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Abstract 
Escalating healthcare costs and inconsistent quality is exacerbated by clinical practice variability. Diagnostic 
testing is the highest volume medical activity, but human intuition is typically unreliable for quantitative 
inferences on diagnostic performance characteristics. Electronic medical records from a tertiary academic 
hospital (2008-2014) allow us to systematically predict laboratory pre-test probabilities of being normal under 
different conditions. We find that low yield laboratory tests are common (e.g., ~90% of blood cultures are 
normal). Clinical decision support could triage cases based on available data, such as consecutive use (e.g., 
lactate, potassium, and troponin are >90% normal given two previously normal results) or more complex 
patterns assimilated through common machine learning methods (nearly 100% precision for the top 1% of 
several example labs). 
 
Introduction 

Unsustainable growth in health care costs is in part due to waste that does not actually improve 
health.1 The Institute of Medicine estimates that over two hundred billion dollars a year are spent on tests and 
procedures that are unnecessary.2 Given this sobering amount of misallocated resources, there has been an 
increasing emphasis on high value care, notably with the American Board of Internal Medicine’s (ABIM) 
Choosing Wisely guidelines.3 Lab testing is an important target for high value care efforts as it constitutes the 
highest volume medical activity.4  Prior research suggests that in the inpatient setting, unnecessary labs 
constitute a quarter to half of all testing.5,6 Consequently, guidelines regarding high value care and lab testing 
have been emphasized by numerous professional medical societies in both general inpatient and critical care 
settings (http://www.choosingwisely.org). 
  A major barrier to high value care is variability in clinical practice among providers.  A meta-analysis 
of lab testing reports both over- and under-utilization, depending on the clinical setting.4 When used properly, 
diagnostic testing yields information that positively impacts decision-making. The consequences of 
inappropriate ordering are not merely financial. Poorly chosen diagnostics may lead to misinterpreted results 
and treatment. For example, cardiac stress testing often does not reclassify patients beyond risk assessments 
achievable from a basic history, physical exam, and laboratory tests. More so, for a patient complaining of 
chest pain with a high pre-test probability of cardiac disease (e.g., elderly male with a history of diabetes and 
cigarette smoking), accepting a “normal” cardiac stress test as reassurance of health reflects inappropriate 
medical care due to the high risk of a false negative test.7 Complementary false positives include incidental 
findings that subject patients to the risk of additional follow-up testing, procedures, and complications.8 
Serially repeated lab draws, for example, contribute to adverse outcomes including iatrogenic anemia,9 
impaired sleep, risk of delirium and overall decreased patient comfort and satisfaction.5 

Given the aforementioned issues, there is increasing emphasis on high value care education10–13 to 
avoid diagnostics without reasonable expectation to change management decisions. Human doctors typically 
have heuristic impressions for diagnostic utilities, but an over-reliance on anecdotal data subject to availability, 
framing, and anchoring bias as well as fatigue and excess responsibilities can confound decision making. The 
result is that most human (physicians) have a poor intuition for quantitatively applying diagnostic test 
performance with gross mis-estimates of pre- and post-test probabilities.14 

With the rising prevalence of electronic medical record data sources, the potential now exists to 
inform medical decisions with concrete data and high-throughput predictions models.15,16 For example. prior 
studies have illustrated high accuracy in imputing the value of ferritin laboratory results given all other labs co-
ordered, indicating redundant information.17 Others have reviewed historical data to develop risk scores to 
estimate the yield of blood cultures.18 Finding extremes of high (or low) pre-test probabilities of normal 
laboratory test results reflect low “entropy” (and thus low “information” content) in a diagnostic test.19 These 
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point to opportunities in clinical decision support to systematically identify low yield diagnostics and 
interventions.20,21 
 
Objective 
Here we describe the prevalence of common laboratory tests in a hospital environment and the rate  
of “normal” results to quantify pre-test probabilities under different conditions. Pre-test probabilities are 
estimated as a function of repeated testing as well as through a battery of machine learning methods applied to 
existing electronic medical record data to illustrate the potential for predictable lab results based only on 
existing data available before the laboratory tests were ever ordered.  
 
Methods 
We extracted deidentified patient data from the (Epic) electronic medical record for all inpatient 
hospitalizations at the Stanford tertiary academic hospital via a clinical data warehouse.22 The structured data 
covers patient encounters from their initial (emergency room) presentation until hospital discharge. With five 
years of data spanning 2008-2014, the dataset includes structured data elements (primarily laboratory orders 
and results in this study) for >71K patients. Numerical lab results were binned into categories based on 
“abnormal” flags established by the clinical laboratory.  We aggregated patient problem list and admission 
ICD9 diagnosis codes based on the Charlson comorbidity categorizations.23 The study was deemed non-human 
subjects research by the Stanford IRB. 
 
