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1 Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer
Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4 A Chodzki St.,
20-093 Lublin, Poland; piotrstepnicki93@gmail.com

2 Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 1 Pigonia St.,
35-310 Rzeszow, Poland; pp.solek@gmail.com

3 School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
* Correspondence: koszlaoliwia@gmail.com (O.K.); agnieszka.kaczor@umlub.pl (A.A.K.);

Tel.: +48-81-448-7273 (O.K. & A.A.K.)

Abstract: Neurodegenerative and mental diseases are serious medical, economic and social problems.
Neurodegeneration is referred to as a pathological condition associated with damage to nerve cells
leading to their death. Treatment of neurodegenerative diseases is at present symptomatic only, and
novel drugs are urgently needed which would be able to stop disease progression. We performed
screening of reactive oxygen species, reactive nitrogen species, glutathione and level intracellular
Ca2+. The studies were assessed using one-way ANOVA of variance with Dunnett’s post hoc test.
Previously, we reported D2AAK1 as a promising compound for the treatment of neurodegenerative
and mental disorders. Here, we show a screening of D2AAK1 derivatives aimed at the selection of the
compound with the most favorable pharmacological profile. Selected compounds cause an increase
in the proliferation of a hippocampal neuron-like cell line, changes in the levels of reactive oxygen
and nitrogen forms, reduced glutathione and a reduced intracellular calcium pool. Upon analyzing
the structure–activity relationship, we selected the compound with the most favorable profile for a
neuroprotective activity for potential application in the treatment of neurodegenerative diseases.

Keywords: D2AAK1 derivatives; neurodegeneration; proliferation; redox balance; screening

1. Introduction

Neurodegenerative and mental diseases affect millions of people worldwide. They
are one of the most common causes of human inability to function in everyday life, with
a direct impact at the professional or social level of patients [1]. Neurodegeneration is
progressive and is characterized by the loss of neurons and impaired motor and cognitive
functions. Consequently, the functional and structural damage to neurons may result in
cell death [2]. To date, there are no effective therapeutic methods that would eliminate
or alleviate the factors causing the progression of neurodegenerative diseases [3]. For
this reason, the development of effective therapies constitutes the global neuroscience
research challenge [1]. The pharmaceuticals used so far are characterized by moderate
effectiveness; therefore, the development and synthesis of new compounds with potential
neuroprotective properties is urgently needed [4,5]. Current screening methodologies
in novel drug discovery are performed to select compounds with the most desirable
properties. Common high throughput screening assays provide data about potential
cytotoxicity, genotoxicity and antiproliferative properties [6]. In turn, our previous studies
showed that the D2AAK1 compound displays antipsychotic, anxiolytic and procognitive
effects in respective animal models. This compound has been identified in structure-
based virtual screening as a multi-target ligand of aminergic G protein-coupled receptors
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(GPCRs) [7]. Moreover, the compound is characterized by neuroprotective properties as
well as stimulation of neuron growth and survival [8,9]. This important finding suggests
its potential application in the treatment of neurodegenerative and mental disorders.

Here, we screened D2AAK1 derivatives 1–20 (Figure 1) [10] for the selection of the
most optimal pharmacological profile of compounds as new pharmaceutical substances
for the treatment of neurodegenerative diseases. We observed that the compounds cause
the increase in hippocampal neurons’ proliferation rate, changes in the level of reactive
oxygen species (ROS), reactive nitrogen species (RNS), or the non-enzymatic cell protection
mechanism (reduced glutathione—GSH) and depleted intracellular calcium pool. Upon
analyzing the structure–activity relationship of D2AAK1 and its derivatives, it may be
concluded which compounds from among all implemented structural features are the most
favorable for neuroprotective activity.
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2. Results and Discussion

The main cause of neurodegenerative diseases is the death of nerve cells. This phe-
nomenon is mainly initiated by oxidative and nitrosative stress. The consequences of a
redox imbalance can be highly destructive and include DNA damage and protein or lipid
degradation, which inevitably leads to cell death. Moreover, ROS and RNS can activate
interacting mechanisms including disturbance of intracellular calcium levels (Ca2+) [11].
Therefore, the screening of compounds 1–20 (Figure 1) included such assays as cell via-
bility, levels of reactive oxygen and nitrogen species, reduced glutathione and reduced
intracellular calcium.

