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Background: Childhood cancer survivors (CCS) are at an increased risk for

cardiovascular diseases (CVD). It was the primary aim of this study to determine different

measures of cardiac, carotid, lipid, and apolipoprotein status in young adult CCS and in

healthy controls.

Methods: Cardiac and common carotid artery (CCA) structure and function were

measured by ultrasonography. Lipids and apolipoproteins were measured in the blood.

Peripheral arterial endothelial vasomotor function was assessed by measuring digital

reactive hyperemia index (PAT-RHI) using the Endo-PAT 2000.

Results: Fifty-three CCS (20–30 years, 35 men) and 53 sex-matched controls were

studied. The CCS cohort was divided by the median dose of anthracyclines into a low

anthracycline dose (LAD) group (50–197 mg/m2, n = 26) and a high anthracycline dose

(HAD) group (200–486 mg/m2, n = 27). Carotid distensibility index (DI) and endothelial

function determined by PAT-RHI were both lower in the CCS groups compared with

controls (p < 0.05 and p = 0.02). There was no difference in carotid intima media

thickness. Atherogenic apolipoprotein-B (Apo-B) and the ratio between Apo-B and

Apoliprotein-A1 (Apo-A1) were higher in the HAD group compared with controls (p

< 0.01). Apo-B/Apo-A1-ratio was over reference limit in 29.6% of the HAD group, in

15.4% of LAD group, and in 7.5% of controls (p = 0.03). Measured lipid markers (low

density lipoprotein and total cholesterol and triglycerides) were higher in both CCS groups

compared with controls (p < 0.05). Systolic and diastolic function were measurably

decreased in the HAD group, as evidenced by lower EF (p < 0.001) and lower é-wave

(p < 0.005) compared with controls. CCA DI correlated with Apo-B/Apo-A1-ratio and

Apo-A1. Follow-up time after treatment correlated with decreased left ventricular ejection

fraction (p = 0.001).

Conclusion: Young asymptomatic CCS exhibit cardiac, vascular, lipid, and

apolipoprotein changes that could account for increased risk for CVD later in life. These

findings emphasize the importance of cardiometabolic monitoring even in young CCS.
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INTRODUCTION

Cardiovascular disease (CVD) including cardiomyopathy,
ischemic heart disease, and cerebrovascular disease amount to
the most prevalent non-cancerous causes of death in childhood
cancer survivors (CCS) (1, 2). The risk for CVD in CCS is at
least in part attributed to previous treatment regimens with
cardiotoxic anthracyclines (AC) and radiotherapy (3). Recent
studies have shown that CCS have increased carotid intimamedia
thickness (CIMT), stiffer arteries, and endothelial dysfunction
(4–8). These deviations are now recognized as markers of early
atherosclerosis and predict later onset of ventricular dysfunction,
stroke, and ischaemic heart disease (9–13). CCS are also at
increased risk for the metabolic syndrome, dyslipidaemia,
obesity, and hormonal abnormalities (14), which could further
contribute to their multifold risk for cardiovascular morbidity
and mortality (15).

Previous studies have largely focused on either cardiac or
vascular abnormalities, mostly in patients during or soon after
treatment or in older CCS. Assessing the early onset of both
vascular and cardiac changes may provide more accurate insights
with regard to the development of future CVD in CCS, leading to
better preventive strategies. Therefore, the aim of this work was
to determine different cardiac, carotid, lipid, and apolipoprotein
markers for CVD in young Swedish CCS and the associations
between these markers. To evaluate this, we performed a cross-
sectional study on young CCS treated with AC, without any
previous or current overt CVD, and compared them with age-
and sex-matched healthy controls.

METHODS AND STUDY POPULATION

We conducted an observational cross-sectional case–control
study of cardiovascular status in young adults who survived
cancer during childhood after treatment at the Department
of Pediatric Oncology of the Skåne University Hospital Lund,
Sweden. All data collection of CCS and controls was performed
from April 2014 to April 2017. Inclusion criteria were: cancer
diagnosis under the age of 18, treatment with AC among
other chemotherapeutic agents, with and without radiotherapy,
survival more than 5 years after disease remission, and age
20–30 years at inclusion. Exclusion criteria were: brain tumor
diagnosis (these patients are known to have endocrine disorders
and motor deficits), previous overt CVD or any cardiovascular
complication during cancer treatment, any chronic disease or
syndrome, or pregnancy. Informed written consent was obtained
from all study participants. The study was approved by the
Regional Ethical Committee for Human Research, Lund, Sweden
(DNR 2013/205).

Abbreviations: Apo-B, apolipoprotein B; Apo-A1, apolipoprotein A1; AC,

anthracyclines; CCA, common carotid artery; CCS, childhood cancer survivors;

CVD, cardiovascular disease; DI, distensibility index; HAD, high anthracycline

dose; HDL, high density lipoprotein; IVS, interventricular septum; LAD, low

anthracycline dose; LDL, low density lipoprotein; LVEF, left ventricular ejection

fraction; LVID, left ventricular inner diameter; LVPW, left ventricular posterior

wall; PAT-RHI, peripheral arterial tonometry-reactive hyperaemia index; SF,

shortening fraction; SI, stiffness index; TG, triglycerides.

Childhood cancer survivors were identified in the population
based BORISS registry (16) for childhood malignancies in
southern Sweden. One-hundred-fifty-two CCS met the eligibility
criteria and received a written invitation to participate. If no
answer was received an additional invitation was sent. An equal
number of healthy controls with similar sex and age distribution
were recruited by written announcements at the Skåne University
Hospital area in Lund, Sweden, and these were examined exactly
in the same way and during the same time-period as the CCS.