 

 
 
 
 
 

Table 1a (left) – Population information for the 71K sampled patients. Table 1b (right) – Breakdown by race of 
the sampled patients. 

 
We restricted ourselves to laboratory diagnostics that the clinical lab pre-specified as “Normal” or “In Range” 
vs. not (e.g., “Abnormal,” “High,” or “Low”) to use an established reference for binary classification of result 
values. We reviewed serial normal results within several prior window periods (1, 2, 4, 7, 30, and 90 days) to 
assess how the normal rate shifts after k consecutive normal results are observed (e.g., daily lab tests). When k 
is 0, this reflects no previous results (normal or abnormal) exist within the window period. When k is 1, this 
reflects there is exactly one consecutive prior normal result. 
 
Pseudocode for Counting Consecutive Normal Lab Results: 
Initialize counts dictionary to zeros 
Initialize queue to empty 
For every lab result (chronological order): 
 Remove all results in the queue outside the current window 
 If the previous lab result is outside the current window: 
  k = length of queue 
 Else: 

Inpatient Population Information 
Total Number of Patients 71051 
Total Number of Hospitalizations 114296 
Age – Mean (Years) 60.12652 
Age – Standard Deviation (Years) 18.68509 
Percentage Female / Male 51.1 / 48.9 

60.2% 
11.5% 

11.1% 

6.1% 

4.4% 

2.8% 2.4% 
1.3% 

0.3% 

Patient	Race	Breakdown

White

Asian

Hispanic	Latino

Other

Black

Unknown

Hispanic/Latino

Pacific	Islander

Native	American

218



 

  k = NULL 
Increment total count for k 
If result is normal: 

Add the result to the queue 
Increment normal count for k 

Else: 
Empty the queue 

 
The length of the queue represents how many consecutive normal results fall within the window. Thus, when 
we see an abnormal result, the queue is cleared. The queue can be empty for two reasons: a) no prior result 
falls within the window, or b) the prior result is abnormal (but falls within the window). In order to distinguish 
between the two cases, we check whether the previous lab result falls within the window. In order to align with 
the definition of k = 0 given earlier, we disregard counts where k equals 0 as given by the pseudocode and 
instead use the values where k equals NULL. 

Note that it is common for clinicians to order “panel” tests with multiple component results. For 
example, a common order is for a basic metabolic panel (BMP), which yields results for Sodium (Na), 
Potassium (K), Chloride (Cl), HCO3 (Bicarbonate), Blood Urea Nitrogen (BUN), Creatinine (Cr), Calcium 
(Ca) and Glucose. Individual results register as normal or abnormal, while the panel test is labeled normal if 
and only if all component results are normal. 

For an example set of common laboratory tests (e.g., TSH=Thyroid Stimulating Hormone, 
SPLAC=Sepsis Protocol Lactate, FER=Ferritin, NTBNP=N-Terminal pro-Brain Natriuretic Peptide) with 
single result values (unlike panel tests that rarely have all normal results) we trained machine learning models 
to predict the binary result of whether a random sampling of orders in 2013 would yield a “normal” result. 
Data features extracted included: 

● Patient Age 
● Gender 
● Race (White Non-Hispanic-Latino, Asian, Black, Pacific Islander, etc) 
● Time of Day lab ordered (reflecting daily patterns) 
● Time of Year lab ordered (reflecting seasonal patterns) 
● Presence and time since occurrence of a diagnosis in one of the Charlson comorbidity groups 

o (e.g., Moderate-Severe Liver Disease, Rheumatic Disease, Congestive Heart Failure, etc.) 
● Presence and time since primary or consulting treatment by hospital specialty teams 

o (e.g., Cardiology, Hematology, Oncology, Medical Intensive Care Unit, etc.) 
● Presence and time since occurrence of the same lab test being predicted, with different window sizes 

(1 day, 7 days, 30 days, etc.) 
● Summary statistics as below during the window period for results of the laboratory test being 

predicted, vital signs (blood pressure, pulse, respiration rate, temperature, urine output, Glasgow 
Coma Scale, FiO2) and laboratory result values (white blood cells, hemoglobin, sodium, potassium, 
bicarbonate, blood urea nitrogen, creatinine, lactate, ESR, CRP, Troponin, blood gases) commonly 
used in severity of illness prognosis systems.24,25 Missing values were simply imputed with the overall 
median observed values for each measure, while the “count” feature effectively acts as an indicator 
variable to reflect the informativeness of certain lab results not being available. 

