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Abstract: The Industrial Internet of Things (IIoT) is gaining importance as most technologies and
applications are integrated with the IIoT. Moreover, it consists of several tiny sensors to sense the
environment and gather the information. These devices continuously monitor, collect, exchange,
analyze, and transfer the captured data to nearby devices or servers using an open channel, i.e., in-
ternet. However, such centralized system based on IIoT provides more vulnerabilities to security
and privacy in IIoT networks. In order to resolve these issues, we present a blockchain-based deep-
learning framework that provides two levels of security and privacy. First a blockchain scheme is
designed where each participating entities are registered, verified, and thereafter validated using
smart contract based enhanced Proof of Work, to achieve the target of security and privacy. Second, a
deep-learning scheme with a Variational AutoEncoder (VAE) technique for privacy and Bidirectional
Long Short-Term Memory (BiLSTM) for intrusion detection is designed. The experimental results are
based on the IoT-Botnet and ToN-IoT datasets that are publicly available. The proposed simulations
results are compared with the benchmark models and it is validated that the proposed framework
outperforms the existing system.

Keywords: security; IoT network; BLSTM; privacy; PoW; blockchain; smart contracts

1. Introduction

The Internet of Things (IoT)-based applications and services include sensor networks,
healthcare systems, transportation, smart industry, communication systems, smart cities,
and manufacturing [1]. The Industrial Internet of Things (IIoT) has been proposed to
dramatically enhance qualities of traditional industries, break regional limitations to achieve
remote monitoring, perform autonomous production, and provide real-time information
to users [2–4]. The Internet of Thing (IoT) will deliver about 85% of all IoT devices in
healthcare by 2025 [1]. According to Tractia, an intelligent organization, annual earnings in
this sector using blockchain technologies would reach USD 9 billion by 2025 [2]. IoT devices
are widely used in healthcare to give real-time services to patients and physicians [3]. IoMT-
based medical device applications include medical institutions and businesses. However,
as the number of internet-connected medical devices (IoMT) increases, greater volumes
and inconsistency of data will be generated. With centralized cloud-based characteristics,
handling significant data traffic in IoT (IoMT) has now become a severe problem and
reason for concern [4]. As a result, patient safety and confidentiality concerns have grown
while data collection, data ownership, location privacy, etc., will be at risk. By copying
data and changing the identification of healthcare equipment, intruders and hackers can
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easily target the 5G-enabled IoMT network. IoMT-Cloud currently has a single point of
failure, malicious attacks, and privacy leaks, as shown in Figure 1. To ensure network
security and secure PHR transmission, data transfer between IoMT and Cloud requires
trust, device identification, and user authentication (UA). With the traditional Central Cloud
service, however, due to the round-the-clock networking of nodes in this IoT network, it
is vulnerable to various security issues, such as message tampering, eavesdropping, and
denial-of-service attacks [5]. In the industrial industry, this raises major security issues
as the misuse of data can result in the incorrect diagnosis and can cause life-threatening
scenarios for the patients under observation [6,7].
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2. Background and Related Studies