To evaluate vascular and cardiac effects of previous treatment
with AC, CCS were divided into two subgroups based on the
median cumulative dose of AC: low cumulative AC-dose (LAD)
group and high cumulative dose (HAD) group. AC-doses were
converted to doxorubicin equivalents using conversion factors:
0.83 for duanorubicine, 0.67 for epirubicine, 5.00 for idarubicine,
and 4.00 for mitoxantrone (17). Age at diagnosis and follow-up
time were retrieved from the registry.

All study participants completed a questionnaire (18)
previously used in our institution regarding current regular use
of medications (cardiovascular medicines, statins), tobacco use
(type (cigarettes or smokeless tobacco), dose and frequency), level
of physical exercise (sports or gym training, hours/week). Systolic
and diastolic brachial blood pressure were measured after 15min
of rest in supine position in the right arm using a calibrated
wall-hung aneroid sphygmomanometer at the same time as
carotid ultrasonography was performed. Weight and height
were measured (using a calibrated scale and a stadiometer).
Overweight was defined as BMI≥ 25 and< 30 kg/m2 and obesity
was defined as BMI ≥ 30 kg/m2.

Laboratory Analyses
Fasting blood samples were collected to analyze lipid and
apolipoproteinmarkers for CVD in plasma and serumas follows;
triglycerides (TG, ref. 0.45–2.60mM), low-density lipoprotein
(LDL, ref. 1.20–4.30mM), high-density lipoprotein (HDL, ref.
women 1.00–2.70mM, men 0.80–2.10mM), total cholesterol
(ref. 2.90–6.10mM), creatinine (ref. women 45–90µM, men
60-105µM), apolipoprotein A1 (Apo-A1, ref. women 1.08–
2.25 g/L, men 1.04–2.02 g/L), and apolipoprotein B (Apo-
B, ref. women 0.60–1.17g/L, men 0.66–1.33g/L). The Apo-
B/Apo-A1 ratio was calculated (ref. < 0.90 for men and <

0.80 for women). Estimated glomerular filtration rate (eGFR,
ref. 80–125mL/min/1.73 m2) was estimated from creatinine
and cystatine-C (19). All the blood samples were collected
and analyzed by standard assays (Roche Diagnostics, Basel,
Switzerland). All reference values above are age and sex-specific
and were provided by the department of Clinical Chemistry at
the Skåne University Hospital.

Echocardiography
Electrocardiography-gated carotid ultrasonography and
echocardiography were performed by a single investigator (OB)
according to a standardized protocol, and image acquisition was
done according to the American Society of Echocardiography
guidelines (20, 21). An echocardiograph (EPIQ-7, Philips
Medical Systems, Andover, Massachusetts, USA) equipped with
an X5-1 probe (1–5 MHz) was used for echocardiography,
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and a L15-7io (7–15 MHz) linear array transducer for vascular
ultrasound was used for carotid ultrasound. The investigator
who performed these assessments was blinded to the status of the
study participants. All cardiac and carotid measurements were
performed offline (QLAB, Philips Healthcare Netherlands) and
were averaged over three cardiac cycles.

M-mode measurements of the septal thickness (IVS) and
left ventricular posterior wall thickness (LVPW) along with left
ventricular internal diameters (LVID) in systole and diastole were
obtained in the parasternal view to evaluate cardiac morphology.
Left ventricular mass was calculated based on the M-mode
measures using the Devereux formula (21). Shortening fraction
(SF) was calculated using the M-mode measures. Left ventricular
ejection fraction (LVEF) was calculated using the Simpson
biplane method using the apical two- and four-chamber views.
Mitral valve E- and A-wave were obtained from the apical four-
chamber view. To determine the left ventricular ś and é-wave,
tissue-Doppler was recorded at mitral annulus septal and lateral
wall point (21).

Loops of three to five beats of both right and left common
carotid arteries (CCA) in the longitudinal view were obtained
using electrocardiography-gated ultrasonography. The far wall
of a 1-cm long segment of the proximal CCA was used to
measure intima media thickness (CIMT) with a semiautomated
tracing algorithm (QLAB, Philips Healthcare Netherlands). The
CCA diastolic diameter (CCA Dd) and systolic diameter (CCA
Ds) were measured from the leading edge of the near wall
(adventia/media border) to the leading edge of the far wall.
The distensibility index (DI) and the β-stiffness index (SI) were
calculated using previously described methods (22, 23):

DI

(

% diameter change

10mmHg

)

=
Ds− Dd

Dd∗ [SBP − DBP]
∗1000

SI (no unit) = ln

(

SBP

DBP

)

/

(

[

Ds− Dd
]

Dd

)

Inter- and intraobserver variability for the ultrasound
measurements were assessed in a subgroup of 23 participants.
Interobserver and intraobserver intraclass correlation coefficient
(ICC) for all carotid, doppler, and M-mode measurements
were >0.9. Interobserver ICC for LVEF was 0.84 and 0.90 for
intraobserver ICC.

Peripheral Arterial Tonometry–Reactive
Hyperaemia Index
Peripheral vascular endothelial function was assessed by
measuring peripheral arterial tonometry–reactive hyperaemia
index (PAT-RHI) using the Endo-PAT 2000 (Itamar Medical,
Caesarea, Israel). This method has previously been reported to
correlate with endothelial function in the coronary circulation
(24) and to be predictive for CVD (25). All measurements
were done following a standardized procedure specified by the
manufacturer (www.itamar-medical.com). After 5min of tracing
bilateral baseline index-finger oscillations of blood flow, a blood

pressure cuff was inflated to occlude blood flow into the non-
dominant arm for 5min. Following pressure release, tracings
were obtained for another 5min. A computerized software with
a proprietary algorithm automatically calculated the reactive
hyperaemia index from the fold increase in the pulse wave
amplitude relative to baseline. The reference limit for PAT-RHI
was set at >1.67, as specified by the manufacturer.