Previously, we provided evidence of the unique properties of the lead structure
D2AAK1 in terms of neuronal growth stimulation and cell survival promotion. The
events observed were related to the up-regulation of neurotrophic factors, CAMKI kinase
and mechanisms related to cell proliferation confirmed by BrdU incorporation into newly
synthesized DNA [8]. Moreover, D2AAK1 showed antioxidant properties, decreased the
levels of ROS and RNS and prevented excitotoxicity by decreasing intracellular calcium and
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NMDA levels. The lead structure shows neuroprotective properties thanks to protection of
nerve cells against DNA damage and high temperature, not disturbing the cell cycle profile
at the same time [9].

In the case of screening related to cell viability and their proliferation in all sets tested,
we observed a dose-dependent decrease in the cell metabolic activity. In detail, the highest
proliferation rate was observed in the compounds possessing furanylmethyl substituents
linked to the tetrahydropyridine moiety (Figure 2A, compounds 1–4). Among this group
and in general, in all sets tested, the highest metabolic activity occurred in the derivative
with a methoxy substituent at the C5 position (Figure 2A, compound 2) of the indole
(***, p < 0.001). This activity lowered with the increasing size of alkoxy groups (Figure 2A,
compounds 3–4), although the lowest activity was interestingly shown by the compound
with no substituent in this position (Figure 2A, compound 1) (**, p < 0.01). Contrary to
thiophenylmethyl moiety, the compound with an unsubstituted indole (Figure 2, com-
pound 5) exhibited the highest proliferation rate (***, p < 0.001). The alkoxy group installed
(Figure 2A, compounds 6–8) led to decreasing metabolic activity with a similar tendency to
furanylmethyl fragment, namely, the bigger the substituent, the lower the activity. Among
the derivatives with benzyl groups (Figure 2A,B, compounds 9–12) at the tetrahydropy-
ridine fragment, again those with small alkoxy substituents (Figure 2A, compound 10)
(***, p < 0.001) or with no substituent (Figure 2A, compound 9) (***, p < 0.001) at the C5 po-
sition of the indole showed the highest proliferation while implementing bigger (ethoxy or
isopropoxy) groups (Figure 2B, compounds 11–12) caused decreases in cell metabolic activ-
ity. Applying the 4-methoxy group to the benzyl substituent (Figure 2B, compounds 13–16)
does not significantly change the tendencies in affecting metabolic activity. Derivatives with
a 3-methoxybenzyl substituent (Figure 2B, compounds 17–20) showed the lowest prolifera-
tion rate among other substitution options at the tetrahydropyridine moiety. Nonetheless,
the trend remained the same—with the increasing bulkiness of the alkoxy substituent at
the C5 indole (Figure 2B, compounds 19–20), the metabolic activity decreased.

The most favorable for enhancing the proliferation seems to be the compounds with
methoxy substituents at the C5 position of the indole (Figure 2A,B, compounds 2, 6, 10, 14
and 18). With the increasing size of this moiety, the cell metabolic activity decreased. Con-
sidering different chemical groups attached to the tetrahydropyridine fragment, smaller,
5-membered ring substituents (Figure 2A, compounds 1–8) are more beneficial than 6-
membered rings (Figure 2A,B, compounds 9–20). As it was already emphasized, ethoxy
and isopropoxy groups (Figure 2A,B, compounds 3–4, 7–8, 11–12, 15–16 and 19–20) are
unlikely to enhance proliferation rates. Furthermore, compounds with these substituents
exhibit toxicity at higher concentrations, with a more pronounced effect within derivatives
possessing bigger, 6-membered rings (Figure 2A,B, compounds 9–20) at the tetrahydropyri-
dine, rather than 5-membered ring groups (Figure 2A, compounds 1–8).