o Count 
o Count In Range / Normal 
o Min 
o Max 
o Median 
o Mean 
o Standard deviation 
o First 
o Last 
o Difference = Last – First 
o Slope = Difference / ( Last Time - First Time ) 

 
For each example lab test evaluated, we randomly split the data into training and test sets, with 80% of the data 
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going to the training set and the remainder being held out for testing. We used several popular machine 
learning models implemented in the scikit-learn Python library (http://scikit-learn.org). We performed a grid 
search on various hyperparameters to identify favorable configurations, using area under the receiver operating 
characteristic curve (ROC AUC) accuracy as an objective function to guide the hyperparameter search. 
Methods and hyperparameters used include: 

● Decision Tree 
o Max_depth: Maximum allowed depth of the decision tree 

● Random Forest - Ensemble classifier that fits multiple decision trees and averages their results 
o N_estimators: Number of decision trees to use in the ensemble 
o Max_depth: Maximum allowed depth of any decision tree  

● Ada Boost - Ensemble classifier that starts with a base model (Decision Tree) and then fits additional 
copies of the model to the data, but uses an adaptive learning rate to put emphasis on misclassified 
examples 

o N_estimators: Number of decision trees to use in the ensemble 
o Learning_rate: Multiplier for the contribution of each successive classifier in the ensemble 

● Logistic Regression 
o C: Inverse of regularization strength (smaller means stronger regularization) 

 
Results 
Figure 1a and 1b report the most prevalent lab tests ordered and component results in the hospital along with 
the rate of “normal” = “In Range” values for each, indicating a general pre-test probability. Figure 2 illustrates 
how this pre-test probability “normal rate” in most cases rapidly converges given a previous consecutive series 
of normal results for the same test (indicating reducing information value in repeated testing). Table 2 reports 
the prediction accuracy in terms of ROC AUC (c-statistic) of several machine learning methods for binary 
classification of “normal” results for example laboratory tests based on patient demographic and derived time 
series summary features to illustrate the overall discriminatory power and prediction accuracy. Figure 3 
“zooms in” on the tail of example cases predicted most likely to yield normal results and the actual normal rate 
(“precision at K”). 

 
 
 
 
 
 
Figure 1a – Top 25 most prevalent 
lab orders 2009-2014. Quantity noted 
by gray bars. Blue bars and data 
labels reflect percent of lab orders 
yielding all “Normal” = “In Range” 
results. For example, over there were 
over 1,000,000 orders to check a 
patient’s Glucose by Meter, with 9% 
of such test yielding a value in the 
normal range. 
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Figure 1b – Top 25 most prevalent lab 
result components 2009-2014. Quantity 
noted by gray bars. Blue bars and 
outlying data labels reflect percent of lab 
results denoted as “Normal” = “In 
Range” results. 
 
 
 
 
 
 
 
 
 

Figure 2 – Common laboratory tests and component results with their rate of all “normal” results as a function 
of consecutive normal results previously observed in the prior week. For example, of all (Ionized) Calcium 
tests ordered where zero prior results existed in the week prior, just over 40% yielded a result in the normal 
range. For repeated testing of Ionized Calcium, the prevalence of normal results progressively increases with 
respect to the number of prior normal results. In this case, Ionized Calcium tests yield ~80% results in the 
normal range when preceded by 5 consecutively normal results in the past week. WBC:White Blood Cells 
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Ada Boost n_estimators=10 learning_rate=1 0.71 0.87 0.80 0.58 
Ada Boost n_estimators=100 learning_rate=0.01 0.68 0.82 0.79 0.61 
Ada Boost n_estimators=100 learning_rate=0.1 0.73 0.88 0.86 0.62 
Ada Boost n_estimators=100 learning_rate=1 0.75 0.86 0.85 0.59 
Ada Boost n_estimators=50 learning_rate=0.01 0.65 0.81 0.79 0.60 
Ada Boost n_estimators=50 learning_rate=0.1 0.72 0.87 0.83 0.61 
Ada Boost n_estimators=50 learning_rate=1 0.74 0.85 0.87 0.60 
Decision Tree max_depth=20 0.59 0.69 0.70 0.51 
Decision Tree max_depth=5 0.66 0.76 0.78 0.56 
Decision Tree max_depth=50 0.61 0.63 0.63 0.53 
Gaussian Naive Bayes 0.57 0.79 0.60 0.60 
Logistic Regression C=0.1 0.74 0.86 0.83 0.59 
Logistic Regression C=1.0 0.73 0.84 0.82 0.59 
Logistic Regression C=10.0 0.73 0.82 0.80 0.58 
Random Forest n_estimators=10 max_depth=10 0.72 0.88 0.79 0.59 
Random Forest n_estimators=10 max_depth=15 0.69 0.85 0.79 0.58 
Random Forest n_estimators=10 max_depth=5 0.72 0.85 0.79 0.62 
Random Forest n_estimators=30 max_depth=10 0.73 0.87 0.80 0.61 
Random Forest n_estimators=30 max_depth=15 0.73 0.87 0.83 0.64 
Random Forest n_estimators=30 max_depth=5 0.72 0.86 0.79 0.62 
Random Forest n_estimators=5 max_depth=10 0.70 0.88 0.70 0.56 
Random Forest n_estimators=5 max_depth=15 0.68 0.84 0.71 0.59 
Random Forest n_estimators=5 max_depth=5 0.70 0.83 0.76 0.59 
Max Value 0.75 0.88 0.87 0.64 
 
