Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Butylamino-6-(4-fluorophenyl)-7-oxo-1-*p*-tolyl-6,7-dihydro-1*H*-pyrazolo[4,3-*d*]pyrimidine-3-carbonitrile

Ji-Huan Hu^a and Ming-Hu Wu^b*

^aCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bDepartment of Chemistry and Life Sciences, Xianning College, Xianning 437100, People's Republic of China Correspondence e-mail: minghuwu@hotmail.com

Received 3 March 2008; accepted 8 April 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.154; data-to-parameter ratio = 13.0.

In the title compound, $C_{23}H_{21}FN_6O$, the dihedral angle between the fluorophenyl and pyrimidinone rings is 75.9 (1)°, and the dihedral angle between the methylphenyl and pyrazole rings is 40.3 (1)°. In the crystal structure, weak $C-H\cdots\pi(\text{arene})$ and $C-N\cdots\pi(\text{arene})$ interactions and intermolecular $C-H\cdots N$ and $N-H\cdots O$ hydrogen-bonding interactions are present.

Related literature

For background information, see: Bell *et al.* (1991); Zhao *et al.* (2006); Allerton *et al.* (2006).

Experimental

Crystal data $C_{23}H_{21}FN_6O$ $M_r = 416.46$ Monoclinic, P_{21}/c a = 11.8800 (5) Å b = 9.36020 (4) Å c = 19.0053 (8) Å $\beta = 91.178$ (1)°

 $V = 2112.93 (13) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 295 (2) K $0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\min} = 0.973, T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.154$ S = 1.113704 reflections 285 parameters 1 restraint 12013 measured reflections 3704 independent reflections 3085 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.23 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.26 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the C14–C19 ring and Cg2 is the centroid of the N4/C9/ C10/C13/N5/C12 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N6-H6A···O1 ⁱ	0.861 (10)	2.32 (2)	2.904 (2)	125 (2)
$C15 - H15 \cdot \cdot \cdot N3^{ii}$	0.93	2.58	3.449 (3)	155
C19−H19· · ·N3 ⁱⁱⁱ	0.93	2.50	3.219 (3)	134
$C6-H6\cdots Cg1^{iv}$	0.93	2.82	3.671 (2)	152
$C11 - N3 \cdots Cg2^{v}$	1.141 (3)	3.621 (3)	3.710 (3)	85.4 (2)

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y, -z; (iii) $x, -y - \frac{1}{2}, z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x, -y, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors gratefully acknowledge financial support of this work as a project of the Natural Science Foundation of Hubei Province under grant No. 2006ABA334.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2051).

References

- Allerton, C. M. N., Barber, C. G., Beaumont, K. C., Brown, D. G., Cole, S. M., Ellis, D., Lane, C. A. L., Maw, G. N., Mount, N. M., Rawson, D. J., Robinson, C. M., Street, S. D. A. & Summerhill, N. W. (2006). *J. Med. Chem.* 49, 3581– 3594.
- Bell, A. S., Brown, D. & Terrett, N. K. (1991). Eur. Patent 463756.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhao, Y., Zhai, X., Chen, J., Guo, S. & Gong, P. (2006). *Chem. Res. Chin. Univ.* **22**, 468–473.

Acta Cryst. (2008). E64, o845 [doi:10.1107/81600536808009744]

5-Butylamino-6-(4-fluorophenyl)-7-oxo-1-*p*-tolyl-6,7-dihydro-1*H*-pyrazolo[4,3-*d*]pyrimidine-3-carbonitrile

J.-H. Hu and M.-H. Wu

Comment

Pyrazolo[4,3-d]pyrimidin-7-ones have been reported as potent and selective inhibitors of PDE5 (Bell *et al.*, 1991; Zhao *et al.*, 2006). Sildenafil citrate, a pyrazolo[4,3-d]pyrimidin-7-one derivative, is the first orally effective PDE5 inhibitor approved for the treatment of erectile dysfunction. Its advent has spurred significant interest in the development of additional PDE5 inhibitors (Allerton *et al.*, 2006). Herein, the title compound as Sildenafil analog was synthesized and determined by X-ray crystal diffraction in order to find new potent PDE5 inhibitors.