The fog computing-based IoMT is currently a popular topic. Previous research missed
important security issues such as: 1. Healthcare IoMT devices send data to cloud servers
that are frequently unencrypted and open to manipulation and attack. As a result, sensitive
patient information will likely be accessible. This issue leads to security vulnerabilities.
2. To our knowledge, the need to identify IoMT medical devices, which leads to the ver-
ification and authentication of health data, is considered very important and sensitive,
and it can be accomplished quickly using a blockchain in the FC-IoMT system. Moreover,
servers at the network’s edge should perform more detailed authentication and verifica-
tion. BAKMP-IoMT, the new IoMT key agreement technique for blockchain-accessible
authentication, was designed by [8]. It is also obtained theoretically from the algorithm’s
top time complexity and the number of patients. Researcher in a study [9] explored vari-
ous design research topics on readers’ 5G-enabled tactile internet fog computing. In the
same way [10] thoroughly examined 5G-assisted smart health (Version 30 November 2021;
Journal submitted to: not specified) of 14 care solutions in the IoT. R. Researchers in a
study [11] proposed a multi-cloud cascade architecture, a low-overhead native testing
framework, and a medical data storage backup method. This is also something that is
examined by researchers [12] proposed a smart authentication (SSA) system to improve
patient–physician data security and privacy preservation systems. Ref. [13] designed a
node security identity authentication; providing a secure and reliable updating method for
authentication keys and session keys. Ref. [14] proposed smart remote healthcare systems
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that require long working periods, low cost, network resilience, and confidence in highly
dynamic network environments. Ref. [15] highlight the rising issues in IIoT information
processing storage, querying, and dynamic data collecting. Researchers in a study [16]
proposed a 69 case database and the current patient’s privacy was protected regardless
of whether the abstracts matched or not. The overall comparative analysis of different
parameters for 5G-enabled IoMT communication such as IoMT application, scalability,
security, sustainability, storage, and computing is presented in Table 1. Ethereum is a
permissionless blockchain that has been widely used by various blockchain enthusiasts.
Ethereum follows the standard principles and elements of a blockchain network. Similar to
a84blockchain, it uses the Proof of Work (PoW) consensus process to facilitate validation
of blocks of the network by mining nodes before adding the blocks and their transactions
into the blockchain. Ethereum can be utilized by connecting nodes to a blockchain with a
unique chain-id. This allows all the nodes to participate within the blockchain activities
and access blocks and/or transactions. Ethereum can also be implemented as a private
blockchain for typical enterprise solutions that restrict access to their trusted assets and
personnel [17].

Table 1. Experimental Setup.

Component Name Description Types

Hardware Raspberry Pi Hard

Memory 1 GB RAM

OS Android V.8

Language Tool Java Hyperledger

Simulation Tool Mat lab V.2020

Design Tool Rational Rose

Editing Tool Latex V3

A recent study conducted by Dorri et al. [18] reviewed the main challenges of fog
computing and IOT. The study concluded the recent trends of IOT algorithms and the main
challenges in fog computing, which works as a middle layer between data centers in the
cloud and IOT networks. Hang et al. [19] developed a new scheme that captures the most
significant features of the DBMS environment, including relational, graph-based, key-value,
tree-like, etc., query languages, platforms (servers), plus running environments (desk-
top, Web, cloud), and specific contexts—i.e., focusing on optimizing queries, redundancy,
security, performance, as compared with other schema-less approaches, programming
languages/paradigms, and others. Yu et al. [20] focused on Quality of Service (QoS) in
IOT utilization. They performed an analysis review on QoS techniques developed in the
literature for IoT applications and investigated current research trends. They found that
the most popular QoS metrics are Network Usage, Throughput, Reliability, and Latency.

2.1. Smart Contracts

The classical distributed consensus mechanism is the consensus mechanism used
in the traditional distributed network, which realizes the distributed consensus through
the state machine replication between network nodes. Hameed et al. [21] proposed the
Byzantine Generals Problem and studied how non-fault nodes reach agreement on specific
data in the case of possible failure nodes or malicious attacks, which became the basis for
the research on consensus mechanisms. Dwivedi et al. [22] proposed a Paxos algorithm to
solve the Byzantine Generals Problem. This algorithm can tolerate the collapse of a certain
number of nodes in the network, so as to reach an agreement on a specific value in the
distributed system. Daraghmi et al. [23] proposed the Practical Byzantine Fault Tolerance
(PBFT). As a solution to the Byzantine Generals Problem, PBFT could achieve the final
consensus among honest nodes while the number of enemies was no more than 1/3 of
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the total number of nodes. Jung et al. [24] proposed a new common algorithm: Mixed
Byzantine Fault Tolerance (MBFT). Functionally, MBFT partitions the nodes participating in
the consensus process and improves scalability and efficiency without sacrificing security.
MBFT also introduces a random node selection mechanism and a credit mechanism to
improve security and fault tolerance. Esposito et al. [25] proposed a dynamic reputation
practical Byzantine fault tolerance algorithm. The dynamic reputation practical Byzan-
tine fault tolerant algorithm adopts the consensus election method based on credit. The
monitoring node divides the remaining nodes into two types of nodes according to their
reputation values: consensus nodes and auxiliary nodes, which participate in different
stages of the block generation process, respectively, and dynamically update the consensus
nodes with low reputation scores.