Table 2 – Prediction accuracy (ROC AUC) for example lab tests using electronic medical record data to train 
models by several machine learning methods and range of hyperparameters. The high discrimination power 
overall illustrates the significant predictive power of existing structured clinical data towards preemptively 
predicting these example laboratory results.  
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Figure 3 – Top 10% tail distribution of several example lab results based on how likely they are to yield 
“normal” results as predicted by machine learning methods. Curves plot the precision (positive predictive 
value) = rate of normal lab results when assessing only the top K% of results). For many methods and many 
labs, the top few percent of lab results are essentially 100% predictable to be normal given existing data. 
Example hyperparameters illustrated: Decision Tree Max Depth = 20, Random Forest 30 Estimators with Max 
Depth =5, AdaBoost with 50 Estimators and Learning Rate = 0.1, Logistic Regression with Regularization C = 
1.0, and Gaussian Naïve Bayes). 
 
Discussion 
Low (information) yield laboratory tests are commonly ordered in the hospital, with Figure 1a 
highlighting blood cultures with very high (~90%) pre-test probabilities of being normal. Figure 2 and 
Figure 3 illustrate how pre-test probabilities can be further refined by integrating additional information 
on prior consecutive results or more complex patterns of clinical data assimilated through machine 
learning methods. For cases where the pre-test probability of “normal” approaches 50%, this reflects high 
information entropy where the tests are most valuable to confirm information that is difficult to predict. 
We focus our attention on the tails of the distribution where test instances have an extremely high (or 
inversely an extremely low) pre-test probability. Figure 3 in particular illustrates the distribution of 
predictability for individual laboratory test instances at the extreme ends, where a percentage of cases is 
essentially 100% predictable to be normal.  

Our approach provides a data-driven, systematic method to identify cases where the incremental 
value of testing is worth reconsidering. The low information entropy in these cases reflects low expected 
diagnostic value for medical decision making. When the pre-test probability of a diagnostic result is 
extremely high/low, finding the opposite test result may even reflect incorrect findings (false positive or 
false negative) rather than a surprising clinical result.14 For example, the ~90% of normal blood cultures 
does not even include false positive blood cultures growing (skin) contaminant organisms that do not 
reflect a clinically relevant infection. While this approach systematically identifies possible low yield 
diagnostic cases for review, it is important to acknowledge that a high pre-test probability of a normal 
result does not obviate the value of the test. Low information does not entail low importance or low 
value. A test with 99% pre-test probability of being normal may still be worthwhile if the consequence of 
missing the 1% event (e.g., a preventable cancer or bacteremia) is itself extreme. In such cases, a more 
nuanced cost-effectiveness or decision analysis is more appropriate than relying on prediction accuracy 
alone.  

We focus on diagnostic laboratory testing in this work as a well-structured target, though the 
approach can be expanded to many other application (e.g., predicting low yield imaging tests). This 
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approach can also easily predict which laboratory tests have a high pre-test probability of being abnormal. 
We do not target these cases however, as there are many contexts where it is clinically important to 
monitor abnormal lab results (e.g., tracking hemoglobin values in a bleeding patient or creatinine values 
in a patient recovering from kidney injury). Notably, normal (negative) results are often quite valuable 
and necessary to trigger subsequent care decisions. For example, confirming negative blood cultures is 
often a key decision point to guide antibiotic treatment, and our results should not be interpreted as a 
blanket argument that blood cultures are wasteful tests.  

