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The Epithelial-Mesenchymal Transition (EMT) is an important concept in understanding

the processes of oncogenesis, especially with respect to the relationship between cell

proliferation and metastatic properties such as spontaneous cell motility, chemotaxic

migration and tissue invasion. EMT is now recognized as a more complex phenomenon

than an all-or-nothing event, in which different components of the EMT may have distinct

roles in the physio-pathological regulation of cell function and which may in turn depend

on differential interactions with cell constituents and metabolic products. This mini-review

summarizes recent work on the induction of cancer properties in parallel with the

presence of EMT activities in the presence of serine proteases, with the focus on those

tumor suppressors known as “dependence” receptors such as neogenin and Deleted

in Colorectal Cancer (DCC). It is concluded that various forms of partial EMT should be

given more detailed investigation and consideration as the results could have valuable

implications for the development of disease-specific and patient-specific therapies.
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INTRODUCTION

The concept of Epithelial-Mesenchymal Transition (EMT) was founded on changes in adhesion
molecules associated with proliferation, cell dis-association, de-differentiation to a more
mesenchymal stem cell character and the establishment of a motile, potentially invasive phenotype
(1). EMT was thought necessary to initiate cell departure from a home tissue, a phenomenon seen
in embryogenesis and in the metastatic spread of cancers. Recent studies have begun to define
“partial” forms of EMT while others propose that EMT is more concerned with the end-stages
of migration and invasion, with the reverse process of MET being at least as important as EMT
(2, 3). EMT may be critical to the physical stabilization of cells in a metastatic location and in the
development of increased resistance to chemotherapeutic drugs. The role of EMT in carcinogenesis
may generate new sets of biomarkers for early metastasis detection and novel targets for dedicated
drug development.

The complexity of molecular changes associated with EMT was responsible for the proposal
of sub-types of EMT, or “partial” EMT, and the possibility that different molecular profiles
may relate to the activity and aggressiveness of tumors. Partial EMTs may take many forms,
based on different molecular profiles which characterizes different cell types, tissue locations
and pathological conditions. The concept predicts that partial EMTs may provide a key for
the generation of individual, tissue and disease specificity necessary for developing successful
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personalized therapy of cancers and other disorders. Defining
the factors which induce partial EMTs will be essential if these
relationships are to be exploited therapeutically. This mini-
review surveys evidence for a role, in these events, of Dependence
Receptors and their modulation by serine proteases.

DEPENDENCE AND GUIDANCE
RECEPTORS (DGRs)

The Dependence Receptors include Deleted in Colorectal
Carcinoma (DCC) and the structurally related molecule
neogenin (49% amino acid identity) (4). The term “dependence”
receptors indicates that cell viability depends on ligation of the
receptors by extracellular ligands such as the netrin family of
extracellular proteins (ligands for DCC and neogenin) (5–8) or
the Repulsive Guidance Molecules (RGMs; ligands for neogenin
only). When occupied the receptors maintain cell survival,
restraining cells from initiating apoptotic death when deprived
of their ligands (9, 10) (Figure 1). These same receptors play
crucial “guidance” roles, influencing the direction and rate of cell
movement and the direction and size of cell outgrowths such as
lammellipodia. These actions are seen in embryonic development
when the dependence receptors guide progenitor cells to their

FIGURE 1 | The DGRs, serine proteases, and EMT. A diagrammatic summary of the relationship between the DGRs DCC and neogenin, serine proteases, and the

initiation of EMT. (A) If un-restrained by ligand binding, the DGRs promote cell death. (B) The primary ligands of DCC and neogenin are the netrin proteins, which

restrain their ability to induce apoptosis. (C) Conversely the DGRs exert a feedback restraint on the netrins which tend to drive cells into an aggressive, pro-migratory

mode via the induction of EMT. (D) The serine proteases chymotrypsin and subtilisin deplete DCC and neogenin from cells, allowing netrin to drive EMT and migration.