In the molecule (Fig. 1), the dihedral angle between the fluorophenyl and pyrimidinon ring is 75.9 (1)°, and the dihedral angle between the methylphenyl and pyrazole ring is 40.3 (1)°. The atoms O1, N1–N6, C5, C8–C14 and C20 are nearly coplanar, and N6, C21–C23 formed a plane.

In the crystal structure, molecules are linked by weak C—H··· π (arene) interactions, which connected H6 to the centroid of atoms C14–19, *Cg*1, (symmetry code: -*x*,1/2 + *y*,1/2 - *z*). In addition, the crystal structure is stablized by intermolecular N—H···O and intramolecular C—H···N hydrogen-bonding interactions (Fig. 2).

Experimental

To a solution of 4-(3-cyano-5-ethoxycarbonyl-*p*-tolyl-1*H*-pyrazolyl) iminophosphorane (1.59 g, 3 mmol) in absolute anhydrous CH_2Cl_2 , 4-fluorophenylisocyanate (3 mmol) was added at room temperature. The reaction mixture was left unstirred for 6 h at 273–278 K, whereafter a slight excess of butylamine (3.1 mmol) was added. After that, the reaction mixture was stirred for 6 h, the solution was cooled and the reaction product was recrystallized from EtOH and CH_2Cl_2 to give colorless crystals of the title compound in yield 93%, suitable for X-ray analysis.

Refinement

All H atoms bound to C atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. View of the molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The packing viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

5-Butylamino-6-(4-fluorophenyl)-7-oxo-1-p-tolyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-3-carbonitrile

Crystal data

C ₂₃ H ₂₁ FN ₆ O	$F_{000} = 872$
$M_r = 416.46$	$D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3510 reflections
a = 11.8800 (5) Å	$\theta = 2.4 - 23.9^{\circ}$
b = 9.36020 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 19.0053 (8) Å	T = 295 (2) K
$\beta = 91.1780 \ (10)^{\circ}$	Block, colourless
$V = 2112.93 (13) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer	3704 independent reflections
Radiation source: fine-focus sealed tube	3085 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 295(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -14 \rightarrow 14$
$T_{\min} = 0.973, \ T_{\max} = 0.982$	$k = -11 \rightarrow 11$
12013 measured reflections	$l = -16 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.154$	$w = 1/[\sigma^2(F_o^2) + (0.0811P)^2 + 0.4221P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
3704 reflections	$\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$