While normal results are often valuable, the more nuanced argument our approach presumes is 
that confirming a highly predictable “normal” lab result is often a waste. Clinicians, patients, and family 
members commonly argue that it is worth it “just to document” the normal results to “rule out all 
possibilities.” While a common rationale is that it “never hurts to have more information” that you might 
need “just in case,” information theory would explain that there is essentially no information gained from 
confirming results that are reliably predictable from available data. As a result, common practice may 
well reflect both an over-estimation of the benefits of lab testing and an under-estimation of the risks 
(iatrogenic anemia, erroneous or incidental findings leading to further unnecessary work-up, risks of 
delirium, etc.). Returning to our blood culture example, really we do not care about whether the culture is 
positive or negative. What we care about is whether the patient has a bloodstream infection. The 
diagnostic test is imperfectly correlated with the clinical status we actually care about, but provides 
enough predictive power to satisfy a decision making threshold. If diagnostic tests have imperfect 
accuracy and “it never hurts to have more information,” arguably we should always order more tests. 
Indeed we do routinely order blood cultures in sets of 4 bottles at a time (or even 12 bottles for suspected 
heart infections). We would not continue this indefinitely however, as once we have achieved enough 
confidence based on available information, further testing is not expected to change our assessment or 
decision making. 

Limitations of this study include its basis at a single medical center. The methods are 
generalizable, but would be best reproduced with local data if attempting to predict local practice patterns 
that will constantly evolve.26 To help cope with model overfitting, we evaluated on randomly separated 
train-test splits of the data and focused on varying select model hyperparameters. With large values of 
max_depth, the tree models may strongly overfit the training data. With large values of ensemble 
n_estimators, we can reduce overfitting at a cost to training time. Based on the results analyzed here, the 
ensemble based AdaBoost and Random Forest approaches tend to yield better laboratory prediction 
accuracies, but many other learning methods (e.g., LASSO L1 regularization,27 support vector machines, 
and neural networks) and hyperparameter variants can be surveyed for their efficacy. The ensemble based 
approaches likely perform better in this problem construction when they can better cope with the many 
highly correlated or irrelevant feature variables. For example, if only a single prior vital sign reading was 
available for a prediction, the min, max, mean, and median values will all be identical (let alone 
correlated). Prior studies on predictions using semi-structured healthcare data have also integrated more 
sophisticated missing data imputation methods for laboratory values,17 though we focused on summary 
statistics of the laboratory ordering behavior (e.g., quantity and timing) that are often more predictive of 
clinical outcomes than the value of the results themselves.28 Future work can explore not just the overall 
predictive accuracy of these different methods but identify which data features are most informative, with 
prior work suggesting the “first derivative” of time series data may be more valuable than the primary 
data.29 

We envision implementations where computerized provider order entry (CPOE) systems 
automatically provide patient-specific pre-test probability estimates whenever a clinician is about to order 
a diagnostic test. This would be similar to existing frameworks where systems can report the relative cost, 
turnaround time, and prior result values for diagnostic tests before attempted order entry.30, 31, 32 Similar to 
these existing constructs, the clinician remains empowered to make the final decision as to whether the 
diagnostic test order is appropriate given all contextual information (including patient factors that may not 
be obvious in the computer record). Explanatory modules for why the system predicts extreme pre-test 
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probabilities can further increase confidence and adoption. Short of such direct implementation, our 
approach can simply identify the outlier population of low yield diagnostic testing for expert clinician 
review to confirm or refute appropriateness. If inappropriate use is confirmed, this can lead to different 
interventions such as targeted education, standardized practice guidelines, and customized best practice 
alert rules33 (perhaps inspired by the relevant feature set learned from the machine learning algorithms).  

While identifying low yield medical care via automated methods is necessary, it is insufficient, to 
deter ineffective use. Factors that contribute toward unnecessary testing ranges from ease of ordering with 
panels and electronic order entry, inexperience, fear of litigation and perceived pressure from colleagues 
and patients.34 Affecting change in clinical practice will require a range of processes. Patient education is 
necessary to illuminate when "less is more" in healthcare. The respective risks of pressuring providers to 
administer more diagnostics and treatments is important to clarify, particularly in the context of 
increasing emphasis on patient satisfaction (scores). Refinement of payment models are necessary to drive 
incentives for high value care, at both the institutional and provider-specific level. Clinician education 
remains crucial in the quantitative interpretation of diagnostic performance characteristics, backed by 
effective decision support. These challenges are significant, but effectively balancing the benefits and 
risks of diagnostic testing is critical towards simultaneously optimizing the cost, quality, and access in our 
healthcare system. 
 
Conclusions 

Low yield laboratory tests are commonly ordered in the hospital. These can be quantitatively 
targeted for clinical decision support based on machine learned patterns from readily available structured 
electronic medical record data. 
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