Based on the MTT assay, single concentrations of compounds that increase the HT-22
cells metabolic activity were selected for all further studies (marked with a red frame)
(Figure 2A,B).

The available literature’s data indicate that antipsychotic drugs improve the survival
of nerve cells and support their division [12,13]. Increasing the proliferation of neurons and
creating new neural connections is a key point in the treatment of neurodegenerative and
mental diseases [2]. Upon analyzing the structure–proliferation relationship of the tested
compounds, it can be clearly stated that the lead structure of D2AAK1 causes the highest
increase in proliferation [8] compared to its derivatives. The increase in proliferation can be
induced as a result of the activation of mechanisms related to the hormesis effect. Hormesis
describes dose-response relationships often characterized by stimulation of proliferation
by low dose [14]. However, the cell is characterized by the presence of various protective
mechanisms. In fact, their action determines cell survival or death. One of the cell death
pathway indicators is an increase in the intracellular calcium pool [15], but the function
of calcium is not limited to cell death only. Calcium release plays an important role in
the control of neurite growth, synaptic plasticity, secretion and neurodegeneration [16].
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Additionally, for neurons, levels of calcium are crucial due to its participation in the
transmission of depolarizing signals and synaptic activity [17].
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Figure 2. (A). Metabolic activity of HT-22 cells treated with compounds 1–10 for 48 h. All experimental
groups were compared using one-way ANOVA of variance with Dunnett’s post hoc test; mean ± SD,
n = 9. Statistically significant results are displayed as: * p < 0.05; ** p < 0.01; *** p < 0.001. (B) Metabolic
activity of HT-22 cells treated with compounds 11–20 for 48 h. All experimental groups were
compared using one-way ANOVA of variance with Dunnett’s post hoc test; mean ± SD, n = 9.
Statistically significant results are displayed as: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Here tested compounds did not alter the levels of intracellular calcium. The only
derivatives that cause statistically significant changes are the ones with isopropyl groups at
the C5 indole and 3-methoxy or 4-methoxybenzyl substituents at the tetrahydropyridine
fragment (Figure 3, compounds 16, p = 0.0486; 20, p = 0.0295). In other cases, the results
were at the control level or slightly below; however, they were not statistically significant
(Figure 3).
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Figure 3. Intracellular calcium (Ca2+) level of HT-22 cells treated with compounds 1–20 (A) for 48 h
and representative images (B). All experimental groups were compared using one-way ANOVA of
variance with Dunnett’s post hoc test; mean ± SD, n = 9. Statistically significant results are displayed
as: * p < 0.05. Green fluorescence—FITC. Magnification of the objective lens 10×.

The interaction between calcium level and nitric oxide (NO) in nerve cells has many
physiological as well as pathophysiological aspects. Nitric oxide is also considered to
be an important effector of calcium accumulation through the potential-dependent Ca2+

mitochondrial channel. Overall, mitochondria are central in the pathogenesis of neurode-
generative diseases due to ROS overproduction or specifically impaired Ca2+-buffering
capacity [18,19]. In turn, excessive increase in cytosolic Ca2+ concentration can result in
redox imbalance and impaired mitochondrial function and cellular bioenergetics. Most
importantly, calcium level dysregulation or mitochondrial impairment may also contribute
to aberrant protein folding [17,20]. Thus, in neurodegenerative processes, the ability of neu-
rons to maintain adequate energy levels or redox balance is an extremely important aspect.