2.2. PoX Consensus Mechanism

The PoX consensus mechanism is usually a blockchain consensus mechanism oriented
towards the public chain. Its core idea is to determine the probability and expectation of
the nodes to obtain the correct accounting based on the proportion of certain key resources
owned by the nodes, so as to improve the security of the public chain network. Kermanshahi
et al. [26] realized the design of a bitcoin system based on the traditional Proof of Work
(PoW), and the blockchain was proposed for the first time as its underlying technology.
Kermanshahi et al. [27] proposed Proof of Stake and introduced the concept of age of
currency for the first time. The core idea is that the more coins a node has and the longer it
has been holding coins, the more likely it will be chosen as a blocker. Kermanshahi et al. [28]
proposed Permacoin based on Proof of Capacity (PoC), which requires participants to
be able to store part of a large file. The authors of [18] proposed a novel lightweight
Proof of Block Trade (PoBT) algorithm for the blockchain of the Internet of Things and its
integrated framework, which can verify transactions and blocks with reduced computing
time. Kermanshahi et al. [29] proposed a novel consensus mechanism called Proof of
Negotiation (PoN). PoN introduced a trust mechanism to realize the random selection of
honest miners and conducted a round of block creation through a negotiation mechanism.

2.3. Authorization Consensus Mechanism

The main idea of the authorization consensus mechanism is to complete the generation
and maintenance of blocks through a distributed consistency algorithm after nodes have
been authenticated. Dwivedi et al. [30] proposed the basic framework for Hyperledger
Fabric. Hyperledger is a series of open source blockchain projects initiated by the Linux
Foundation, which aims to provide an enterprise-class open-source distributed ledger
framework and source code. Hyperledger Fabric is a community-based project that pro-
vides a supporting framework for blockchain applications. Rathi et al. [31] proposed the
DFINITY consensus mechanism. DFINITY protocol operates in periods and divides all par-
ticipating nodes into different groups. A random committee is responsible for transaction
processing and consensus operation in each period, and at the end of each period, a random
number function is used to determine the group serving as the committee in the next period.
The PaLa consensus mechanism proposed by [32–36] realizes the rapid consensus in the au-
thorization network. PaLa uses the method of parallel pipeline to improve the efficiency of
block processing and adopts the sub-committee sliding window reconfiguration to ensure
the sustainability of transaction processing during the reconfiguration.