285 parameters

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

1 restraint

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6274 (2)	0.3875 (3)	0.22154 (16)	0.0778 (9)
H1A	0.6429	0.3528	0.2683	0.117*
H1B	0.6068	0.4865	0.2236	0.117*
H1C	0.6934	0.3769	0.1937	0.117*
C2	0.53165 (19)	0.3027 (3)	0.18861 (12)	0.0517 (6)
C3	0.55219 (19)	0.1809 (3)	0.15018 (14)	0.0614 (7)
H3	0.6261	0.1512	0.1443	0.074*
C4	0.46540 (18)	0.1021 (3)	0.12017 (14)	0.0552 (6)
H4	0.4809	0.0204	0.0942	0.066*
C5	0.35615 (17)	0.1450 (2)	0.12887 (11)	0.0399 (5)
C6	0.33266 (18)	0.2674 (2)	0.16595 (12)	0.0473 (6)
H6	0.2587	0.2978	0.1708	0.057*
C7	0.4207 (2)	0.3443 (2)	0.19588 (13)	0.0525 (6)
H7	0.4049	0.4262	0.2216	0.063*
C8	0.18880 (17)	-0.0696 (2)	0.01909 (11)	0.0406 (5)
С9	0.11084 (16)	-0.0625 (2)	0.07421 (10)	0.0362 (5)
C10	0.16433 (16)	0.0224 (2)	0.12452 (11)	0.0361 (5)
C11	0.17644 (18)	-0.1440 (3)	-0.04584 (12)	0.0468 (6)
C12	-0.03810 (16)	-0.1084 (2)	0.14132 (11)	0.0371 (5)
C13	0.11533 (16)	0.0439 (2)	0.19173 (11)	0.0368 (5)
C14	-0.04608 (16)	-0.0095 (2)	0.26283 (10)	0.0378 (5)
C15	-0.13358 (18)	0.0858 (2)	0.26853 (12)	0.0465 (5)
H15	-0.1606	0.1347	0.2291	0.056*
C16	-0.1812 (2)	0.1083 (3)	0.33376 (13)	0.0533 (6)
H16	-0.2413	0.1709	0.3384	0.064*
C17	-0.1383 (2)	0.0369 (3)	0.39086 (12)	0.0544 (6)
C18	-0.0514 (2)	-0.0580 (3)	0.38634 (12)	0.0555 (6)
H18	-0.0241	-0.1056	0.4261	0.067*
C19	-0.00515 (19)	-0.0814 (2)	0.32127 (12)	0.0481 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H19	0.0538	-0.1459	0.3168	0.058*
C20	-0.19690 (18)	-0.2591 (2)	0.10305 (12)	0.0466 (5)
H20A	-0.1732	-0.3570	0.1113	0.056*
H20B	-0.1764	-0.2329	0.0556	0.056*
C21	-0.32235 (19)	-0.2480 (3)	0.11024 (13)	0.0523 (6)
H21A	-0.3451	-0.1499	0.1017	0.063*
H21B	-0.3416	-0.2719	0.1582	0.063*
C22	-0.3878 (2)	-0.3448 (3)	0.06021 (15)	0.0654 (7)
H22A	-0.3655	-0.4430	0.0689	0.078*
H22B	-0.3684	-0.3214	0.0123	0.078*
C23	-0.5142 (2)	-0.3322 (4)	0.0676 (2)	0.1029 (13)
H23A	-0.5328	-0.3385	0.1164	0.154*
H23B	-0.5507	-0.4081	0.0420	0.154*
H23C	-0.5392	-0.2419	0.0491	0.154*
F1	-0.18395 (16)	0.0621 (2)	0.45430 (8)	0.0869 (6)
N1	0.26695 (13)	0.06138 (18)	0.09789 (9)	0.0396 (4)
N2	0.28234 (14)	0.0051 (2)	0.03381 (9)	0.0437 (5)
N3	0.16543 (19)	-0.2048 (3)	-0.09756 (11)	0.0671 (6)
N4	0.00947 (14)	-0.12733 (18)	0.08064 (9)	0.0386 (4)
N5	0.01053 (13)	-0.02716 (18)	0.19646 (8)	0.0373 (4)
N6	-0.13968 (15)	-0.1649 (2)	0.15346 (9)	0.0452 (5)
H6A	-0.1566 (19)	-0.175 (3)	0.1970 (6)	0.054*
01	0.15378 (12)	0.11047 (17)	0.24170 (8)	0.0502 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0649 (18)	0.080 (2)	0.087 (2)	-0.0194 (15)	-0.0151 (16)	-0.0128 (16)
C2	0.0469 (13)	0.0553 (14)	0.0527 (14)	-0.0113 (11)	-0.0035 (10)	0.0014 (11)
C3	0.0333 (12)	0.0704 (17)	0.0807 (19)	-0.0020 (11)	0.0045 (12)	-0.0152 (14)
C4	0.0386 (12)	0.0573 (15)	0.0698 (17)	-0.0003 (10)	0.0073 (11)	-0.0186 (12)
C5	0.0375 (11)	0.0428 (12)	0.0395 (12)	-0.0042 (9)	0.0018 (9)	0.0025 (9)
C6	0.0379 (11)	0.0435 (12)	0.0605 (14)	0.0020 (9)	0.0013 (10)	0.0014 (11)
C7	0.0520 (14)	0.0427 (13)	0.0628 (15)	-0.0041 (10)	0.0031 (11)	-0.0073 (11)
C8	0.0373 (11)	0.0505 (12)	0.0340 (11)	-0.0020 (9)	0.0000 (9)	0.0006 (9)
C9	0.0353 (10)	0.0389 (11)	0.0344 (11)	0.0006 (8)	-0.0018 (8)	0.0031 (9)
C10	0.0330 (10)	0.0376 (11)	0.0377 (11)	0.0011 (8)	0.0004 (8)	0.0013 (9)
C11	0.0417 (12)	0.0613 (14)	0.0375 (13)	-0.0070 (10)	0.0064 (9)	0.0005 (11)
C12	0.0357 (11)	0.0395 (11)	0.0359 (12)	-0.0004 (8)	-0.0031 (9)	0.0030 (9)
C13	0.0337 (10)	0.0394 (11)	0.0372 (11)	0.0023 (8)	-0.0025 (8)	-0.0008 (9)
C14	0.0347 (10)	0.0422 (11)	0.0365 (11)	-0.0046 (9)	0.0012 (8)	-0.0023 (9)
C15	0.0422 (12)	0.0484 (13)	0.0490 (14)	-0.0015 (10)	0.0025 (10)	0.0043 (10)
C16	0.0468 (13)	0.0523 (14)	0.0615 (16)	0.0020 (10)	0.0162 (11)	-0.0049 (12)
C17	0.0598 (15)	0.0617 (15)	0.0423 (14)	-0.0120 (12)	0.0157 (11)	-0.0092 (12)
C18	0.0569 (15)	0.0720 (16)	0.0376 (13)	-0.0013 (12)	0.0001 (10)	0.0037 (12)
C19	0.0466 (12)	0.0561 (14)	0.0418 (13)	0.0063 (10)	0.0014 (10)	0.0032 (10)
C20	0.0452 (12)	0.0517 (13)	0.0430 (13)	-0.0091 (10)	-0.0007 (10)	-0.0018 (10)
C21	0.0459 (13)	0.0547 (14)	0.0561 (15)	-0.0105 (11)	0.0009 (11)	-0.0026 (11)