Statistical Analyses
Statistical analyses were performed with SPSS software (IBM,
version 27; SPSS, Chicago, Illinois, USA). Results were
reported as means (adjusted and unadjusted) and standard
deviations (SD) or numbers (proportions and percentages).
Based on the histogram inspection, summary statistics of
the software (providing information on means and standard
deviations and on medians and quantiles), and given skewness
>-1 but <1, we assumed variables to be approximately
normally distributed.

For baseline characteristics, continuous variables were
compared between groups using ANOVA and Student T-test
as appropriate. For dichotomous variables the Chi-square test
was used. For group comparisons of outcome variables (DI/SI,
CIMT, PAT-RHI, cardiac diastolic and systolic function, and
lipids and apolipoproteins) ANCOVA was used. Unbalanced
baseline variables were adjusted for. Blood pressure was adjusted
for height. In a subgroup analysis adjusting for treatment
variables (follow-up time after treatment completion, cranial
and mediastinal radiotherapy) only the LAD and the HAD
groups were compared. For carotid measures, CCS treated
with cranial radiotherapy was compared with CCS without this
treatment and results were adjusted for the cumulative AC dose.
Post-hoc tests were performed using the Bonferroni method
for three-group comparisons and LSD for subgroup analysis
of only CCS. Partial correlations adjusted for age and sex were
performed within the CCS group. For ANCOVA, means and
adjusted means were reported. A two-sided p-value below 0.05
was considered statistically significant.

RESULTS

Characteristics of the Study Participants
Description of the study cohort including distribution of cancer
diagnosis is shown in Table 1. Fifty-three CCS and an equal
number of controls (mean age 25.3 ± 2.4 and 24 ± 2.4 years,
respectively), were studied. The median AC dose of CCS was
197.0 mg/m2. As described in the Methods, based by the median
AC dose, the CCS cohort was divided into two groups: low AC
dose (LAD; n = 26) and high AC dose (HAD; n = 27). Among
CCS, leukemia was the most common cancer diagnosis (n =

23 of whom three had been treated for acute myeloid leukemia
and 20 for acute lymphoblastic leukemia). Four CCS had been
treated for rhabdomyosarcoma, one for Ewing’s sarcoma, one for
osteosarcoma, five for Wilms’s tumor, 11 for Hodgkin’s disease,
and eight for non-Hodgkin’s lymphoma.

In addition to AC, 24 CCS (11 in the LAD group and 13
in the HAD group) had radiotherapy as follows: mediastinal
radiotherapy in 10 CCS (all with lymphoma, of whom eight
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TABLE 1 | Characteristics of the study cohort divided in subjects with low (LAD) or high (HAD) cumulative dose of anthracyclines.

Variables Controls (n = 53) LAD (n = 26) HAD (n = 27)

Age, years (SD) 24.4 (2.4) 25.0 (2.4) 25.6 (2.5)

Male sex, n 35 (66.0%) 15 (57.7%) 17 (63.0%)

Height, cm (SD) 179.1 (8.7) 178.0 (10.1) 171.8 (9.8)**

Weight, kg (SD) 79.2 (15.3) 78.2 (14.4) 71.6 (13.3)

BMI, kg/m2 (SD) 24.60 (3.79) 24.64 (3.53) 24.17 (3.58)

Overweight, n 16 (30.0%) 11 (42.0%) 9 (33.3%)

Obesity, n 5 (9.4 %) 2 (7.8%) 2 (7.4%)

SBP, mmHg, (SD) 118.8 (11.6) 118.2 (10.1) 119.1 (12.4)

DBP, mmHg, (SD) 73.4 (5.9) 75.7 (8.3) 76.3 (8.8)

Hypertension, n 1 (1.9%) 2 (7.7%) 2 (7.4%)

Resting HR, beats/min, (SD) 66.2 (11.3) 70.0 (11.2) 74.1 (11.0)*

Exercise (hours/week), (SD) 4.4 (2.9) 4.6 (6.5) 4.2 (2.2)

Tobacco users, n 9 (17.0%) 6 (23.1%) 6 (22.2%)

Regular smokers, n 2 (3.8%) 1 (3.8%) 2 (7.4%)

GFR, ml/min/1,73m2 (SD) 94.98 (9.00) 92.41 (12.05) 93.88 (12.47)

Cancer Diagnosis

Leukaemia, n 5 (19.2%) 18 (66.7%)

Hodgkin lymphoma, n 10 (38.5%) 1 (3.70%)

Non-Hodgkin lymphoma, n 7 (26.9%) 1 (3.70%)

Sarcoma, n 0 6 (22.2%)

Wilms tumor, n 4 (15.4%) 1 (3.7%)

Age at diagnosis, y (SD) 10.8 (5.6) 6.0 (4.5)*

Follow-up time, y (SD) 13.4 (5.4) 18.0 (5.2)*

Cumulative AC, mg/m2 (SD) 143.6 (33.1) 277.3 (84.9)*

Radiotherapy, n 11 (42.3%) 13 (48.1%)

Mediastinal radiotherapy, n 8 (30.8%) 2 (7.4%)

Cranial radiotherapy, n 0 8 (29.6%)

Other radiotherapy, n 3 (11.5%) 3 (11.1%)

Cumulative dose radiotherapy, Gy (SD) 22.5 (7.4) 26.2 (11.0)

Values are presented as mean and SD or as number and %. p-values were calculated by one-way analysis of variance (ANOVA); intergroup differences were calculated by the Bonferroni

post-hoc test with correction for multiple comparisons, standard T-test or with chi-square test: *p< 0.05 vs controls or LAD vs HAD group; **p< 0.005 vs controls. LAD, low anthracycline

dose; HAD, low anthracycline dose; BSA, body surface area; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate, AC, anthracycline.

were in the LAD group and two in the HAD group), cranial
radiotherapy in eight (all with leukemia in the HAD group), and
radiotherapy to other organs in six (three in each group). The
mean follow-up time after the end of cancer treatment in the CCS
cohort was 15.8 (± 5.8) years. The LAD group was older at the
time of diagnosis and had a shorter follow-up compared with the
HAD group (p= 0.001 and p= 0.003, respectively).