(E) The classical EMT involves changes in the absolute and relative levels of proteins such as those indicated, but the magnitude and direction of change depends on

the cell type, inducing stimulus, local microenvironment, and physio-pathological status, yielding a plethora of possible combinations of change which could represent

highly selective therapeutic targets.

eventual locations (11, 12), and in the developing and adult
nervous system where they influence axonal or dendritic growth
as well as the positioning of newly formed neurons (13–16),
synaptic contacts and neural plasticity (17, 18). In view of this
functional duality, the receptors will be referred to as Dependence
and Guidance Receptors (DGRs).

Also of relevance to EMT is the unco-ordinated-5 (unc5)
family of DGRs—homologs of the uncoordinated locomotion
genes in Caenorhabditis elegans—which also bind netrins as
ligands (19). The binding of netrin-1 to DCC normally induces
growth toward the focus of netrin production (20). If DCC is
absent and netrin binds to unc5, then the result is repulsion: cells
are directed away from the site of highest netrin concentration.
Interaction between the intracellular domains of DCC and unc5
converts DCC attraction to repulsion (21). It would seem very
likely that the migratory drive, direction and eventual target re-
location of cells bearing these DGRs will depend on the ratios of
attractant and repellent molecular states and may be critical in
the establishment of metastases.

Relationships Between DGRs and EMT
Cell dependence on DGRs may have evolved in response to
the development of multicellularity and distinct tissues. A cell
could develop a genetic mutation spontaneously or induced by an
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infective organism, toxic compounds or physical trauma, which
reduced intercellular adhesion—a necessary early stage of cell
dis-association needed for EMT. A cell which becomes detached
from the home tissue will then enter the extracellular medium
as a free-living, migratory cell. The potential for early stage
cancerous cells to establish metastatic colonies is clear. However,
after leaving the home tissue the fall in ligand concentration
for the cell’s DGRs induces the unbound receptors to promote
caspase-mediated apoptotic death (anoikis) (9, 22), a result which
has been considered a safety mechanism to minimize or prevent
the development of metastases.

In some cases, cells could become established at sites where
a sufficient concentration of netrin isoforms allows them to
create a new micro-colony (metastasis), since many tissues are
able to synthesize and secrete these proteins (23–26). This may
require the migration of a minimum number of cells which,
once established, could produce enough ligand to maintain
the metastatic colony. If this hypothesis were correct, it would
suggest the need to inhibit tumor development as early as possible
to prevent metastatic deposits achieving a size at which their
ligand production offers continuing survival.

We have shown that DGR function may be regulated by
chymotryptic serine proteases which deplete cells of their DGRs,
causing increased cell migration (27), actions that may contribute
to dietary effects on cancer incidence (28, 29). Subsequently, the
effects of this DGR loss on the induction and progression of
EMT were considered to identify any relationship between them,
as discussed in the following sections in which the major EMT
proteins E-cadherin, N-cadherin, β-catenin and vimentin were
investigated (Figure 1) (30).

E-Cadherin

E-cadherin is localized primarily to cell membranes where it is
involved in the formation of intercellular adherens junctions. It is
considered a marker for resting, physiologically stable epithelial
cells and its levels fall as cells de-differentiate before adopting the
metabolic and morphological characteristics of migratory cells
entering the EMT (31–35). In contrast, N-cadherin expression
usually increases with the approaching onset of EMT and
migration (36). The depletion of E-cadherin has been associated
with carcinogenesis and metastasis formation (34, 37–39) and
there is moderate expression in potentially metastatic cells. It has
been shown that high levels of E-cadherin occur inmetastases but
it is absent from many primary tumors (40, 41).

β-Catenin

E-cadherin is usually associated with β-catenin and loss of
the former releases β-catenin to enter the cytosol and nucleus
where, as part of the wingless (Wnt) pathway, it regulates gene
expression to influence proliferation and migration (31, 38, 41–
54). It has been considered as the most significant protein
characterizing EMT (55–60). However, β-catenin activation has
also been linked to an inhibition of cell growth (61) and in
some cases has little effect on cell behavior (62) while around
30% of mammary cancer cells had little or no β-catenin, raising
questions about the extent and timing of its involvement in
tumor development (63). β-catenin may have other functions in

the cell independent of proliferation or migration, including the
maintenance of epithelial structure and differentiation (51).