C22	0.0542(15)	0.0717(18)	0.0700 (17)	-0.0164(12)	-0.0052 (12)	-0.0101 (14)
C22	0.0543(13)	0.0/1/(10)	0.0700(17)	-0.0104(13) -0.0180(17)	-0.0033(13) -0.0184(10)	-0.0101(14)
C25	0.0317(17)	0.104(3)	0.132(3)	-0.0189(17)	-0.0184(19)	-0.032(2)
ГI N1	0.0979(12)	0.1100(14)	0.0330(10)	-0.0002(10)	0.0339(9)	-0.0121(9)
N2	0.0330(9)	0.0448(10) 0.0533(11)	0.0403(10)	-0.0023(7)	0.0030(7)	-0.0020(8)
N2	0.0391(10)	0.0353(11) 0.0862(16)	0.0390(10) 0.0425(12)	-0.0188(12)	0.0039(8)	-0.0109(12)
N/	0.0729(13)	0.0302(10)	0.0425(12) 0.0346(10)	-0.0043(7)	-0.0011(7)	0.010 (12)
N5	0.0300(9)	0.0445(10)	0.0346(10)	-0.0043(7)	0.0011(7)	-0.0000(7)
N6	0.0342(7)	0.0401(10) 0.0552(11)	0.0370(0)	-0.0145(8)	0.0010(7)	-0.0003(7)
01	0.0453(9)	0.0532 (11)	0.0374(10) 0.0442(9)	-0.0149(3)	0.0030(3) 0.0015(7)	-0.0139(7)
01	0.0433 (7)	0.0011 (10)	0.0442 ())	0.0109 (7)	0.0015 (7)	0.0137 (7)
Geometric paran	neters (Å, °)					
C1-C2		1 512 (3)	C14—	C15	1 375	(3)
C1—H1A		0.9600	C14—	C19	1 379	(3)
C1—H1B		0.9600	C14—	N5	1 451	(3)
C1—H1C		0.9600	C15—	C16	1 389	(3)
C2-C3		1 379 (3)	C15	H15	0.9300)
C2—C7		1 384 (3)	C16—	C17	1 364	(3)
$C_2 - C_4$		1.382 (3)	C16—	H16	0.9300)
С3—Н3		0.9300	C17—	F1	1 353	(3)
C4—C5		1 372 (3)	C17—	C18	1 366	(3)
C4—H4		0.9300	C18—	C19	1.381	(3)
C5—C6		1.376 (3)	C18—	H18	0.9300)
C5—N1		1.434 (3)	C19—	H19	0.9300)
С6—С7		1.382 (3)	C20—	N6	1.460	(3)
С6—Н6		0.9300	C20—	C21	1.503	(3)
С7—Н7		0.9300	C20—	H20A	0.9700)
C8—N2		1.338 (3)	C20—	H20B	0.9700)
С8—С9		1.414 (3)	C21—	C22	1.516	(3)
C8—C11		1.422 (3)	C21—	H21A	0.9700)
C9—N4		1.356 (3)	C21—	H21B	0.9700)
C9—C10		1.387 (3)	C22—	C23	1.516	(4)
C10—N1		1.379 (2)	C22—	H22A	0.9700)
C10—C13		1.429 (3)	C22—	H22B	0.9700)
C11—N3		1.141 (3)	C23—	H23A	0.9600)
C12—N4		1.307 (3)	C23—	H23B	0.9600)
C12—N6		1.342 (3)	C23—	H23C	0.9600)
C12—N5		1.409 (3)	N1—N	2	1.343	(2)
C13—O1		1.217 (2)	N6—H	6A	0.861	(10)
C13—N5		1.416 (3)				
C2—C1—H1A		109.5	C17—	С16—Н16	120.5	
C2—C1—H1B		109.5	C15—	С16—Н16	120.5	
H1A—C1—H1B		109.5	F1—C	17—C16	118.2	(2)
C2—C1—H1C		109.5	F1—C	17—C18	119.1	(2)
H1A—C1—H1C		109.5	C16—	C17—C18	122.6	(2)
H1B—C1—H1C		109.5	C17—	C18—C19	118.3	(2)
C3—C2—C7		117.7 (2)	C17—	С18—Н18	120.8	
C3—C2—C1		120.9 (2)	C19—	С18—Н18	120.8	