2.4. Hybrid Consensus Mechanism

The main idea of the hybrid consensus mechanism is to select some nodes as the
consensus committee through the PoX consensus mechanism and run the Byzantine con-
sensus mechanism inside the committee to complete the generation of blocks. Ali et al. [37]
first combined the classical distributed consistency algorithm PBFT with blockchain and
proposed the PeerCensus consensus algorithm. Bitcoin is used as the underlying chain to
select a certain number of nodes and complete the generation of the final block through
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the Chain Agreement (CA) algorithm after their identity authentication. Ali et al. [38]
proposed the Hybrid Consensus mechanism, which realized state machine replication in
an unauthorized environment by using workload proof. Hybrid Consensus for the first
time uses a formal security model and modular design to model the hybrid consensus
mechanism and proves that it can meet the safety characteristics such as consistency and
activity. Siam et al. [39] proposed ELASTICO, a fragmentation consensus mechanism,
which divides nodes participating in the consensus into multiple groups, outputs a block
from each group, and then obtains the total block. Qasem et al. [40] proposed the Rapid-
Chain consensus mechanism, which realized computing sharing, communication sharing,
and storage sharing. Its main modules include startup, consensus, and reconfiguration.
Almaiah [41] proposed a Proof of QoS (PoQ) based on Quality of Service (QoS). In this
validation protocol, the whole network is divided into several small regions, each region
specifies a node according to its QoS, and then runs deterministic Byzantine fault tolerant
consensus among all the specified nodes. Although the above-mentioned consensus mech-
anisms on the indices such as security and efficiency have excellent performance, but the
consensus mechanism is still facing single-chain or homogeneous blockchain, they cannot
be directly applied to multilevel heterogeneous and cross-blockchain application scenar-
ios of governing blockchain by blockchain. They still need a safe, efficient, and scalable
cross-blockchain mechanism for governing blockchain by blockchain frameworks. One of
the key distinguishing features that hyper ledger supports for its users is smart contracts.
The concept of smart contracts was introduced by Nick Szabo in 1994 who defined it as
“a computerized transaction protocol that executes the terms of a contract”. The primary
objective of introducing smart contracts was to facilitate the execution of scripts stored in
the blockchain without the need for an intermediate entity.

Transactions: a transaction is a signed package of data that contains the following com-
ponents: the signature of the sender and recipient of the message. The amount of ether to
be transferred to the data field (optional). GASPRICE: fee required per computational step
required for the sender to pay. STARTGAS: represents the max number of computational
steps allowed for the transaction to execute. The data field is the key field that the contracts
use to read whenever a smart contract is addressed [42–46]. IIoT Security Threats IIoT
solutions consist of industrial systems that connect to cloud for data collection and analysis
purposes. IIoT is similar to the traditional Industrial Control Systems (ICS) although the
tight security restriction applied in ICS cannot be applied to IIoT environments naturally.
This is due to the necessity of cloud computing requiring IIoT devices to have direct access
to the internet. This is different from the traditional ICS environments that require different
zoning and in-depth defense frameworks. ICS environments differ from the standard
enterprise environments in many ways, and below are some of the key differences [47–50].
Risk level: significant impact on human lives and possibly the nation. Performance Re-
quirements: requires real-time analysis as performance issues can affect the operations and
hence can be risky to the organization. Availability Requirements: needs to be available at
all times with redundant systems to ensure availability in case of a failure. Safety: safety
requirements to be able prevent hazards by detecting unusual behavior and triggering
alarms and safety measures. Multiple attacks have occurred in the past using different
attack vectors using malware payload to take control of the ICS system. This includes but
is not limited to the following ICS cyber attacks: 1. Stuxnet Malware [50–55]. Multiple
attacks on the Ukraine Power Grid in 2015 and 2016 [56,57]. 2. Ransomware attacks by Not-
Petya [18]. TRITON attack framework targeting the safety instrumented system [58–60]. By
analyzing the requirements and the risk level of traditional ICS environments, we can see
that the data these systems transfer and receive within these environments are considered
to be very sensitive. Any data exposure to unauthorized parties can have a major impact on
organizations and potentially nations as a whole. Implementing IIoT may involve exposing
some of these sensitive systems directly to the cloud. There have been multiple incidents
that involve compromising IoT devices in order to use them to launch DDoS attacks [61–63]
or to breach data to Command-Control (C2) servers [64–67]. By performing appropriate
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threat modeling of a 150private Ethereum blockchain solution, our paper examined the
following research questions:

1. What are the threats that IIoT will face when blockchains are utilized in their environments?
2. How can blockchain transparency impact the exposure of IIoT environments to exter-

nal threats?
3. What are the implications of compromising blockchain nodes within IIoT environments?