Vimentin

Vimentin is a microfilament protein involved in cytoskeletal
function. As EMT develops, vimentin levels increase with
cytoskeletal reorganization required formigration (64–68). In the
absence of vimentin, migration is significantly reduced (69) as
the E-cadherin/vimentin ratio may determine the switch from
low to high invasion capacity. Transforming Growth Factor-β, a
major regulator of EMT, may regulate vimentin expression and
the decrease in E-cadherin (70, 71). However, vimentin is not
always increased in migratory cells (72) and simple changes in
incubation conditions, such as reducing the proportion of serum,
can induce vimentin expression (27, 30). Vimentin expression
might therefore be linked to the differentiation state of cells rather
than their migratory status or capacity (73).

Serine Proteases, DGRs, and Partial EMT
Contradictory results have also been described when cells were
exposed to serine proteases such as mammalian chymotrypsin
or the bacterial chymotryptic enzyme subtilisin (27, 30). These
proteases reduced expression of DCC and neogenin, with
changes in the EMT proteins that were not consistent with
normal views on their relationship to EMT. In particular,
while levels of E-cadherin were reduced with the onset of
migration, β-catenin levels were unaffected or substantially
reduced, observations also obtained by other groups (45, 74).
Vimentin expression was increased, as would be predicted for
a compound involved in cytoskeletal adaptations to a change in
differentiation state, dissociation and migration.

This pattern of protein changes associated with a loss of DGRs
is clearly different from classical descriptions of EMT, suggesting
that DGR loss should be added to the list of phenomena able
to induce a “partial” EMT. Similar results have been obtained
by silencing the neogenin gene in the absence of other primary
modifications (75). This selective loss of neogenin also provoked
changes in EMT proteins which were not fully consistent with
conventional views of EMT leading to the conclusion that (from
genetic and morphological data), a “partial EMT” was produced.
Importantly, the results not only extend our own work but also
confirm that the serine protease effects were probably produced
solely by actions involving DGRs.

With the growing recognition of partial EMTs (76–83) some
initiating factors are being identified including phosphatidyl-
inositol-3-kinase (84), TGF-β (85–87), galectins (88), or altered
expression of PTEN (89). Some groups define partial EMT
with respect to mismatch between cell protein profile and
phenotypic behavior (90) while others are attempting to define
RNA fragments which regulate protein expression. These include
miR-376a, miR-381, and miR-128 for which evidence indicates a
significant relationship to tumor diagnosis and progression (91).

DGRs, EMT, and Differentiation
DCC expression declines as tumors advance and cells become
more de-differentiated (92, 93). This would be consistent with the
suggestion that EMT is a reflection of the differentiation status
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of cells and might explain the changes in vimentin expression
induced by reduced serum-containing media (30, 73). It would
account for the loss, rather than increase in β-catenin expression
since β-catenin levels fall in cells differentiated by retinoic acid
(94). It is also consistent with the need for de-differentiation for
cell migration (95).

DCC transfection into cells inhibits proliferation and
migration in some cell populations (96–99) but it remains
uncertain whether the expression of DGRs such as DCC and
neogenin (100) are primary inducers of cancerous change or
are secondary contributors to oncogenesis (45, 101–105). The
possible association between DCC and the progress of EMT
rather than its initiation would be consistent with several studies
(103, 106). Perhaps viewing cell differentiation as a key to this
uncertainty, rather than the EMT or any individual component
of it, may help to resolve the issue (93, 107, 108). DCC is relatively
abundant in fully differentiated cells but declines in the early
stages of carcinogenesis (109), falling further with advancing
tumor stage and reduced patient survival (13, 99, 103, 105, 106,
108, 110–112). Conversely, but very importantly, differentiation
induced by a range of factors may only be possible in the presence
of DCC (111, 113).