The HAD group was shorter compared with the control group
(p = 0.004) and had a higher resting heart rate (p = 0.010).
Blood pressure was similar in CCS compared with controls.
There were five users of smokeless tobacco in the control group
and five and four in the LAD and HAD groups, respectively.
The control group had four cigarette users (two daily users and
two occasional or previous users). The LAD-group had one daily
user and the HAD group had two occasional or previous users.
There was no difference in tobacco use between controls and
CCS groups. None of the participants were on cardiovascular
medications. Exercise (hours/week) was similar between controls
and CCS.

Apolipoproteins and Lipid Biomarkers
Results of group comparisons between controls and CCS groups
of lipid biomarkers and apolipoproteins are outlined in Table 2.
Compared with controls, markers for atherosclerosis, Apo-B
and the Apo-B/Apo-A1-ratio, were higher in the HAD group
(p = 0.006 and p = 0.011, respectively). Apo-B/Apo-A1 ratio
exceeded the upper reference range for age and sex in 7.5% of
controls compared with 15.4% in the LAD group and 29.6% in
the HAD group (p = 0.030). Apo-A1 and HDL were similar
between controls and CCS groups. Compared with controls LDL,
total cholesterol, and TG were higher in the HAD group (p
< 0.005). Following adjustment for radiotherapy and follow-
up time, cholesterol and Apo-B were higher in the HAD group
when compared to the LAD group (p = 0.040 and p =

0.041, respectively).
In order to exclude a possible confounding effect of

overweight and obesity on Apo-B and the Apo-B/Apo-A1 ratio,
a separate analysis of CCS (n = 29) and controls (n = 32) with
a normal weight (BMI < 25 kg/m2) was done: CCS had higher
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TABLE 2 | Different biomarkers for lipid status in childhood cancer survivors with low (LAD) or high (HAD) cumulative dose of anthracyclines.

Variables Controls LAD (n = 26) HAD (n = 27)

Subgroup analysisa Subgroup analysisa

LDL (mM) 2.22 (0.77) 2.64 (0.69)* 3.06 (0.77)**

Adjusted Means 2.25 (0.77) 2.63 (0.74) 2.61 (0.83) 2.69 (0.78) 3.05 (0.83)

HDL (mM) 1.40 (0.32) 1.36 (0.30) 1.29 (0.34)

Adjusted Means 1.41 (0.33) 1.37 (0.32) 1.34 (0.36) 1.28 (0.34) 1.33 (0.36)

TG (mM) 0.79 (0.35) 1.01 (0.58)* 1.37 (0.93)**

Adjusted Means 0.81 (0.58) 1.00 (0.59) 1.04 (0.85) 1.33 (0.62) 1.32 (0.85)

Cholesterolb (mM) 3.84 (0.82) 4.32 (0.76)* 4.82 (0.88)**

Adjusted Means 3.89 (0.83) 4.31 (0.78) 4.29 (0.90) 4.71 (0.85) 4.85(0.92)b

Apo-A1 (g/L) 1.42 (0.22) 1.57 (0.40) 1.44 (0.27)

Adjusted Means 1.44 (0.24) 1.45 (0.23) 1.44 (0.28) 1.43 (0.24) 1.48 (0.29)

Apo-B (g/L) 0.72 (0.20) 0.80 (0.19) 0.92 (0.21)**

Adjusted Means 0.73 (0.20) 0.80 (0.19) 0.79 (0.22) 0.90 (0.20) 0.93 (0.21)b

Apo-B/Apo-A1 ratio 0.52 (0.16) 0.56 (0.14) 0.65 (0.19)**

Adjusted Means 0.52 (0.17) 0.56 (0.16) 0.56 (0.19) 0.65 (0.17) 0.65 (0.18)

LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; Apo, apolipoprotein. Values are shown as mean (SD). Differences were calculated by one-way analysis of

variance adjusting for unbalanced baseline variables (ANCOVA) and intergroup differences were calculated by the Bonferroni post-hoc test with correction for multiple comparisons: *p

< 0.05 vs. controls; **p < 0.005 vs. controls; aSubgroup analysis LAD vs. HAD group adjusted for follow-up time and radiotherapy—adjusted means (SD), bp < 0.05 vs. LAD group
b1 sample result for cholesterol missing in the HAD group. Italic values are subgroup analysis.

Apo-B of 0.85, 95% CI [0.78–0.92] vs 0.69, 95% CI [0.62–0.76], p
= 0.001 and Apo-B/Apo-A1-ratio of 0.58, 95% CI [0.52–0.64] vs
0.48, 95% CI [0.42–0.54], p= 0.016.

Carotid Measurements and PAT-RHI
These data are outlined in Table 3. CIMT was not different
between controls and CCS groups (p = 0.90). The mean DI of
the right and left CCA was lower in both LAD and HAD groups
compared with controls (p < 0.001 and p = 0.018, respectively).
The mean SI of the right and left CCA was higher in the LAD
and HAD groups compared with controls (p = 0.041 and p <

0.001, respectively). Further, meanDI was lower, andmean SI was
higher in the HAD group compared with the LAD group (p =

0.040 and p = 0.002, respectively). After adjusting for follow-up
time and cranial and mediastinal radiotherapy, the HAD group
displayed lower DI and higher SI compared to the LAD group (p
= 0.007 and p= 0.020, respectively).

When comparing CCS with and without cranial radiotherapy
(Table 4), SI of the left CCA was higher in those with cranial
radiotherapy (p= 0.011) after adjusting for the total AC dose.