2.5. Contribution

The following are the main contributions of this research. 1. A novel proposed a
scalable blockchain architecture for FC-based 5G-enabled IoMT that considers secure data
access (SDA) and trust. 2. The integration of fog-based IoMT with a unique and decen-
tralized management confidence architecture based on blockchain technology. 3. The use
of a lightweight encryption system to reduce the computational, storage, and communi-
cation overhead. The rest of the paper is organized in the following structure: Section 3
describes the related work undertaken by the researcher. Section 3 has two subsections:
(A) that overviews the 5G-enabled IoMT; (B) blockchain and fog-based architecture for
IoMT. Section 4 represents the simulation and analysis of results. The last Sections 5 and 6,
represents the conclusion and future work.

3. Methodology

The proposed research methodology consists of training the proposed hybrid deep-
learning model in a distributed manner and then deploying it on the edge devices. The
edge or fog devices use its local data to update the pre-trained model and evaluate their
own models. Moreover, all the users in the proposed model are considered trusted users
due to the application of blockchain technology [1,6,7]. Due to the secured and flexible
access control scheme, maintaining data integrity when communicating the data over IoT
network is a challenging issue. Second, designing an adaptable security mechanism that
can efficiently distinguish normal and attack instances in IIoT is also a challenging issue.
The proposed model consists of an IoMT network consisting of various interconnected
medical sensors, actuators, and machines, located at multiple fog nodes [8,10,14]. Third,
developing a new framework for deploying blockchain and deep-learning techniques in
current cloud-edge assisted industrial systems is of utmost importance with the integration
of blockchain. The backup data is stored in the cloud whereas the meta-data are stored and
hashed inside the blockchain. As such framework often faces issues related to scalability,
due to different computing power of the participating edge nodes it is infeasible to store
the complete block in the edge networks [4,5]. Figure 2 represents the scenarios of our
proposed framework. The integration of blockchain with the hybrid IOT and its application
in fog computing are explained in Figure 2.

This is based on the blockchain concept and can be utilized to perform peer-to-peer
data transmission in a secured manner. This will be used to store transaction data for a
long time and will not be fabricated or deleted from the blockchain. Furthermore, the
transaction details are kept on the cloud server, which makes the data immutable and
decentralized [12]. The data integrity can be achieved by the secure hash function SHA512.
This hash function is included in the respective message digest and creates the fixed length
of the unique fingerprint. The used SHA512 is resistant to collision and can be applied in
real-time processing along with brute force attacks [13]. The message digest can be used
in transaction blocks since it can circumvent the poisoning attack known as the avalanche
effect [14]. Moreover, if we change one bit of data this can completely change the message
digest. Thus, it preserves the IoT data integrity. Some of the information present in the
created blocks are block index, previous hash, current block hash, current proof, data
(Tvalue), (Tscore), and timestamp. Figure 3 represents different modules of the proposed
system architecture and the flow of data through various organizations.
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As shown in Figures 4 and 5, the generated blockchain is maintained with the help
of the hash function of the previous chain. Thus, the verifiability of the system has been
enhanced. Moreover, in the blockchain, the verification of the integrity of the hash chain has
been performed while conducting the generation of new blocks by utilizing the consensus
mechanism [15]. 5G-Enabled IoMT Communication. One of the essential applications
in 5G networks is smart healthcare. The general architecture and essential entities of the
5G intelligent health network are depicted in Figure 2, representing the smart antenna
requirement for 5G-enabled network communication. Smart antennas benefit from several
significant advancements in the current scenario that boost 5G [8]. Perfect signal and
transmission capabilities are possible thanks to a well-coordinated RF beam. However,
because the focus of interest diminishes with increased attenuation, the location remains an
issue. The use of machine-to-machine connections (M2M) and the IoMT as the foundations
of intelligent healthcare in 5G networks (IoMT) is predictable. There are two fundamental
drawbacks to the strategies given. The first is many terminals, resulting in dense networks.
For IoMT and M2M applications, ultra-density and scalability issues are required. The
second point of concern is secure consumption, which results from the nature of IoMT-
based [9] applications that use wireless sensors. Figure 5 describes the timeline diagram of
the proposed model and its function.
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4. Proposed Framework