EMT or MET?
A modified view on the link between EMT and differentiation
is that EMT may be associated with the termination of cell
migration rather than with its initiation. Post-migratory cells
undergo changes of EMT proteins which are the reverse of
classical EMT changes and which may be crucial for cell
re-settlement in a metastatic deposit (114). Interestingly, the
loss of protein frazzled (a homolog of DCC) inhibits MET
suggesting that DCC may normally drive the non-migratory
state of cells by promoting MET, while its progressive decline
with tumor growth eventually leads to an apparent EMT
and metastatic migration. The netrin ligation of DCC induces
a loss of cadherin and the initiation of EMT, raising the
possibility that in the absence of netrin, a re-expression of DCC
might enhance E-cadherin expression and MET, consolidating
metastasis formation (52). Of course, a migrating cell will be
identified as a “foreign” cell and will normally be removed
by the immune system unless it can re-express DCC. Cells
incapable of expressing DCC would remain susceptible to
removal unless they migrate to areas sufficiently safely hidden
from immune system cells, or where the local concentration
of ligand is sufficient to overcome immune attack. These
ideas would be consistent with suggestions that DCC increases
in later stages of colony formation, when it promotes cell
differentiation (with increased E-cadherin). The explanation
also accounts for DCC-expressing cells being sensitive to
anti-cancer drugs, whereas truly metastatic cells are relatively
resistant (2, 3, 115, 116).

CONCLUSIONS

These arguments represent a highly simplified view of molecular
events underlying changes in cell properties and behavior. In

addition to DGRs, other important factors in EMT include
growth factors (especially Transforming Growth Factor-
β), oxidative stress, micro-RNAs and immune system cells
(macrophages, neutrophils) (117–119). Since neutrophils
generate large quantities of chymotryptic serine proteases,
they are likely sources of the proteases discussed in this
mini-review.

The term “partial EMT” conveys the concept that cells are
exhibiting changes which are partially characteristic of epithelial
cells and partially typical of mesenchymal cells. On the existing
evidence, however, there is likely to be a spectrum of such states,
probably dependent on the cell type, preceding mutagenic events
and the final EMT-initiating stimulus (119). It may be that these
proteins do not fully describe the intermediate states and the
temporal sequence of cell properties, or the protein changes may
represent a non-canonical EMT-like process or an independent
mechanism for migration. These alternative possibilities might
be more consistent with the suggestion that DCC is more
functionally related to the stabilization and differentiation aspects
of EMT or MET than to migration and metastasis. Indeed,
vimentin was the only EMT protein whose expression increased
with the increased migration generated by serine proteases.
Other descriptions of mixed EMT protein changes include
the “transition state” in brain metastases exhibiting atypical
expression of E-cadherin and vimentin (32). Thus, vimentin
may be a more selective component to study in relation to
EMT (120).

Several transcription factors once thought to be essential for
EMT are dispensible since, for example, Twist and Snail do
not suppress cell invasiveness (2). In addition, EMT proteins
may have actions which are unrelated to EMT (121). Overall,
however, EMT may contribute to aspects of cell function with
changes in protein expression which respond differently to
changes in cell status. This could yield cells with a variety of
partial “EMT signatures” unique to that cell population, disease
and pathology. It is difficult to assess whether EMT is more
usefully viewed in terms of the “partial” concept of organizational
discontinuity rather than as a continuum of activity (78, 122),
since even a continuum of molecular changes may generate
discontinuous functional events with different thresholds for
switching cell behavior with changes in protein signature. This
will be difficult to clarify if those thresholds involve critical
ratios of several compounds which individually appear to vary
continuously. Nevertheless, developing these could facilitate the
generation of new anti-cancer therapies with a high degree of
specificity and safety for individual patients, cancer type and
stage, depending on the cell signature involved. This may be
especially important since partial EMTs may be associated with
more aggressive and chemoresistant tumors (123–126) although
the contrary view has been expressed, emphasizing the need for
further work (127).
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