Peripheral arterial tonometry–reactive hyperaemia index was
significantly lower in the whole CCS cohort compared with
controls (CCS; 1.94, 95% CI 1.77–2.12, controls; 2.23, 95%
CI 2.06–2.40, p = 0.013). Likewise, the proportion of study
participants with an abnormal PAT-RHI defined as <1.67 was
significantly higher in the CCS cohort when compared with the
controls (n= 19 of CCS vs. nine of controls, p= 0.046). The LAD
group, but not the HAD group, had lower PAT-RHI compared
with controls (p = 0.017) and there was no difference between
the LAD and the HAD group (p = 0.36), as shown in Table 3.
In the subgroup analysis, controlling for follow-up time and
radiotherapy, comparing the LAD and the HAD groups, there
was no difference between the groups for PAT-RHI (p= 0.47).

Echocardiography
Group comparisons are outlined in Table 5. Both CCS groups
had lower cardiac mass compared with controls (p = 0.011 and
p = 0.041, respectively). Compared with controls and the LAD
group, systolic LVID was larger in the HAD group (p = 0.001
and p = 0.014, respectively). Systolic and diastolic LVPW were
smaller in both the CCS groups when compared with controls (p
< 0.05 for diastolic LVPW and p< 0.005 for diastolic LVPW). LV
systolic function (LVEF) was lower in the HAD group compared
with controls and the LAD group (p < 0.001 and p = 0.020,
respectively). Six CCS in the HAD group had LVEF < 55% (49–
54.2%) compared with none in the LAD group and one among
controls (LVEF 54.9%).

Tissue Doppler mean septal and lateral wall systolic ’s-wave
was lower in both the CCS groups compared with controls (p
= 0.002 for HAD group and p = 0.029 for LAD group). Mean
tissue Doppler é-wave (as a measurement of diastolic function)
was lower in the CCS groups compared with controls: (p= 0.001
for LAD group and p < 0.001 for HAD group). In the subgroup
analysis comparing CCS groups, adjusting for follow-up time
and radiotherapy mean é-wave was lower in the HAD group
compared with the LAD group (p= 0.049).

Correlations of Cardiovascular Outcome
Variables Within the CCS Groups
Correlation analyses between total AC dose and outcome
variables corrected for age and sex revealed moderate negative
correlations with LVEF (r = −0.46, p < 0.001), SF (r = −0.43, p
= 0.002), and with mean right and left CCADI, a weak-moderate
correlation (r = −0.30, p = 0.046). Cranial radiotherapy was
correlated only with mean right and left CCA DI and SI (r =

−0.31, p = 0.038 for DI and r = 0.31, p = 0.034 for SI). There
were no significant correlations of CIMT, PAT-RHI and lipids
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TABLE 3 | Vascular outcomes in controls and childhood cancer survivors with low (LAD) or high (HAD) cumulative dose of anthracyclines.

Variables Controls (n = 53) LAD (n = 26) HAD (n = 27)

Subgroup analysisa Subgroup analysisa

PAT-RHI‡ 2.23 (0.61) 1.86 (0.69)* 2.02 (0.62)

Adjusted Means 2.20 (0.66) 1.85 (0.64) 1.88 (0.73) 2.09 (0.66) 1.99 (0.72)

CCA measurements

CIMT right CCA (mm) 0.448 (0.052) 0.454 (0.036) 0.460 (0.076)

Adjusted Means 0.447 (0.058) 0.451 (0.057) 0.455 (0.065) 0.462 (0.058) 0.456 (0.066)

CIMT left CCA (mm) 0.439 (0.055) 0.452 (0.041) 0.455 (0.064)

Adjusted Means 0.439 (0.058) 0.451 (0.058) 0.458 (0.062) 0.457 (0.058) 0.450 (0.061)

CIMT mean left/right CCA (mm) 0.444 (0.047) 0.453 (0.036) 0.458 (0.069)

Adjusted Means 0.444 (0.051) 0.451 (0.051) 0.455 (0.062) 0.458 (0.051) 0.453 (0.061)

DI right CCA (%/10 mmHg) 3.43 (0.96) 2.93 (0.76) 2.29 (0.64)**

Adjusted Means 3.40 (0.88) 2.92 (0.87) 2.88 (0.76) 2.23 (0.88) 2.29 (0.75)b

DI left CCA (%/10 mmHg) 3.51 (0.80) 2.96 (0.59)** 2.50 (0.69)***

Adjusted Means 3.54 (0.77) 2.97 (0.76) 2.91 (0.75) 2.43 (0.76) 2.54 (0.74)

Mean DI (%/10 mmHg) 3.47 (0.81) 2.94 (0.60)** 2.40 (0.63)***

Adjusted Means 3.49 (0.76) 2.97 (0.75) 2.90 (0.70) 2.32 (0.75) 2.44 (0.69)b

SI right CCA (β) 3.31 (0.77) 3.84 (1.10) 4.95 (1.40)***

Adjusted Means 3.35 (1.11) 3.87 (1.11) 3.94 (1.40) 5.01 (1.12) 4.94 (1.39)b

SI left CCA (β) 3.31 (0.93) 4.02 (0.63)* 4.92 (1.40)***

Adjusted means 3.30 (1.08) 4.00 (1.07) 4.19 (1.29) 4.94 (1.09) 4.76 (1.28)

Mean SI (β) 3.31 (0.78) 3.93 (0.76)* 4.94 (1.30)****

Adjusted means 3.28 (0.99) 3.91 (0.98) 4.06 (1.26) 5.01 (0.98) 4.82 (1.28)b

PAT-RHI, reactive hyperaemia index; CCA, common carotid artery; CIMT, carotid intima media thickness; DI, distensibility index; SI, stiffness index. Values are shown as mean (SD).