This section presents the proposed framework for fog computing using 5G technology.
Once the data is generated via IoT devices, the network traffic is routed to FogBlock
by the nearest gateway/router. The incoming traffic is sniffed using a sensor, which
extracts features at the fog block. The reputation score is computed, and the address-based
blockchain reputation system is designed. The three primary classifications of transactions
based on the outcome are general, honest, and dishonest. The distributed file storage
system stores the raw or transaction data [25]. The raw data was transmitted with trust
information using the privacy-preservation module and the hast proof with message
digest is constructed using ePoW on the blockchain which prevents inference attacks and
validates data record chains using system-based machine learning. The GTBSS-HDNN
model categorizes many types of attacks as well as normal data. The MICA approach uses
second-level privacy to transform the original data into a new transformed format. The
anomalous class administrator is replaced at the end and the Cloud Block receives the
request safely.

In Cloud Block, several providers offer various types of data centers. In the proposed
architecture, three data centers are used: A, B, and C. To create a blockchain network, the
268 proposed GTBSS-HDNN architecture is implemented at each data center and these
are the 269 entities in the Cloud Block network [26]. The trust between the verifiable,
auditable, 270, and immutable blocks is built using the proposed hybrid NN architecture.
Threat ID type properties: T1 Internal Confidentiality; T2 External Availability Internal
Threats. The likelihood of internal threats mainly depends on the frequency of security
attacks and data breaches caused by insider threats. According to a report produced by
Nucleus Cyber in 2019 [31], 60% of the surveyed organizations had experienced one or
more insider attacks within the last 12 months in 2019. In addition, according to a threat
report produced by Proof point [32], around 75% percent of the reported attacks analyzed
were caused by criminal or malicious insiders in 2020. Therefore, the threat the likelihood
for threat T1 can be considered to be moderate. External threats: A shown in Figure 4,
the intended architecture is composed of several layers. By processing IoMT data on fog
nodes (FN), the initial layer (IL) of FN minimizes latency. This also enables the user to
realize his desire for quick service. In future, in IoMT devices [25], a multi-layered design,
as depicted in Figure 2, has been proposed for applications involving large amounts of
data. The devices connected and FN are shown in the first layer of this design. Connected
devices communicate with one another, and blockchain technology provides security. The
second level of FN’s latency is reduced because of IoMT device communication. As a result,
users’ requirements are encountered in the proposed fog computing (FC) model [43–50].

4.1. Proposed Smart Contracts and Fog Computing

A blockchain and fog network [24] connects the Internet of Medical Things (IoMT)
and fog nodes (FN) (IoMT-Fog). Distributed technology can deliver on-demand services by
combining high performance and low latency (LL). It will raise the threshold for monitoring
people’s health. The FC paradigm aids IoMT elements with low latency (LL), allowing for
faster data processing. The proposed IoMT-Fog, shown in Figures 6 and 7, could provide a
more appropriate medical equipment (ME) solution. The proposed neural network with
the integration of smart contracts is represented through Figure 8.

One of the essential applications in 5G networks is smart healthcare. The general archi-
tecture and essential entities of the 5G intelligent health network are depicted in Figure 2,
which represents the smart antenna requirement for 5G-enabled network communication.
Smart antennas benefit from several significant advancements in the current scenario boost
5G coverage and capacity. Beam shaping (vertical and horizontal) is a breakthrough that
concentrates RF energy in a compact beam and targets it precisely where it is needed, rather
than dispersing it over a large region.
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4.2. Proposed Algorithm

In this section we describe our proposed two algorithms (Algorithms 1 and 2). These
algorithms are represented as below:

Algorithm 1: FC-Average Algorithm

1: Init: a = 0;
2: for each round t = 1,2, . . . do
3: select K clients
4: for each K clients do
5: wkt, UpdateClient( )
6: dkt← the distance between two classes dataset end for
7: If (dk = t)←1
8: dk = wk * t←pk k = 1nk f(dkt) wt1/pkk = 1nkfd kt)
9: end for
10: Updatefunction( )
11: Initialize local minibatch size L, local epochs E, learning rate
12: for each epoch i E do
13: randomly choose S: based on size L
14: wi← w1 – w5g(w1:s)
15: end for
16: return i
17: End Procedure
18: End Algorithm