C7—C2—C1	121.4 (2)	C14—C19—C18	120.2 (2)
C2—C3—C4	121.5 (2)	С14—С19—Н19	119.9
С2—С3—Н3	119.3	С18—С19—Н19	119.9
С4—С3—Н3	119.3	N6-C20-C21	110.36 (18)
C5—C4—C3	119.6 (2)	N6-C20-H20A	109.6
C5—C4—H4	120.2	C21—C20—H20A	109.6
C3—C4—H4	120.2	N6-C20-H20B	109.6
C4—C5—C6	120.5 (2)	C21—C20—H20B	109.6
C4—C5—N1	118.90 (19)	H20A—C20—H20B	108.1
C6—C5—N1	120.57 (18)	C20—C21—C22	113.5 (2)
C5—C6—C7	119.0 (2)	C20-C21-H21A	108.9
С5—С6—Н6	120.5	C22—C21—H21A	108.9
С7—С6—Н6	120.5	C20—C21—H21B	108.9
C6—C7—C2	121.8 (2)	C22—C21—H21B	108.9
С6—С7—Н7	119.1	H21A—C21—H21B	107.7
С2—С7—Н7	119.1	C21—C22—C23	113.0 (2)
N2—C8—C9	111.97 (18)	C21—C22—H22A	109.0
N2-C8-C11	120.53 (19)	C23—C22—H22A	109.0
C9—C8—C11	127.50 (19)	C21—C22—H22B	109.0
N4—C9—C10	126.10 (19)	C23—C22—H22B	109.0
N4—C9—C8	129.92 (18)	H22A—C22—H22B	107.8
С10—С9—С8	103.89 (17)	С22—С23—Н23А	109.5
N1—C10—C9	107.14 (17)	С22—С23—Н23В	109.5
N1-C10-C13	132.08 (18)	H23A—C23—H23B	109.5
C9—C10—C13	120.51 (18)	С22—С23—Н23С	109.5
N3—C11—C8	179.1 (3)	H23A—C23—H23C	109.5
N4—C12—N6	120.35 (18)	H23B—C23—H23C	109.5
N4—C12—N5	123.46 (17)	N2—N1—C10	111.51 (16)
N6	116.17 (18)	N2—N1—C5	118.25 (16)
O1—C13—N5	120.49 (18)	C10—N1—C5	130.19 (17)
O1—C13—C10	128.07 (19)	C8—N2—N1	105.48 (16)
N5-C13-C10	111.42 (16)	C12—N4—C9	114.82 (17)
C15—C14—C19	120.5 (2)	C12—N5—C13	123.64 (16)
C15—C14—N5	120.46 (18)	C12—N5—C14	121.19 (16)
C19—C14—N5	118.84 (18)	C13—N5—C14	115.17 (15)
C14—C15—C16	119.4 (2)	C12—N6—C20	122.23 (18)
C14—C15—H15	120.3	C12—N6—H6A	116.0 (16)
C16—C15—H15	120.3	C20—N6—H6A	116.6 (16)
C17—C16—C15	118.9 (2)		
C7—C2—C3—C4	-0.4 (4)	N6-C20-C21-C22	-179.1 (2)
C1—C2—C3—C4	179.6 (3)	C20-C21-C22-C23	-179.7 (3)
C2—C3—C4—C5	-0.3 (4)	C9—C10—N1—N2	-0.6 (2)
C3—C4—C5—C6	1.3 (4)	C13—C10—N1—N2	173.4 (2)
C3—C4—C5—N1	-179.5 (2)	C9—C10—N1—C5	-178.14 (19)
C4—C5—C6—C7	-1.7 (3)	C13—C10—N1—C5	-4.2 (4)
N1—C5—C6—C7	179.2 (2)	C4—C5—N1—N2	-38.9 (3)
C5—C6—C7—C2	1.0 (4)	C6—C5—N1—N2	140.2 (2)
C3—C2—C7—C6	0.0 (4)	C4—C5—N1—C10	138.4 (2)
C1—C2—C7—C6	-180.0 (2)	C6C5N1C10	-42.4 (3)