Group differences were calculated by one-way analysis of covariance adjusting for heart rate and height (ANCOVA). Intergroup differences were calculated by the Bonferroni post-hoc

test with correction for multiple comparisons; *p < 0.05 vs. control, **p < 0.005 vs. control, ***p < 0.05 vs. LAD group and p < 0.005 vs. controls, ****p < 0.005 vs. controls and LAD

group, aSubgroup analysis LAD vs. HAD group adjusted for follow-up time and radiotherapy—adjusted means (SD), bp < 0.05 vs. LAD group. ‡, missing data for 1 control and 2 in the

LAD group. Italic values are subgroup analysis.

TABLE 4 | Carotid measures in CCS treated with cranial radiotherapy.

Variables CCS (N = 45) Cranial RT (N = 8) P-value

CIMT right CCA (mm) 0.455 (0.063) 0.455 (0.034) 0.960

Adjusted means 0.457 (0.057) 0.448 (0.058) 0.696

CIMT left CCA (mm) 0.455 (0.057) 0.445 (0.035) 0.617

Adjusted means 0.457 (0.051) 0.437 (0.054) 0.331

CIMT mean left/right CCA (mm) 0.454 (0.058) 0.450 (0.026) 0.813

Adjusted means 0.456 (0.051) 0.442 (0.054) 0.499

DI right CCA (%/10 mmHg) 2.66 (0.78) 2.11 (0.45) 0.060

Adjusted Means 2.64 (0.71) 2.19 (0.74) 0.123

DI left CCA (%/10 mmHg) 2.82 (0.66) 2.24 (0.60) 0.027

Adjusted means 2.80 (0.64) 2.32 (0.65) 0.060

Mean DI (%/10 mmHg) 2.75 (0.66) 2.18 (0.51) 0.023

Adjusted means 2.74 (0.63) 2.25 (0.63) 0.054

SI right CCA (β) 4.31 (1.34) 5.22 (1.21) 0.81

Adjusted means 4.30 (1.28) 5.08 (1.33) 0.159

SI left CCA (β) 4.29 (0.86) 5.51 (1.96) 0.006

Adjusted means 4.29 (1.11) 5.47 (1.13) 0.011

Mean SI (β) 4.27 (1.02) 5.36 (1.55) 0.121

Adjusted means 4.34 (1.11) 5.27 (1.13) 0.099

CCA, common carotid artery; CIMT, carotid intima media thickness; DI, distensibility index; SI, stiffness index; RT, radiotherapy. Values are shown as mean (SD). Group differences were

calculated by one-way analysis of covariance adjusting for mean anthracycline dose (ANCOVA).
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TABLE 5 | Cardiac outcomes in controls and childhood cancer survivors with low (LAD) or high (HAD) cumulative dose of anthracyclines.

Variables Controls (N = 53) LAD (N = 26) HAD (N = 27)

Subgroup analysisa Subgroup analysisa

M-mode Left Ventricle

IVSd/BSA (mm/m2 ) 4.15 (0.78) 3.90 (0.88) 4.04 (0.95)

Adjusted means 4.14 (0.84) 3.97 (0.81) 4.07 (0.96) 4.01 (0.86) 3.88 (0.96)

LVIDd/BSA (mm/m2 ) 26.65 (3.35) 26.67 (2.90) 27.78 (4.42)

Adjusted means 26.74 (3.39) 26.86 (3.23) 26.57 (4.02) 27.46 (3.34) 27.88 (4.03)

LVPWd/BSA (mm/m2 ) 4.30 (1.00) 3.74 (0.66)* 3.75 (0.71)*

Adjusted means 4.23 (0.86) 3.77 (0.82) 3.77 (0.68) 3.73 (0.87) 3.73 (0.68)

IVSs/BSA (mm/m2 ) 5.94 (1.05) 5.63 (1.18) 5.77 (1.42)

Adjusted Means 5.96 (1.18) 5.68 (1.14) 5.83 (1.38) 5.69 (1.20) 5.58 (1.38)

LVIDs/BSA (mm/m2 ) 16.24 (2.49) 16.47 (2.29) 18.25 (3.44)***

Adjusted Means 16.30 (2.74) 16.56 (2.61) 16.40 (3.14) 18.03 (2.77) 18.32 (3.13)

LVPWs/BSA (mm/m2 ) 6.97 (1.28) 5.81 (0.98)* 5.94 (1.41)**

Adjusted Means 7.03 (1.23) 5.86 (1.18) 6.02 (1.27) 5.77 (1.24) 5.74 (1.26)

Tissue Doppler mitral valve

Septal é (cm/s) 12.47 (1.90) 11.50 (2.38)* 10.61 (1.40)**

Adjusted means 12.47 (1.92) 11.57 (1.83) 11.55 (2.10) 10.55 (1.95) 10.57 (2.10)

Lateral é (cm/s) 18.13 (3.69) 14.88 (2.35)** 14.21 (2.23)**

Adjusted means 18.17 (3.13) 14.97 (2.99) 15.21 (2.41) 14.05 (3.17) 13.90 (2.40)

Mean é (cm/s) 15.30 (2.35) 13.20 (2.01)** 12.41 (1.52)**

Adjusted means 15.32 (2.08) 13.27 (1.99) 13.37 (1.89) 12.30 (2.11) 12.23 (1.88)b

Septal ś (cm/s) 8.41 (1.13) 8.34 (1.11) 7.90 (1.26)

Adjusted means 8.41 (1.21) 8.35 (1.15) 8.37 (1.29) 7.89 (1.22) 7.87 (1.29)

Lateral ś (cm/s) 10.27 (1.75) 8.80 (2.27)** 8.66 (2.08)**

Adjusted means 10.26 (2.05) 8.79 (1.96) 8.99 (2.35) 8.70 (2.06) 8.48 (2.35)

Mean ś (cm/s) 9.34 (1.15) 8.57 (1.41)* 8.27 (1.28)**

Adjusted means 9.34 (1.30) 8.57 (1.24) 8.68 (1.44) 8.30 (1.32) 8.17 (1.44)