Algorithm 2: Algorithm Method Evaluation

1: Enhance Analysis of both the IOMT end
2: Select IOMT node for Transaction selection (Node)
3: Get EMR data, hash, get (EMR)
4: Extract EMRFromRepository from ERM (ERM name)
5: ERM, valid SHA256 CheckHash (ERM, Hash)
6: if ERM is T, then
7: Get the Connent (Connect)
8: Generate Indications (Connect length)
9: Valid Blockchain transaction Valid (i, indications)
10: Del Local EMR delete (EMR)
11: End if (EMR)
12: End
13: End
14: wi← w1 – w5g(w1:s)

5. Experimental Setup

We set up an experimental environment to implement our proposed framework us-
ing Fog Node (FN) for IoMT networks with the corresponding throughput elapsed time
or intervened time. When a cloud-based ordering system is established using a virtual
machine (VM), the time of the associated bypass and the number of nodes is assessed.
For performance measurement, 16.04 LTS Core i5 CPU Ubuntu is a Linux distribution
2.50 GHz 2.71 GHz (VirtualBox). The RAM capacity is 16 GB. Each follower peer virtual-
ization scenario has 30 vCPUs and 8 gigabytes of RAM. It repeats the following process
30 times. The number of transactions handled per subsequent is referred to as a second
transaction—several transactions per second (TPS). The response time was 226 milliseconds,
with a minimum of milliseconds and milliseconds. Figure 6 shows the hyperledger-based
fog architecture for intervened time. As the thread group starts and pauses a demo ap-
plication, we notice network latency (NL). We also managed threads in a blockchain (BC)
network successfully. The response times to the blockchain (BC) network are depicted in
Figure 7 and show the intervened time and active thread in the fog computing environment.
We moved the ordering service to the cloud to determine if the network is steady. Despite
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the low minimum (LM), the ordering instance 233 generates a reasonably stable network. It
was proven to work in situations where 234 high throughput and a real-time environment
are required. The performance graph of a 235 fog network based on Hyperleader Fabric
(HF) over time is shown in Figure 7. Blockchain, IoMT (Fog-BC-IoMT), and FC technologies
all utilized the proposed architecture (Fog-IoMT). To record transactions, the BC is utilized
to create a legal public, hyperdistributed EMR. Several IoMT-NODES are utilized in the
architecture testing and implementation. The outcomes were estimated satisfactorily. This
study suggests an architecture for preventing data fraud by converting existing centralized
database systems to block-based distributed databases. It divides the system into four parts:
cloud, fog, blockchain, and IoMT. The IoMT system is self-contained. We also examined
whether the network convention method could assist with public cloud resources more
effectively. The ordered migrates to the cloud for stability, security, and scalability and
avoids performance issues by not directly connecting IoMT devices to forbidden networks.
Hyperledger, a chain block solution, handles IoMT validation and safety. To reduce network
latency (NL) and output, smart contracts (SC) and transaction checking on fog nodes (FN)
is recommended. The network architecture will challenge cost reductions in the cloud and
optimize cloud and FN instancing performance to boost the efficiency of the hyperledger
BC network [50–58].