In our research, we noted compound-induced accumulation of intracellular nitric oxide
(NO). In detail, we observed a statistically significant increase in NO production in all ex-
perimental sets (***, p < 0.001—compounds 1, 3–11 and 13–20; ***, p = 0.0005—compound 2;
***, p = 0.0006—compound 12). The highest increase in nitric oxide compared to the control
group occurs within the derivatives with bigger substituents at both positions, namely,
3-methoxy and 4-methoxybenzyl, and ethoxy and isopropoxy groups (Figure 4, compounds
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15–16 and 19–20). In contrast, the compounds with furanylmethyl fragments (Figure 4,
compounds 1–4) generally were characterized by the lowest impact on the elevation of NO;
however, this was still at the significance level. In the case of thiophenylmethyl derivatives,
the highest NO was observed in the compound with a methoxy group (Figure 4, com-
pound 6), while in benzyl derivatives, with no substituted indole (Figure 4, compound 9).
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Figure 4. Nitric oxide (NO) level of HT-22 cells treated with compounds 1–20 (A) for 48 h and
representative images (B). All experimental groups were compared using one-way ANOVA of
variance with Dunnett’s post hoc test; mean ± SD, n = 9. Statistically significant results are displayed
as: *** p < 0.001. Green fluorescence—FITC. Magnification of the objective lens 10×.

The NO overproduction we observed is probably directly related to low Ca2+ levels.
RNS overproduction has been linked with functionally active neurons, increased metabolic
activity and cellular plasticity, including neuronal differentiation and neurite outgrowth.
Moreover, high RNS levels can influence calcium release and activate signaling cascades
directly related to synaptic plasticity. There is, however, a critical limit to the ROS/RNS
pool in a cell, which triggers cell senescence and apoptosis. Overproduction can also result
in dramatic and long-term changes in cellular excitability and neuronal activity via the
calcium-dependent pathway [21,22].

In addition to RNS, ROS are also necessary for the regulation of physiological cell
functions through redox signaling. Here, we observed that compounds tested slightly affect
the levels of ROS linked with redox homeostasis. In detail, we noted a significant increase
in ROS overproduction only in selected experimental sets. Furanylmethyl derivatives
(Figure 5, compounds 1–4) seem to be the most favorable when it comes to affecting the
level of reactive oxygen species, causing a slight decrease or no changes (ns, p > 0.05).
Within them, only the compound with an isopropoxy group at the C5 position of the indole
(Figure 5, compound 4) showed a minor increase in ROS level; however, the result was not
statistically significant (ns, p > 0.05). The highest statistically significant increase in the level
of ROS was observed in the benzyl compound with an ethoxy group at the indole moiety
(Figure 5, ***, p < 0.0001—compound 11). The general tendency among all compounds
is that a lack of substituent or installation of a small group at the C5 indole (Figure 5,
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compounds 1, 2, 5, 6, 9, 10, 13, 14, 17, 18) is more beneficial than the presence of a bigger
alkoxy fragment (Figure 5, compounds 3, 4, 7, 8, 11, 12, 15, 16, 19 and 20).
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Figure 5. Reactive oxygen species (ROS) level of HT-22 cells treated with compounds 1–20 (A) for 48 h
and representative images (B). All experimental groups were compared using one-way ANOVA of
variance with Dunnett’s post hoc test; mean ± SD, n = 9. Statistically significant results are displayed
as: * p < 0.05; ** p < 0.01; *** p < 0.001. Red fluorescence—Texas Red. Magnification of the objective
lens 10×.

In our study, the ROS level reflected values close to the control (with some exceptions).
This may indicate that, in this case, ROS play secondary messenger functions in cell
signaling and are essential for various physiological processes. Our research also confirms
the general non-cytotoxicity of the tested compounds depending on the structure. ROS
levels are often altered by the action of various substances. Recently, ROS have been
mainly considered as undesirable oxidative stress-related effects. It turns out, however, that
they play an important role as transmitters in redox signaling under normal physiological
conditions. Research confirms that ROS accumulation causes damage to various cellular
components [23].

