abundances of 23 types of blood cells in the top 20 healthy samples. (D) The relative abundances of 23 types of blood cells in the Healthy001
sample. In the two charts, the fractions of blood cells in each sample are indicated by different colors, and the lengths of bars indicate the enrichment levels
of blood cell populations.
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DISCUSSION AND PERSPECTIVES

In this work, we introduce the greatly improved exoRBase
2.0, which documents a large set of exLRs expressed in 905
urine, CSF, bile and blood samples from healthy individuals
and patients with benign diseases and tumors. This database
enables users to query and visualize the comprehensive an-
notation information and expression landscapes of exLRs,
the enrichment scores of MSigDB pathways and the rela-
tive and absolute fractions of tissue and blood cell origins of
EVs. ExoRBase 2.0 serves not only as a resource for exLRs
but also as a platform for assessing the potential functional
changes of exLRs and the heterogeneity of tissue-cellular
origins of EVs.

According to the professional practice recommended by
The International Society for Extracellular Vesicles (ISEV),
nanometer-sized membrane-bound particles (mainly in-
cluding exosomes and microvesicles) are uniformly named
extracellular vesicles (EVs). We followed this nomencla-
tive principle by using the term EVs instead of exosomes
in the updated database. ExoRBase 2.0 features several
advantages compared with exoRBase 1.0. First, the new
version provides a holistic view of EV transcriptomes in
diverse human biofluids. Single exLR expression analysis
can be performed among more than ten disease/tumor co-
horts. Second, exoRBase 2.0 provides an additional op-
portunity to conduct concordant and differential pathway
analysis for interpreting EV mRNA expression data and
gaining insights into biological mechanisms. Third, the pre-
dicted abundances of EV origins will provide researchers
with cellular-level indicators to evaluate the homogeneity
and heterogenicity of different cohorts in physiological or
pathological conditions. A few issues however should be
noted: (i) The expression levels of most exLRs are compara-
tively low given the low abundance of EVs in human bioflu-
ids. Therefore, the expression frequencies are provided and
act as additional parameters for expression evaluation. (ii)
Compared with blood samples, the sizes of urine, CSF and
bile samples are too small. In the future, more attention will
be given to obtain exLR-seq data for such biofluids. (iii) The
exLR-seq data of ESCC, GBM and MEL blood samples are
produced by different teams with low mapped read counts.
Hence, these data are only used to annotate exLRs detected
in such types of samples, and the differences between the
three groups and the healthy group were not taken into con-
sideration. The sample selection criteria will be further re-
fined to reduce the influence of sequencing quality on down-
stream analysis.

To our knowledge, exoRBase 2.0 remains the only on-
line resource available for exploring different long RNA
biotypes of EVs in human normal and cancerous bioflu-
ids. Based on these new features, we hope exoRBase 2.0 will
be one of the most popular tools to facilitate the identifica-
tion of novel exLR signatures from human biofluids and to
help discover new circulating biomarkers for the improve-
ment of disease diagnosis and therapy. The platform will be
updated regularly in the future. We are considering adding
exLR data of other biofluids, such as ascites, gastric fluid
and saliva. We also encourage researchers to share exLR-
seq data of human biofluids in the data submission section
to enrich this repository and highlight their discoveries.
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