6. Results and Discussion

Internal threats: the likelihood of internal threats mainly depends on the frequency
of security attacks and data breaches caused by insider threats [59–67]. According to a
report produced by Nucleus Cyber in 2019 [31], 60% of the surveyed organizations have
experienced one or more insider attacks within the last 12 months in 2019. In addition,
according to a threat report produced by Proof point [32], around 50% percent of the
reported attacks analyzed were caused by criminal or malicious insiders in 2020. Therefore,
the likelihood for threat T1 can be considered to be moderate. Algorithm 2 describes the
process of encryption and hashing techniques. We carried out the experimental setup
based on the proposed framework and algorithm. The simulations were carried out
using the hyperledger fabric tool. In order to implement the proposed algorithm and
smart contracts we used chain code for blockchain transactions. The parameters used for
analysis include block creation, encryption time, decryption time, number of transactions,
number of iterations, and number of nodes. Figure 9 shows the comparative analysis
between the writing Merkle tree root and writing contribution data using hybrid deep-
learning techniques using consortium blockchain in terms of number of tests carried out
and execution time in seconds. We carried out up to 100 tests and the execution time was
noted as up to 100. Figure 10 simulations were carried out on the experimental results from
the number of devices and the service execution time. We provided a comparative analysis
through the experiment based on a simulation of the proposed model and the benchmark
model. From Figure 7, it is very obvious that our proposed model takes significantly less
process and execution time as compared to the benchmark models.

As presented in Figure 8, we carried out the simulations results based on training time
based on the proposed hybrid deep-learning protocol (BLSTM + CNN) and the number of
transactions. From the simulations results, it is very clear that the number of transactions is
higher as compared to the benchmark models based on the training time. The simulation
result in Figure 8 explains that our proposed system is more intelligent, and it transfers the
blocks according to the requirements and quick access to the participants in the system,
thus, it is time effective as well.

As presented in Figure 9, we carried out simulation results based on number of
records and the execution time. In Figure 11, we compare our proposed model with the
benchmark model such as [12–14]. Using hybrid deep-learning techniques and choosing
the blocks according to the requirements, our proposed model takes significantly less time
as compared to the benchmark model. Thus, Figure 9 justifies that our proposed framework
is efficient and intelligent. In Figure 10, we present an experimental analysis based on



Sensors 2022, 22, 2112 13 of 19

the number of rounds and the number of transactions through the proposed model. We
tested our proposed model based on different nodes and we started from 20 nodes up to
a maximum of 140 nodes. The number of rounds taken into account were 300 and the
number of transactions counted was up to 5000.
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As presented in Figure 11, we carried out simulations based on two parameters
including privacy parameter and test accuracy. We carried out the simulation results
for two rounds and then we analyzed the test accuracy. We validated our simulations
results through Figure 11, and we found that there is significantly less difference in the
accuracy, showing the validation of our method for security and privacy. Figures 12 and 13
represent the simulations results based on the number of domains and the local epoch. The
value epoch represents the training of the datasets in batch form. Figure 14 represents the
simulation results based on number of blocks and the processing time in microseconds.
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7. Conclusions

In this research, a novel approach based on hybrid deep learning (BLST + CNN)
was used to train the model in a decentralized fashion with minimum latency as well
as less computational cost. The proposed model learns from a defined model which
tracks the behavior and integration of the users. The proposed framework provides a
decentralized nature and privacy preservation approach. The training of the model was
carried out on each local device using hybrid deep learning (BLSTM + CNN). The bi-linear
long short-term memory (BLSTM) consists of two modules, i.e., feed forward and feed
backward and at the end it concatenates. We used the datasets based on IoT-ToN available
publicly on UNSW, Australia website. Moreover, we divided the dataset into two parts,
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i.e., training and testing. Similarly, for the proposed model, 30% of data were used for
training and 70% used for testing and validation. From the simulations results, it was
concluded that the proposed model outperformed the benchmark model. The latency of
the proposed framework was observed up to 20 ms which is lower as compared to the
benchmark models. In order to provide privacy preservation, the proposed model was
encrypted using lightweight encryption and decryption based on homomorphic encryption.
Similarly, the use of homomorphic encryption provides the ability to perform additive or
multiplicative operations over encrypted data. The proposed model is recommended for
cross-domain networks in any healthcare systems. In the future, we want to extend the
proposed research work using a PSO algorithm integrated with federated learning. This
approach will improve the existing work.
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