LV-function and mass

FS (%) 39.98 (6.21) 38.23 (5.73) 34.29 (6.34)***

Adjusted means 38.87 (6.30) 38.34 (6.01) 38.02 (6.62) 34.41 (6.39) 34.32 (6.61)

LVEF (%) 62.21 (3.84) 60.34 (3.00) 57.50 (5.03)***

Adjusted means 62.08 (4.12) 60.39 (3.93) 60.00 (4.26) 57.72 (4.17) 57.82 (4.24)

LV-Mass/BSA (g/m2 ) 73.94 (18.87) 66.15 (13.29) 63.65 (15.38)

Adjusted means 75.35 (16.22) 67.42 (15.05)* 68.21 (14.30) 63.58 (16.89)* 61.66 (14.27)

BSA, body surface area; IVSd, septal diastolic diameter; IVSs, septal systolic diameter; LVIDd, left ventricular diastolic inner diameter; LVIDs, left ventricular systolic inner diameter;

LVPWd, left ventricular posterior wall diastolic diameter; LVPWs, left ventricular posterior wall systolic diameter; SF, shortening fraction; LVEF, left ventricular ejection fraction calculated

by Simpson method; LV-mass, left ventricular mass. Values are shown as mean (SD). Group differences were calculated by one-way analysis of variance adjusting for heartrate and

height (ANCOVA). Intergroup differences were calculated by the Bonferroni post-hoc test with correction for multiple comparisons; *p < 0.05 vs. control, **p < 0.005 vs. control, ***p <

0.05 vs controls and LAD group, aSubgroup analysis LAD vs. HAD group adjusted for follow-up time and radiotherapy—adjusted means (SD), bp < 0.05 vs. LAD group. Italic values

are subgroup analysis.

and apolipoproteins regarding AC dose, cranial nor mediastinal
radiotherapy and follow-up time (data not shown). Follow-up
time after cancer treatment was associated with LVEF only (r =
−0.47, p= 0.001, Figure 1).

When focusing on correlations between structural, functional,
and biochemical outcome variables, mean right and left CCA DI
and SI were correlated with Apo-A1 (r = 0.41, p = 0.005 for DI,
Figure 2A and r=−0.32, p= 0.030 for SI), whereas Apo-B/Apo-
A1 ratio met statistical significance only in correlation with DI
(r = −0.34, p = 0.020, Figure 2B). PAT-RHI and CIMT did not
correlate with any of the lipid or apolipoprotein markers.

DISCUSSION

Improvement of long-term follow up of CCS is mandatory to

further lower the risk for cardiovascular events in adult life.

The findings of this study demonstrate that subclinical cardiac,

vascular, and lipid and apolipoprotein disorders are present in

CCS already at a young adult age. More specifically, cardiac
systolic and diastolic function and the carotid artery’s elasticity
are affected in CCS with a higher burden of cancer treatment,
and the latter correlates with apolipoprotein abnormalities.
These ultrasonographical and lipid and apolipoprotein markers
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FIGURE 1 | Left ventricular ejection fraction (LVEF, %) was correlated (adjusted for sex and age) with follow-up time (r = −0.47, p = 0.001). With simple linear

regression a significant regression equation was found [F (1,51) = 10.65, p = 0.002], with an r2 = 0.173. The predicted LVEF (%) was 63.86–0.315 (years of follow-up

time after cancer treatment).

FIGURE 2 | (A) Scatterplot of common carotid distensibility (CCA DI) among CCS was positively correlated with Apo-A (r = 0.41, p = 0.005). (B) DI vs. the

Apo-B/Apo-A1-ratio among CCS. A higher ratio depicts lower DI (r = –0.34 p = 0.020).
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are known risk-factors for future CVD in different patient
populations (25–29), but how they predict CVD in CCS
remains elusive.

Carotid and Cardiac Markers
Carotid stiffness, a surrogate non-invasive marker for
atherosclerosis, appears to be an independent marker for
CVD and mortality (28, 29) and has been suggested to predict
risk for stroke in older CCS (>40 years) (12). In the current
study, CCS with a higher AC dose (HAD group) had the most
increased carotid stiffness. Similar results were reported in a
previous work of CCS (4), where the aortic stiffness was worse
in CCS treated with AC as compared with healthy controls.
Moreover, in a large study of 852 CCS by Arnold et al. (30),
arterial SI was markedly higher than in healthy controls with
more pronounced differences with increasing age even among
those without hypertension. Carotid stiffness (expressed by DI
and SI) in the current study correlated with cranial radiotherapy,
indicating that both cranial radiotherapy and AC might account
for the observed changes in carotid function. In young cancer
survivors after childhood stem cell transplantation, radiotherapy
was also reported to be associated with increased carotid
stiffness and carotid plaques despite the use of protective
shielding of the carotid area (31) suggesting a systemic effect.
Radiotherapy in higher doses to the carotid area is known to
cause atherosclerosis (12, 31).

In the present study, the subclinical changes in the cardiac
function (both systolic and diastolic) and in carotid elasticity
in CCS showed no correlation with each other. Theoretically,
the increased afterload caused by impaired carotid elasticity
could affect left ventricular diastolic parameters. This has been
described in hypertensive patients in whom arterial stiffening
was associated with left ventricular hypertrophy and impaired
diastolic function (32). In young CCS the relationship between
arterial stiffness and left ventricular diastolic dysfunction might
be less obvious since AC and radiotherapy damage both vascular
endothelium and cardiac myocytes and the “normal” timing
of events could thus be disrupted. CCS are different from
hypertensive patients, as that they do not have left ventricular
hypertrophy but instead thinner cardiac walls and decreased
left ventricular mass due to cardiomyocyte apoptosis (33). The
expected alterations in left ventricular function due to stiffened
vasculature in CCS could also require more sensitive methods
such as strain rate imaging (34). The younger age of CCS in
our study could be important too, since subtle left ventricular
structural changes due to arterial stiffness may not be measurable
in younger individuals (35).