ROS/RNS levels are controlled by intracellular enzymatic and non-enzymatic mech-
anisms. Here, we observed that compounds tested maintain cellular redox homeostasis
by glutathione activation. The cytosolic redox state was possibly compensated by intra-
cellular GSH radical scavenging activity [24]. Considering substituents at the tetrahy-
dropyridine moiety, the biggest decrease in the level of glutathione was caused by com-
pounds possessing the thiophenylmethyl group (Figure 6, ***, p = 0.0001—compound 5;
**, p = 0.0027—compound 6; ***, p < 0.0001—compounds 7, 8), while the lowest decrease
was found for derivatives with a benzyl group (Figure 6, compounds 9–12). Installing
3- or 4-methoxy fragments to the benzyl group (Figure 6, compounds 13–20) generally
leads to the drop of glutathione level. In the case of substitution at the C5 position of
the indole, the biggest impact on lowering GSH level was noticed predominantly in iso-
propoxy compounds (Figure 6, compounds 4, 8, 12, 16 and 20). However, interestingly,
within 4-methoxyphenyl derivatives, the compound with an isopropoxy group (Figure 6,
compound 16) showed the lowest decrease in GSH.
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Figure 6. Reduced glutathione (thiol) level of HT-22 cells treated with compounds 1–20 (A) for 48 h
and representative images (B). All experimental groups were compared using one-way ANOVA of
variance with Dunnett’s post hoc test; mean ± SD, n = 9. Statistically significant results are displayed
as: * p < 0.05; ** p < 0.01; *** p < 0.001. Blue fluorescence—DAPI. Magnification of the objective
lens 10×.

It is quite clear that GSH function is not limited to defense against free radicals. One of
the most important is the involvement of key transcription factors in redox signaling and
the detoxification of many exogenous compounds [25].

In conclusion, the depletion of the GSH pool could possibly be due to involvement in
RNS/ROS detoxification [26]. However, the mechanism by which RNS/ROS initiate cell
signaling may differ. The evidence presented here and in the literature shows that cellular
levels of free radicals are strongly associated with the regulation of antioxidant levels in
cells. Moreover, previous studies have shown that compounds 5, 9 and 17 are dopamine
D2 receptor antagonists [10]. Wei Y et al. demonstrated that the astrocyte dopaminergic
receptor D2 regulates GSH synthesis [27]. The presented evidence shows that D2 receptor
activity may also influence the regulation of GSH levels.

3. Materials and Methods
3.1. Hippocampal Neuronal Cell Line

Mouse hippocampal cell line (HT-22) (Cat# SCC129, RRID: CVCL_0321, Merck; Kenilworth,
NJ, USA) was maintained according to the manufacturer’s recommended medium DMEM
(Corning, NY, USA), supplemented with 10% fetal bovine serum (FBS, Gibco; Carlsbad, CA,
USA) and antibiotic mix solution (100 U/mL penicillin, 0.1 mg/mL streptomycin) (Thermo
Fisher Scientific; Waltham, MA, USA). Cells were grown under standard conditions (37 ◦C
with 5% CO2 flow and 95% air humidity (New Brunswick Galaxy 170 R, Thermo Fisher
Scientific; Waltham, MA, USA). For assays, cells were seeded at a constant density of
3.0 × 103 cells/cm2.
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3.2. D2AAK1 Derivatives

The synthesis and details of the D2AAK1 derivatives are provided elsewhere [10]. For
assays, compounds 1–20 were dissolved in DMSO to a stock solution (10 mM). Before each
experiment individual dilutions were prepared in a complete culture medium. For each
sample tested, the final DMSO concentration (0.5%) was adjusted, which did not affect
the viability of the cells. HT-22 cells were treated with different compounds at selected
concentrations and incubated for 48 h.

3.3. MTT Assay

The assay was performed in accordance with our previous research [8]. Cells were
seeded on 96-well plates at standard density. After 24 h, cells were treated with selected
concentrations (1–50 µM) of D2 AAK1 derivatives for 48 h. MTT (3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) was then added at a final concentration of 0.5 mg/mL.
After 4 h of incubation at 37 ◦C, the absorbance was measured at 590 nm (and 620 nm as a
reference) using the BioTek-Synergy H1 microplate reader (Agilent; Santa Clara, CA, USA).
Based on the MTT assay, concentrations were selected for further studies.