N2—C8—C9—N4	-177.1 (2)	C9—C8—N2—N1	0.0 (2)
C11—C8—C9—N4	3.1 (4)	C11—C8—N2—N1	179.83 (19)
N2-C8-C9-C10	-0.3 (2)	C10—N1—N2—C8	0.4 (2)
C11—C8—C9—C10	179.8 (2)	C5—N1—N2—C8	178.24 (17)
N4—C9—C10—N1	177.48 (18)	N6-C12-N4-C9	178.61 (18)
C8—C9—C10—N1	0.6 (2)	N5-C12-N4-C9	0.1 (3)
N4—C9—C10—C13	2.7 (3)	C10-C9-N4-C12	-1.8 (3)
C8—C9—C10—C13	-174.26 (18)	C8—C9—N4—C12	174.3 (2)
N2-C8-C11-N3	159 (18)	N4-C12-N5-C13	0.7 (3)
C9—C8—C11—N3	-21 (18)	N6-C12-N5-C13	-177.79 (18)
N1-C10-C13-O1	3.8 (4)	N4-C12-N5-C14	179.94 (18)
C9—C10—C13—O1	177.1 (2)	N6-C12-N5-C14	1.4 (3)
N1-C10-C13-N5	-174.8 (2)	O1-C13-N5-C12	-178.73 (18)
C9—C10—C13—N5	-1.5 (3)	C10-C13-N5-C12	0.0 (3)
C19-C14-C15-C16	-0.5 (3)	O1-C13-N5-C14	2.0 (3)
N5-C14-C15-C16	-175.46 (19)	C10-C13-N5-C14	-179.23 (16)
C14-C15-C16-C17	1.2 (3)	C15-C14-N5-C12	-78.0 (2)
C15-C16-C17-F1	178.7 (2)	C19—C14—N5—C12	106.9 (2)
C15-C16-C17-C18	-1.2 (4)	C15-C14-N5-C13	101.2 (2)
F1-C17-C18-C19	-179.4 (2)	C19—C14—N5—C13	-73.8 (2)
C16-C17-C18-C19	0.4 (4)	N4-C12-N6-C20	5.5 (3)
C15-C14-C19-C18	-0.3 (3)	N5-C12-N6-C20	-175.88 (18)
N5-C14-C19-C18	174.8 (2)	C21-C20-N6-C12	-152.0 (2)
C17-C18-C19-C14	0.3 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	
N6—H6A···O1 ⁱ	0.861 (10)	2.32 (2)	2.904 (2)	125 (2)	
C15—H15···N3 ⁱⁱ	0.93	2.58	3.449 (3)	155	
C19—H19····N3 ⁱⁱⁱ	0.93	2.50	3.219 (3)	134	
C6—H6···Cg1 ^{iv}	0.93	2.82	3.671 (2)	152	
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $-x$, $-y$, $-z$; (iii) x , $-y-1/2$, $z+1/2$; (iv) $-x$, $y+1/2$, $-z+1/2$.					

Fig. 1

Fig. 2