These effects on the vasculature by cardiotoxic AC can
be explained by the putative endothelial toxicity of AC
through oxidative stress and direct DNA-damage acting on
vascular endothelial cells, leading to apoptosis and endothelial
dysfunction (36). It has also been reported that AC leads to
decreased elastin and increased collagen content, suggesting
a possible structural derangement caused by AC (37). Like
AC, radiotherapy induces oxidative stress (38) leading to
inflammation and fibrosis that acts locally in the irradiated
area (39). But also, nearby or systemically through the so-called

“non-targeted-effects” (40, 41) which could in part explain why
cranial radiotherapy in the current study correlated with carotid
elasticity. However, to separate the individual effects of AC and
radiotherapy is complex. The HAD group had higher AC doses
and cranial radiotherapy as well as a longer follow-up time and
the effects are probably additive (42). There are also other factors
in CCS such as previous infections and severity of disease that
could affect the cardiovascular system as it has been reported that
CCS without chemotherapy or radiotherapy have cardiovascular
abnormalities when compared with controls (43). Furthermore,
mediastinal radiotherapy in combination with AC increases the
risk for CVD substantially (3, 44). We could not confirm this
in the present study, probably due to relatively short follow-up
time (45).

Endothelial Function Assessed With
PAT-RHI
In the present study, endothelial vasomotor function assessed
with PAT-RHI was decreased in CCS but no correlation with
carotid stiffness nor cardiac function was observed. PAT-RHI has
been reported to correlate with endothelial vasomotor response
in the coronary circulation (24) and to predict cardiovascular
outcome in individuals with CVD risk factors (25, 46). PAT-
RHI has been widely studied in other patient cohorts but to
our knowledge only two previous studies assessed PAT-RHI
in CCS: one in young acute lymphoblastic leukemia survivors
(47) and the other in young Hodgkin lymphoma survivors
(48). Interestingly, in our study, the LAD group, but not the
HAD group, had lower PAT-RHI than controls. Mediastinal
radiotherapy was more frequent in the LAD group in the
current study while in patients with Hodgkin lymphoma in
the previous study (48) mediastinal radiotherapy in conjunction
with chemotherapy was associated with a lower PAT-RHI score.
The underlying mechanism is unclear, but one explanation
could reside in the systemic effects on the endothelial cells of
radiotherapy and AC (38, 39). However, despite the growing
data that PAT-RHI can predict cardiovascular morbidity, its
potential benefit in general population remains debatable and
results should be interpreted with caution (49).

Apolipoproteins and Lipids
In the INTERHEART study of 12,461 individuals with
myocardial infarction, an increased Apo-B/Apo-A1 ratio
was shown to be superior to any lipid variable in estimating
the risk for myocardial infarction across ethnic groups, sexes,
and at all ages (26). Likewise, reported in that study, for every
increase in Apo-A1 by 1 SD, cardiovascular risk decreased by
33% compared to 15% for a similar increase in HDL. In the
present study, Apo-A1 and the Apo-B/Apo-A1 ratio among
CCS were associated with better- and worse carotid elasticity
respectively. Apo-A1, along with HDL, is well-known for its
vasoprotective effects, being involved in the “reverse cholesterol
transport” from the periphery to the liver and in arterial plaque
inhibition in part via antiinflammatory effects (50). Apo-A1 is
the major protein component of HDL and has been suggested
to protect the cardiovascular system against AC toxicity via
cytoprotective effects and cardiac “sparing” in delivery of AC
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(51). Whether Apo-A1 might be the driving mechanism of the
effect observed herein needs to be assessed in future studies.

Apo-B, suggested to be the basic unit of injury to the arterial
wall (52), was higher in the HAD group and in conjunction with
this nearly 30% of CCS in the HAD group had Apo-B/Apo-
A1-ratio over the upper reference limit, with lower number in
the LAD group (15%) but still higher compared with controls
(7%). This difference could be explained by cranial radiotherapy
which was used in 31% of the HAD group compared to none
in the LAD group. Cranial radiation, which was used only the
HAD group, has been linked to neuroendocrine dysfunction
and growth hormone deficiency that can cause dyslipidemia
(14, 53, 54). Cranial radiotherapy was also correlated with
impaired carotid elasticity, and this correlation could be due to
the above-mentioned systemic effects of radiotherapy including
inflammation and neuroendocrine dysfunction (14, 41, 53,
54). Importantly, normal-weight CCS had higher values of
analysed apolipoprotein biomarkers. Based on this observation,
we propose that lipid and apolipoprotein screening should be
added to the current monitoring of CCS even in those without
other signs of metabolic syndrome.

Limitations
The cross-sectional design and the relatively small number of
CCS is an important limitation. Given the cohort size, we
did not use the three-group classification (in example: low
risk <100 mg/m2, intermediate risk 100–250 mg/m2, and high
risk >250 mg/m2) commonly used in cardiovascular follow-
up of CCS (44). Moreover, we did not account for diet and
measures of fat deposition, which would have been useful to
further understand the lipid data. Additional biomarkers used in
cardiovascular risk assessment such as blood glucose and brain
natriuretic peptide would have better profiled the CCS cohort.
We did not use cardiac strain or strain-rate which could have
been useful in the assessments of associations between vascular
and cardiac measures. Studies in this regard are ongoing at
our institution.

Strengths
The strengths of the study are; 1) the young CCS cohort, 2)
absence of chronic diseases, 3) absence of ongoing medical
treatments, and 4) the narrow age-span of the study cohort. The
methods used are also widely available and reproducible and
future follow up of the study cohort is possible.

CONCLUSIONS

Young Swedish CCS without overt CVD show changes in the
cardiovascular system, lipid, and apolipoprotein profiles with
potential implications for their CVD risk later in life. Large
prospective studies are needed to further assess the course and
significance of these changes in clinical CVD.
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