3.4. Cellular Redox Status and Antioxidant Capacity Assessment

The assay was performed in accordance with our previous research [8]. In detail,
cells were seeded at standard density on black 96-well fluorescent plates. Measurements
were assessed using the following fluorogenic probes at a final concentration of 5 µM:
dihydroethidium (Thermo Scientific; Waltham, MA, USA), DAF-2 diacetate (Cayman
Chemical; Ann Arbor, MI, USA) and Thiol Tracker Violet (Thermo Scientific; Waltham,
MA, USA). Analyses were performed using digital images and quantifications were taken
with an InCell Analyzer 2000 (GE Healthcare; Chicago, IL, USA) and presented as relative
fluorescence units (RFU).

3.5. Intracellular Calcium Analysis

Cells were seeded at standard density and incubated with compounds at selected
concentrations for 48 h. Measurements were made using the Fura-2 AM probe (Cayman
Chemical; Ann Arbor, MI, USA). Signal detection was performed with an InCell Analyzer
2000 (GE Healthcare; Chicago, IL, USA).

3.6. Statistical Analysis

Statistical analysis was performed with GraphPad Prism v. 8.0. All experiments
were carried out in triplicate. Differences between the control and study groups were
assessed using one-way ANOVA of variance with Dunnett’s post hoc test. All results are
presented as mean ± standard deviation. Statistically significant results (p-value of <0.05)
are displayed as: * p < 0.05; ** p < 0.01; and *** p < 0.001. ImageJ software was used for
image processing, while Adobe Photoshop CC software was used to create figures.

4. Conclusions
D2AAK1 versus Its Analogs

Although some D2AAK1 derivatives exhibit a significant increase in metabolic activity,
the proliferation rate elicited by the lead structure [8] exceeds that of its most active analog.
The level of intracellular calcium is statistically significantly lower after treatment with
D2AAK1 [9]. Furthermore, all reported analogs lead to an increase in reactive nitrogen
species, while the lead structure causes a drop of this parameter [9]. However, considering
the impact on reactive oxygen species and the level of glutathione, there are no significant
differences between D2AAK1 and its derivatives (Table 1). In summary, analyzing the
structure–activity relationship, we selected the compound with the most favorable profile
for neuroprotective activity. Among all implemented structural features, D2AAK1 is the
most favorable for neuroprotective activity and recognized as a promising medicinal com-
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pound for the treatment of neurodegenerative diseases. Further optimization of D2AAK1
is needed to obtain more potent compounds.

Table 1. Summary of statistical differences of all experimental sets. Statistically significant results are
displayed as: * p < 0.05; ** p < 0.01; *** p < 0.001.

HT-22

D2AAK1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MTT *** ** *** *** *** *** *** * ns *** *** *** *** * *** *** ns *** ns ns ns

Ca2+ *** ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns * ns ns ns *

NO ns *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

ROS ns ns ns ns ns ns * ns ** ns ns *** ns ns ns ns * ns ** * ns

Thiol ns ns *** ns *** *** ** *** *** ns ns ns * ** *** ** ns ns *** *** ***
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9. Koszła, O.; Sołek, P.; Kędzierska, E.; Listos, P.; Castro, M.; Agnieszka, A.K. In Vitro and In Vivo Evaluation of Antioxidant and
Neuroprotective Properties of Antipsychotic D2AAK1. Neurochem. Res. 2022, in press. [CrossRef]

http://doi.org/10.1242/dmm.030205
http://www.ncbi.nlm.nih.gov/pubmed/28468935
http://doi.org/10.3390/brainsci8090177
http://www.ncbi.nlm.nih.gov/pubmed/30223579
http://doi.org/10.1080/17460441.2019.1623784
http://www.ncbi.nlm.nih.gov/pubmed/31179783
http://doi.org/10.1155/2017/3574012
http://doi.org/10.1371/journal.pone.0155772
http://doi.org/10.1007/s12975-012-0200-y
http://doi.org/10.1016/j.neuint.2016.03.003
http://doi.org/10.3390/ijms21228849
http://doi.org/10.1007/s11064-022-03570-8


Molecules 2022, 27, 2239 12 of 12
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